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ABSTRACT 

Reconstruction and deregulation in the international power markets has let prices to 
be determined by the fundamental rules of Supply and Demand, which brought a 
substitution from Supply Risk pre-regulation, to Price risk, thus increasing the 
necessity of hedging using derivatives such as futures and options and therefore 
brought the issue of pricing these derivatives into focus. However the traditional 
approaches for the pricing of derivatives are not applicable to electricity due to the 
unique features of the power market such as the fact that electricity is not storable. 
Under these circumstances, arbitrage across time and space is limited in the electricity 
market. As a consequence there is a need for a good model that is able to capture the 
dynamics of the electricity spot prices for the purposes of Derivatives pricing and 
Risk Management. In this thesis we propose three different spot models for the 
Scandinavia electricity market; First, we propose a seasonal affine jump diffusion 
spike model, which can distinguish the behaviour of electricity spot prices between 
normal periods and periods when spikes occur. Second, we propose a seasonal affine 
jump diffusion regime-switching spike, which is an extension of the spike model but 
contains two separate regimes to distinguish between periods of high and low water 
levels in the reservoirs, reflecting the availability of hydropower in the market. Third, 
we propose a seasonal affine jump diffusion three-factor spike model which again 
extends the spike model but allows the equilibrium level to be stochastic in order to 
capture the long-run dynamics of the market that are uncovered from the shape of the 
forward term structure. The performance of our models is compared to that of other 
models proposed in the literature in terms of fitting the observed term structure, as 
well as by generating simulated price paths which have the same statistical properties 
as the actual prices observed in the market. In particular, our models perform well in 
terms of capturing the spikes and explaining their fast mean reversion as well as in 
terms of reflecting the seasonal volatility observed in the market. Then we use these 
models and provide semi-closed form solutions for European option prices and 
investigate whether the shape of the model implied volatility smile is consistent to the 
one that is anticipated to be observed in the market. Furthermore, we also perform a 
sensitivity analysis for Asian option prices which are widely used in the market. 
Finally, we apply a modified Least Squares Monte Carlo algorithm for the pricing of 
swing options, and investigate the sensitivity of the incremental swing premium to 
changes of different parameters used to capture the stochastic behaviour of the power 
spot prices. 
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NOTATION 

Asian Call Value of an Asian Call option. 
Asian Put Value of an Asian Put option. 

CA complex number. 

Call Price of a European call option. 
COV Covariance operator. 
d(r) Number of down-swings exercised until rj. 
DK Deseasonalised strike price. 
E Expectation operator under the Real measure. 
E Expectation operator under the Equivelant Martingale Measure. 

.F A filtration or a set of events. 

f(t) Deten-ninistic variable or deterministic function of time. 

F(t, T) Forward/Future Price at time t, with maturity at time T. 

Ft, T,, T, Forward price at time t for delivery during the period [T,, T2]. 

Ga, b (YO Price of a security paying e'Twhen at maturity bX,.: 5 y 

IM[] Imaginary part of a complex number. 
K Exercise price. 
k Speed of mean reversion. 
I Jump intensity. 

Mi The ith moment of a distribution. 

N(O, 0,2) The Normal Distribution with mean 0 and variance 02 
N(d) The Normal distribution function. 

N' or N- Total number of up or down swings allowed. 

A Probability of being in regime i. 

PY Transition probability of switching from regime i to regimej. 
P, Spot price at time t. 
Put Price of a European put option. 

q A Poisson process. 
Q Transition matrix, or variance-covariance matrix in Kalman filter. 

r Continuously compounded interest rate. 
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t Time. 

T A maturity time. 

Time to maturity. 
AtR Refraction time. 

U Error term, or a vector in the Tranform ftinction YO(u, X1, t, T)) 

U (r) Number of up-swings exercised until Tj. 

V+ or Incremental volume taken or delivered. 

VCOP Value of a cap. 

Vfloor Value of a floor. 

W Brownian Motion. 

xA vector process. 
x Normal short-term factor, or log-price of electricity. 
Y Spike factor or the log-price of generating fuel. 

Equilibrium level or long-term factor. 

Risk neutral equilibrium level. 

A Market price of risk. 

P Trend. 

Pi Mean jump size. 

P Correlation coefficient. 

The n-dimensional real vector space. 
Volatility parameter. 

swing T, Value of swing option. 

V(U, X1, t, T) The transform function. 

0 Sample space. 

to, -F, P) A probability space. 
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1. INTRODUCTION AND AIMS OF THE THESIS 

LI Introduction 

The aim of this thesis is to consider the issue of modelling electricity prices in order to 

encompass the stylised features of the Nordic Market (Norway, Sweden, Finland and 
Denmark) for the purposes of Risk Management and Derivatives Pricing. More 

specifically we are developing spot price models that are able to capture the most 

significant distributional and path characteristics of the electricity market and then use 

them to explore the implied volatility smiles as well as to price exotic options used 

widely in the market such as Asian and Swing Options. 

The structure of this first chapter is as follows: Section 2 provides a brief outline of 
the aims of the thesis. After describing the main economic drivers of electricity prices 
in section 3, section 4 compares the different theories used for the pricing of futures in 

commodity markets and selects the most appropriate one for electricity. Section 5 

discusses why model building for uncertainty is of importance in the power market. 
Finally section 6 gives an outline of the thesis and section 7 concludes this chapter. 

1.2 Aim of the Thesis 

Over the last 20 years radical changes have taken place in the structure of electricity 

markets around the world. Prior to 1980s the electricity industry was a natural 

monopoly and strong vertical integration was the ideal economical model for 

electricity utilities. Deregulation and reconstruction however, made it possible to 

operate power generation and retail supply as different competitive market segments. 
Also, technological advances in electricity transmission equipment have made 

possible the economic transmission of power over long distances so that customers 

can now be more selective in choosing an electricity supplier, which result in greater 

competition among operators. 
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Reconstruction was first applied in the UK in 1990, when the then government 

argued that reconstruction was necessary, and hence privatised the industry in order to 

remove inefficiencies caused by bureaucracy, bloated workforce and procurement 

procedures. The reconstruction experiment in the UK proved successful by creating 

revenue in a time of tax cut, and also persuaded other countries to follow the same 

path, as stated by the Managing Energy Price Risk magazine in 1998. 

Reconstruction and deregulation however, let prices to be determined by the 

fundamental rules of Supply and Demand, which brought a substitution from Supply 

Risk pre-regulation, to Price risk, thus increasing the necessity of hedging using 

derivatives such as futures and options. Hence, the issue of pricing these derivatives 

came into focus. However the traditional approaches for the pricing of derivatives are 

not applicable to electricity due to the unique features of the power market. One of 

these features is the fact that electricity is not storable and this breaks down the 

relationship between spot and forward prices, which is mainly characterised by the 

notions of storage and convenience yield in storable commodities such as oil and 

metals. Under these circumstances, arbitrage across time and space is limited in the 

electricity market. The problem of non-storability also creates extreme movements in 

the spot price as in high demand periods, forced outages or transmission constraints 

may cause extreme movements in price, called spikes. Under these circumstances, the 

task of identifying an appropriate pricing model that is tractable, parsimonious, 

capturing the most significant risks, and is easy to apply for the pricing of derivative 

instruments becomes of paramount importance. 

Following the above discussion, the first aim of the thesis is to introduce different 

stochastic models that are able to accurately describe the behaviour of electricity price 

movements and at the same time fit the historical forward term structure, for the 

purposes of derivatives pricing and risk management. The reason why the pricing 

model needs to fit the forward term structure stems from the fact that even though the 

electricity spot is not a storable asset, forward and futures contracts are liquid traded 
financial assets and can be used for hedging strategies of other financial contingent 

claims, such as options. In this thesis, we examine the Scandinavian electricity market 
(Nord Pool) which has been the most liquid financial market for electricity 

worldwide, for the time period we are investigating. 
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After having introduced the different spot models and examined their properties, our 

next step is to apply them in options pricing. As a first step, we provide closed-form 
solutions for European options, using the different proposed pricing models. Then, we 

examine the properties of the implied volatility shape produced by each model, using 

as a benchmark the traditional Black-Scholes-Merton model. In this way we are able 
to investigate whether our proposed models can capture the volatility smiles and 

smirks that are anticipated in the market. This analysis will assist market participants 

who make their decisions based on the implied volatility from traded options in the 

market using the Black and Scholes (1973) model. In addition, we perform a 

sensitivity analysis in order to identify the main drivers of Asian option prices, which 

are widely used in the OTC market to hedge long-term price risks. 

Finally, we examine the issue of swing options pricing, which are contracts that are 

widely used in the energy markets, to hedge simultaneously against demand and price 

risk. Swing options pricing is a challenging topic, especially due to their early 

exercise features. After discussing the theoretical framework for pricing Swing 

options and identifying the most suitable numerical method for pricing, we conduct a 

sensitivity analysis on the incremental premium that is paid relative to a strip of 
European options. In this way market practitioners can have a benchmark on how the 
incremental premium paid for early exercise is affected by changes in different 

underlying parameters, and thus identify potential pitfalls when hedging Swing 

options with European options, which is generally the case. 

Having discussed the aims of the thesis our next step is to understand in depth how 

electricity prices move and their main economic driving forces, in order to develop a 

pricing model for derivatives pricing in the power market. Thus the next section 
focuses on the price determinants of the electricity prices. 
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1.3 ElectricitV and ift Price Determinants 

1.3.1 Power Market Features and Price determinants 

Electricity may be considered as a flow commodity (see Lucia and Schwartz, 2002) 

characterised by its limited storability and transportability. This makes electricity a 

commodity that is different than most others. The major features of the market are the 

following: 

Non-storability: Electricity cannot be stored in a conventional manner. Currently, the 

only feasible method of "storing" high voltage electricity is in bulk by means of a 

pumped storage mechanism'. Any electricity that is generated must be either 

consumed instantaneously within the grid or transmitted to another location. It can be 

argued that electricity can be stored in terms of hydropower, however this does not 

mean that electricity can be produced now and used in the future. Moreover and 

especially in these forms, no substantial amount can be stored since reservoir and 

turbine capacities are not infinite hence the possibility of electricity storing becomes 

only partial. Moreover the non-storability factor of electricity is the main driver of the 

differences between power producers, such as power generators, and power suppliers. 
Power generators may store electricity in terms of its generating fuel, mainly for very 

short-term adjustments, and thus they have the flexibility of providing electricity 
during periods of high demand and shortages. On the other hand, suppliers of 

electricity cannot store the commodity, but they rather have to transport it to the 

consumers for immediate use. Finally, consumers do not need storing facilities, as 
long as they are continuously served with a sufficient quantity of power. 

Transmission constraints: To compound the storability problem, electricity grids tend 

to be highly segmented. The transportation constraints for electricity come in the 
form of capacity limits in the transmission lines and losses from transportation, which 

can make the transmission of electricity between regions, impossible or 

uneconomical. These limitations make electricity contracts and prices highly local, i. e. 

' Method of storing and producing electricity to supply high peak demands. At times of low demand, excess electrical capacity is 
used to pump water into an elevated reservoir. When there is higher demand, water is released back into the lower reservoir 
through a turbine generating hydroelectricity. Reversible turbine/genemtor assemblies act as pump and turbine. 70% to 85% of 
the electrical energy used to pump the water into the elevated reservoir can be regained in this process. 
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strongly dependent on the local determinants of supply and demand (such as 

characteristics of the local generation plants, local climate and weather conditions). 
Additionally, regulatory issues such as market rules and market structure may also 
have an impact on the behaviour of prices in competitive electricity markets and, 

consequently, on their differences across countries. 

Seasonality and weather dependence: There are also seasonal and wcather-relatcd 

variations in the demand and supply of electricity, giving strong seasonal and intra- 

day price patterns. For instance in the Nordic countries, electricity prices have a 

tendency to increase over winter, when a substantial amount of electricity is used for 

heating and lighting purposes (as shown in Chapter 3). Generally electricity prices 

also peak during summer due to increased demand for air-conditioning. Moreover 

electricity consumption by industrial and residential users cause electricity demand 

peaks during the day, although they drop off at night, so a distinction is usually made 

between off-peak and on-peak prices. 

Swing risk and delivery: Unlike other commodity markets, the supplier of power 

(utility) faces "swing" demand risk. At a short notice, such as one day, the buyer can 

demand more or less power within certain limits. From a delivery point of view, 

electricity poses an additional set of problems. Since electrons cannot be tagged, 

electricity is produced and dumped into pools much like water entering a water 

reservoir. A buyer merely taps into the pool supplied by many generators and 

marketers. The issue of who pays whom is decided on a notional basis rather than on 

an actual delivery basis. 

Generation stack- From the supply side, the independent Transmission System 

Operator (TSO) will stack various available plants that have been "bid in7 in an 

increasing order of their marginal costs 2. That is the first plants to be turned on in any 

day are those with the cheapest marginal costs such as hydro and nuclear - the so- 

called base load 3 units. Then the more expensive coal- and oil-fired plants are used, 

and, finally, the most expensive gas-fired plants are turned on. The supply curve is the 

2 The TSOs own the transmission network and are responsible for ensuring a well-functioning physical system, including the 
system balance, that is, the equilibrium required in every instant between the energy produced/imported in any area and the sum 
of consumption /export and network losses in the same area. 
3 Base load covers power supplied at a constant rate through out all demand periods of the year and usually produced by plants 
with little operational flexibility running at very low marginal cost (e. g. nuclear, hydro). 
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locus of all these marginal costs arranged in increasing order. As shown in FiRure 1.1, 

the market-clearing price is given by the intersection of the supply and demand 

curves. Moreover since the market-clearing price cannot be below the marginal cost 

of production, the marginal cost of a particular unit in operation at a particular point in 

time may be viewed as the lower price boundary at that particular time. Note also that 

the actual marginal costs of different generators can be influenced by a number of 

physical constraints such as start-up and rump-up costs, and in some situations, this 

might make fuel cost an insufficient proxy for the actual marginal cost of generation. 

Fip-ure 1.1: Supply Stack example and E(juilibrium Price determination 
The figure below show's a schematic example of a supply stack, Ný ith two potential demand curN cs superimposed on it. Fhc spot 
price is determined by the intersection of demand and supply. 

"a 

7 

1.3.2 DitLerent ways of Generating Power 

The previous section discussed the main price determinants of electricity prices. One 

of the key determinants is the marginal cost of production, which mainly depends on 

the type of generating fuel. In this subsection, we discuss the main different types of 

power generators: 

Iývdroelectric power stations generate electricity by passing flowing water through a 

turbine. The water is stored in a dam, and released into a stream of river. These plants 
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have no marginal costs of electricity production but operate under a number of 

constraints: they cannot produce more than the capacity of the turbine, they cannot 

use more water than what is in the dam (which limits their ability to operate during 

dry periods) and they cannot emit too much or too little water into the stream /river 

during a given period of time. A key advantage is their ability to start up and shut 
down very quickly. As a result of these factors, hydro-storage plants tend to bid their 

load at high prices to maximise the revenue from the water that they can send through. 

This method of generation can cause power prices to go to very low levels during wet 

periods and reduce the incidence of price spikes. 

Nuclear power operates like coal in the way that it has low running costs yet high 

fixed costs and has long start-up and shutdown times, forcing it to be used as base 

load capacity. 

Coal generators have very low marginal costs since coal is one of the cheapest 

sources of fuel. However they have the disadvantage that they take too long to start up 

and shut down and even more they are subject to regulation due to the pollution 

caused by burning coal. Each unit must either be completely off or generating at least 

a reasonable proportion of each capacity. As such, coal generators must bid at least 

half of their units at a low enough price to ensure these bids are successful (if 

unsuccessful in bidding of any power in one hour then they would be unable to supply 

power for the duration of their warm-up time which is approximately 12 hours). As a 

result, it is common for generators to submit low bids. They therefore tend to be 

generating at levels towards full capacity all the time. Their supply will tend to satisfy 

the demand mainly during off-peak times. 

Oil and gas generators, in contrast, are much faster to start up yet have the highest 

marginal costs. They therefore tend to be used as peak capacity, rather than base 

capacity. They set the price during peak hours, and hence place bids in an attempt to 

try and maximise the prices yet supply as much as possible. Like coal generators, they 
do not have total flexibility in how much power to generate, and must produce more 
than half of their capacity for each unit operating. 
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Finally there are also renewable sources for electricity generation such as wind and 

solar energy. For instance, wind powered generators operate only on a very small 

scale. They are different from many other generator types in that although they have 

no marginal costs, they have high fixed costs and also operate under constraints due to 

their reliance on the availability of wind. They have short start-up and shutdown 

times, but cannot easily bid due to the uncertainty as to when wind will be available. 
As such they generally operate in such a way that whenever electricity can be 

generated, they will be used. 

1.3.3 flectriciný Spot price behaviour 

The discussion above gives an indication of the features of electricity prices. 
Electricity spot prices move in a totally independent fashion than those of most other 

commodities or financial assets. Power prices tend to fluctuate around values 
determined by the cost of production and the level of demand, in other words they 

have a tendency of Mean Reversion to an equilibrium price, which is a common 
feature of most commodities. However, power prices tend to change by the time of 
day, week, month and in response to cyclical fluctuations in demand, thus introducing 

a seasonality component. In addition, non-storability does not allow electricity prices 
to follow a "smooth process" as prices of other commodities do so. Also supply 

shocks, such as generating or transmission constraints and unexpected outages, cause 

temporary price "spikes" due to less availability of capacity; in other words, 

electricity prices may jump to a new level of ten times their mean, but they do not stay 

there as they quickly revert back to their mean level. On the other hand, spikes may 

also occur due to electricity's inelasticity of demand. As it can be noticed in Fiore 

1.1 the supply stack has a convex shape, so temporary extreme movements in demand 

shift the demand curve to the right, hence the equilibrium price increases. At this high 

level then more generators will enter in the market to take advantage of the higher 

price for profit making thus forcing the price to revert back to its mean. Moreover 

there is another implication of the convex shape of the supply stack. At higher price 
levels the supply stack curve becomes steeper and steeper, hence price changes are 
bigger for a given change in demand, causing an asymmetry in the volatility. This is 

exactly the opposite from what is noticed in the stock markets, and is known as the 
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more specific description of the stylised facts for the Scandinavian market will be 

given in the empirical part of this thesis, in Chapter 3. 

1.4 FUTURES PRICING THEORYAND ELECTRICITY FUTURES 

The previous sections explained the theory behind the spot price movements in the 

electricity market, by mainly examining its fundamentals. These features provide the 

building block on derivatives pricing when the underlying is the electricity price. 

When pricing a derivative contract, one usually uses the arbitrage pricing approach. 

That is, if it is possible to construct a dynamically adapted portfolio that will perfectly 

replicate the payoff of the derivative contract, then the absence of arbitrage forces the 

price of this derivative to be equal to the price of the replicating portfolio. If it is 

always possible to build a dynamically adapted portfolio that will perfectly replicate 

any payoff, then the market is said to be com lete. In this case, there will only be a 

single no-arbitrage price for any contingent claim, and there exists a unique 

probability measure called the risk-neutral probability measure, equivalent to the 

physical probability measure, under which the no-arbitrage price of any contingent 

claim is equal to the expectation of its payoff discounted at the risk-free rate. 

This approach however is not applicable when it comes to pricing electricity 
derivatives as discussed earlier, since storage possibilities are very limited and quite 

expensive. Only large hydro systems do have this possibility and even then, because 

of constraints in reservoir and turbine capacities, this possibility is only partial. Lack 

of a storage relationship may prevent us from using no-arbitrage arguments for 

derivatives pricing because one cannot create a replicating trading strategy involving 

the spot price, and thus there may not exist a unique risk-neutral equivalent 

probability measure. Furthermore, the dynamics of electricity spot price are very 

complex and quite far from what one usually assumes for financial assets. In this 
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section we will describe the various theories underpinning the pricing of the 

commodities ftitures and asserts whether they can be applied to pricing electricity 
derivatives. 

1.4.1 Commodi! y Futures Pricin_z 

The pricing theory of futures for financial assets such as bonds and stocks is different 

than that of commodities. The main difference is that pricing financial derivatives 

relies on pure arbitrage arguments, whereas commodities are more complicated due to 

the fact that storage is costly and that spot markets may be non existent or too thin for 

arbitrage. Before deriving formulas however we should state their required 

assumptions (Hull 1999): 

1) There are no transaction costs. 
2) All net trading profits are subject to the same tax rate. 
3) Market participants can borrow and lend money at the same risk-free rate of 

interest. 

4) Market participants take advantage of arbitrage opportunities when they 

occur. 

Note that it is not required that these assumptions are true for all market participants. 
All that is needed is that they hold for a subset of all market participants. Arbitrage 

opportunities disappear as soon as they occur given assumption 4. An implication of 

this assumption is therefore that market prices are such that there are no-arbitrage 

opportunities. The first three assumptions are obviously not perfectly valid in 

commodities, however the degree of validity in each market is almost the same. 
Adjustments can also be made to adjust the model to "the real world". The main 

requirement is the arbitrage assumption, and it is highly discussible if assumption 4 is 

valid in the electricity market. At the same time the volatility is extremely high which 

makes it difficult to forecast future prices. The Pricing theories are the theory of 

storage and the risk premium theory which are described next: 
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1.4.2 7heoa ofStoraze 

Inventories play a crucial role in the price formation in markets for storable 

commodities, which are also referred as "cash and carry markets". The theory of 

storage explains the difference between current spot prices and futures prices in terms 

of interest foregone in storing a commodity, warehousing costs and a convenience 

yield on inventory, which was introduced by Kaldor (193 9) and Working (193 3). The 

convenience yield can be regarded as a liquidity premium and represents the benefits 

of ownership of the physical commodity that are not obtained by the holder of a 

futures contract. These benefits may include the ability to profit from temporary local 

shortages or the ability to keep a production process running. According to the storage 

theory (or stockpiling), which again is based on traditional arbitrage pricing, the 

futures price, F(t, T), of a contract expiring at period T observed at time t is given by: 

F(t, T) = Pe'"IT-1) +U_y (1.1) 

Where the first term on the RHS of (1.1) is the current spot price compounded by the 
interest rate, r, for the period until expiration of the contract (T-t). U and Y represent 
the storage cost and convenience yield in money terms, between now (t) and delivery 

(7). Alternatively the above formula can be represented in terms of the convenience 

yield, y, as a compound factor and the storage cost as a proportion of the spot price, u: 

(t, T) el,, +s#-yXT-1) F =p 

The above formulas were introduced by Brennan and Schwartz (1985) in their 

pioneering research for the valuation of commodity derivatives. The convenience 
yield measures the extent to which the spot price compounded with the interest rate 

plus the cost of storing the commodity, exceeds the futures price. It mainly holds for 

consumption assets, where its owners keep such a commodity in inventory for 

consumption purposes and not investment purposes, hence they are reluctant to sell 
the commodity and buy futures contracts, because futures contracts cannot be 

consumed. Hence the convenience yield reflects the market's expectations concerning 
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the future availability of the commodity. The greater the possibility of shortages that 

may occur during the life of the futures contract, the higher the convenience yield. 

1.4.3 CAPM and the TheoCE ofRisk Premium 

According to the Capital Asset Pricing Model (CAPM by Sharpe 1964 and Lintner 

1965), the higher the risk an investor bears for an investment, the higher the Return 

demanded. CAPM suggests that risk can be split in two categories: Specific Risk is the 

risk that is common to a class of assets and hence can be eliminated in a well- 

diversified portfolio. Systematic Risk on the other hand, is the risk that cannot be 

diversified away and arises from the correlation of that asset's returns and the returns 

of the market as a whole. That is why stocks have a tendency to move together and 

investors are exposed to uncertainties no matter how many stocks they hold. Hence an 

investor demands a higher Expected Return than that of the risk-free rate, in order to 

bear the extra Systematic Risk. 

Therefore according to the CAPM theory the expected return on the asset is the risk- 
free rate plus an expected premium for bearing that extra risk, which can be presented 
in a one-period setting by the following formula: 

E(R) = Rf + (E(R. ) - Rf ) 
Cov(R,, R. ) 

= Rf + (E(R. ) - Rf ) 0, (1.3) 
or2(R. ) 

E(Rd : Expected Return on the ith asset 
E(R, d : Expected Return on the market 
Rf: Risk-free rate of return 
Cov(Ri, R,, d: The covariance of the returns of the ith asset and the market 

a2(R. ): Variance of market returns 

A: Systematic Risk of the ith asset 

Moreover the equation for the one-period expected return on an asset is: 
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E(P)-Iý 
E(R) fT 

P, 

P: The price of the ith asset at time t it 
E(Iý, ): The expected price of the ith asset at time T, where t<T 

Therefore combining equations (1.3) and (1.4) and solving for the price of the asset 

now (t) we have: 

E(Jý, )-(E(Rm)-Rf)P,, A 
pl, - (I + Rf) 

(1.5) 

Equation (1.5) is used to give us a fonnula for the futures price, which allows an 

investor to buy an asset now and differ the payment for one-period. Hence the current 

price of a future, Fi(tT), is the spot price of the asset multiplied by its future value 
factor: 

F (t, T) =P (I + Rf E(P,, ) - 
(E(R. ) - Rf ) P,, A 

i It 

Following Hull (1999), the CAPM theory leads to an alternative way of estimating the 

futures prices on commodities than the classical theory of storage. Consider a 

speculator who takes a long futures position in the hope that the price of the asset will 
be above the futures price at maturity. Assume that the speculator puts the present 

value of the futures price into a risk-free investment at time I while simultaneously 
taking a long futures position. The proceeds of the risk-free investment are then used 
to buy the asset on the delivery date, at time T. The asset is then immediately sold for 

its market price. This means that the cash flows to the speculator are: 

Time t: -F(t, 
T)&, r(F-1) 

Time T. - +PT, which is the price of the commodity at time T. 

Hence the present value of the investment at time t is: -F(t, T)d"(T")+E(PT) 6"(T") 

That is to say that the present value of the investment at time t, is the present value of 
the money that will be given to settle the futures position at T, plus the expected price 
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of the commodity at time T, discounted by an appropriate rate A for the investment. 

That means that I represents the expected return required by the speculator on the 

investment. Assuming that all investment opportunities have a net present value of 

zero (otherwise arbitrage opportunities arise), the fair price of the futures in the risk 

neutral world is: 

F(t, T) = 
E(P, )e', *-IXT-t) 

= E(P, )e-pr(T-t) 

The value of A depends on the systematic risk of the investment that was discussed in 

the CAPM and hence the term pr represents the risk premium. One way of explaining 

the risk premium would be to look at the conditions within the specific commodity 

market. A majority of risk averse producers wanting to hedge their products in the 

futures market would probably result in futures prices lower than the expected future 

spot price, hence pr>0. The opposite relation would occur when the demand side is 

the most risk averse. A second way of explaining the risk premium is to compare the 

spot price at delivery, PT, to other assets in the stock market. Hence, if the return on 

the spot price is positively correlated to the level of the stock market, the investment, 

using a forward contract, involves positive systematic risk and an expected return 

above the risk-free rate is required (pr>0). 

This pricing theory can also be applied in markets where the commodity is perishable 

to 4 (also referred as "price discovery markets ) or has limited storability. The no- 

arbitrage argument underlying the theory of storage, cannot be applied to non-storable 

commodities, as there is no possibility of obtaining a risk-free position by buying the 

commodity in the spot market and selling it in the futures market. The market hcnce is 

said to be incomplete, as the number of assets traded is not equal to the sources of 

risk, hence no risk-neutral strategies are identified. 

1.4.4 "ich theoly is more gMropriate for pricing electriciU derivatives? 

Comparing the two theories for futures pricing in the commodities markets, the 

CAPM approach argues that systematic risk should be important in the pricing of 

4 "Price Discovery" rcfers to "the market's ability to "discover" true equilibrium prices. Futures markets provide centralised 
trading where information about fundamental supply and demand conditions for a commodity is efficiently assimilated and acted 
on and, as a consequence, equilibrium prices are determined. " (Edwards and Ma (1992)). 
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futures contracts but leaves out storage costs and convenience yields. On the other 

hand, the first approach ignores the possibility that systematic risk may affect the 

equilibrium prices of commodity futures contracts. The issue is which theory is the 

most appropriate for pricing derivatives in the electricity market. 

As it was mentioned earlier, electricity is different than most commodities due to its 

non-storability and the physical requirements for the instantaneous equilibrium 

between local demand and supply. One can argue that especially in Scandinavia, 

power generators can store the commodity in terms of hydropower using water 

reservoirs. It can also be said that consumers have the possibility to store electricity in 

batteries, but this option is not available in large scale. In the future energy systems 

could possibly include large-scale storage capacity such as in hydrogen reservoirs. On 

the supply side there has been a limited amount of pumped hydro storage in the 

system up to-date. However, all these storage options involve substantial investment 

costs, and as market participants have stated (Nord Pool Reports and Discussion) they 

do not see them as possible tools for making arbitrage from the difference between 

spot and futures prices. Another way of exploring arbitrage in the electricity market is 

by relating the electricity price back to the cost of fuel, which is storable. With this 

approach we can determine a forward arbitrage price by introducing an additional 

variable, which is the relationship between the fuel and electricity price. However, 

this relationship is extremely volatile (as it will be discussed in more detail in section 

2.5), and thus the approach is not very useful. Another argument why this approach is 

not efficient is due to the fact that the cost of storing the fuel is not economically 

efficient for the generators, especially in the long run. Hence based on this electricity 

cannot be stored today (at least not in substantial amounts) for future sales, and 

arbitrage across time and space, based on the theory of storage, is seriously limited if 

not completely impossible. This makes electricity more like a price discovery market. 

The above argument turns to favour the theory of risk premium in the electricity 
futures market. A risk premium could arise if either the number of participants on the 

supply side differs substantially by the number on the demand side, or if the degree of 

risk aversion varies considerably between the two sides. Most of the companies 

participating in the market are both generators and load serving entities. However in 

terms of flexibility of adjusting the quantity on the supply and demand side, there is a 
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significant difference. Generators can control parts of their generation on a short 

notice, especially in Norway, due to the large share of hydropower in the system. This 

allows them to take advantage from short-term price fluctuations occurring in the day 

ahead market or even closer to real time, by adjusting their generation. Therefore, for 

them it does not make sense to fix the futures market for all of the planned future 

generation. On the demand side however the situation is different, as the entities 

cannot adjust the load on the price, due to the price inelasticity of demand. Hence, 

assuming that market participants on the demand side are risk averse, it makes sense 
for them to lock in as much as possible of their expected future demand in the futures 

market. Moreover, the probability of spikes gives another incentive for the demand 

side to hedge their costs coming from the spot price. If this difference in terms of 
hedging needs between the demand and supply side occurs, there is excess demand in 

the futures contracts, translating into a negative risk premium. This is something that 

will be proven empirically in chapter 4. 

1.5 The importance ofModel Buildinr For Uncertaintv 

The above discussion leads to the conclusion that electricity is a consumption good 

with very limited storability, in the sense that one cannot buy electricity and store it 

for future use or sell it in the future but rather has to consume it immediately. This 

implies that the market is incomplete and hence one must assume a market price of 

risk to price contingent claims; thus the drift in the risk neutral probability measure is 

the drift in the physical measure minus the market price of risk. Contingent claim 

prices are however internally consistent in the sense that they will not provide any 

arbitrage opportunities and they will be valued based on the same price of risk. 

Although spot electricity is not a storable asset, the futures and forward contracts are 

regular financial contracts that are traded and hence can be used in a replicating 
strategy. Therefore the information contained in the futures price should be used when 

pricing derivatives on the spot prices. Similarly, spot price dynamics should also be 

considered when constructing a futures model or pricing derivatives on the futures 

contracts. Hence this implies the need for a consistent underlying framework, which 
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allows to price derivatives on both the spot and the futures contracts. So modelling 

spot and futur 
, 
es prices dynamics, estimating the parameters of their stochastic 

processes and pricing derivatives on both of them are closely related issues. There are 

strong links tying the two processes together. Completeness in the market is in fact 

the key issue relating these activities. This in turn depends on the choice of the 

stochastic process to model the securities. For example if we consider a market 

composed of a single security and a deterministic risk-free bond, this market will be 

complete if the security's dynamics are modelled with a single factor diffusive 

stochastic process, but it will be incomplete if its dynamics are modelled with a multi- 
factor diffusive stochastic process. Hence, if one considers different stochastic 

processes that are assumed to describe both the spot dynamics and the futures prices 

of different maturities (which means that both spot and futures are considered as 

primary traded securities), then these stochastic processes should be estimated on 
historical time-series of both spot and futures prices. In such case, since futures 

contracts are regular financial contracts that can be traded, the market will be 

complete as long as the model remains diffusive and the values of the market price of 

the risk factors can be uniquely determined by the observations of different futures 

forming the term structure. 

The above conclusion stems from the fact that futures/forward prices are assumed to 

be such as so no-arbitrage opportunities arise. This implies that there exists at least an 

Equivalent Martingale Probability Measure5 (EMM) (see Harrison and Krcps, 1979, 

Cox et al, 1981, and Musiela and Rutowski, 1998). The no-arbitrage condition further 

implies that derivative prices must converge to the value of their payoff at maturity, 

e. g. futures prices must converge to spot prices at maturity. Hence from these 

properties it can be shown that futures prices must at any point in time be the expected 

value of the spot price at their maturity, under the EMM. However when using 

stochastic processes to model the spot price under the physical probability measure, 

there may not exist an equivalent probability measure under which all futures prices 

are the expectation of the spot price at their maturity, hence we are not able to write 

any stochastic process describing the dynamics of all the futures prices under the 

3 Martingale means that the process becomes unpredictable, i. e. E'[P,. dj=p, and it is used in derivatives valuation in order to 
find their fair value, as in the derivatives market their main purpose is risk management, and if there is any observed drift 
component, arbitrage opportunities arise. Hence futures prices are Martingales, that is to say their price at t is equal to their 
expected price at 1+dt. In other words the expected return in the position is zero. 
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physical probability measure that will not allow for some arbitrage opportunities. But 

we can find one that will fit most of them. 

Following the above discussion, the main aim of this research is to introduce a class 

of stochastic processes that will be able to accurately describe the behaviour of 

electricity price movements. In addition, this model needs to be consistent with the 

"no-arbitrage opportunities" assumption and hence it should fit best the observed term 

structure and describe the spot market's dynamics. To do that, we need to specify the 

stochastic process that best explains the movements in the prices and define a class of 

EMM that is able to price all sources of uncertainty, and hence find within this class 

the particular martingale probability measure that is able to fit the historical term 

structure. This will then enable us to price other contingent claims that are widely 

used in electricity markets. 

1.6 Outline of the Thesis 

The outline of this thesis is as follows. Chapter 2 gives a detailed summary of the 
literature up to date in electricity modelling and pricing, by dividing the literature into 

four types, namely the reduced form, forward, equilibrium and hybrid models, and 
then discusses the main advantages of our modelling procedure, and our contribution 
to the literature. Chapter 3, starts by explaining the different market structures in the 
deregulated power markets and then gives a description of the Scandinavian 

electricity physical and financial markets. It then conducts an analysis on the 
descriptive statistics on the spot prices in Nord Pool, in order to ascertain the 

statistical properties of electricity prices. 

Following the theoretical foundations given in the present chapter, and supported by 

the empirical findings of the descriptive statistics in Chapter 3, Chapter 4 then 
introduces three new models for derivatives pricing in Nord Pool: the spike model 
which is designed to capture short-term variations in spot prices, the regime switching 
spike model which captures the short-term variations, as in the spike model, as well as 
mid-term variations in the equilibrium level due to changes in the level of water in the 
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reservoirs, and a three-factor spike model which captures short-term variations as well 

as general long-term variations in the equilibrium level that are expected to persist as 
implied by the forward term structure. The models are tested in terms of fitting the 
forward term structure, by providing closed-form solutions for forward prices, as well 

as by capturing the distributional and path characteristics of spot prices. We would 

also like to mention that Chapter 4 has been accepted for publication and is 

forthcoming at the Journal of Applied Mathematical Finance under the title, "Using 

Affine Jump Diffusion Models for Modelling and Pricing Electricity Derivatives". 

Chapter 5, examines the issue of option pricing in the electricity market. It starts by 

discussing the shortfalls in the Black & Scholes world in terms of pricing options in 

the electricity market. Semi-closed form solutions are then introduced for the pricing 

of European options using the jump diffusion models introduced in Chapter 4. It then 

produces an option pricing analysis in terms of producing volatility smiles and smirks, 

analyses the option values given by the different proposed models and conducts a 

sensitivity analysis for Asian structures using Monte Carlo simulation, since their 

pricing in closed-from does not exist. 

Chapter 6, focuses on the Swing options which are contracts that are used extensively 
in the OTC electricity market, for the hedging of both volumetric and price risk. The 

chapter first looks on the pricing theory of Swing options, discusses their advantages 
in hedging and then uses a modified Monte Carlo Least Squares simulation approach 
(Longstaff and Schwartz, 2001) to find the fair price of these contracts using the 

proposed models. Then, it conducts a sensitivity analysis to identify the drivers of the 
incremental swing option premium relatively to European strips and also explores the 

effect of penalties imposed if the minimum number of rights is not satisfied. Finally, 

Chapter 7 concludes the thesis, and also presents a few suggestions for further 

research. 
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1.7 Conclusions 

This chapter is an introduction to the thesis and as such it outlines the aim and the 

structure of the thesis. The main aim is to model electricity spot prices for the purpose 

of derivatives pricing in the Scandinavian power market. The motivation for this 

stems from the fact that in the new deregulated power markets, derivatives are 

important for hedging price risk hence there is a need for an adequate model to price 

power derivatives. 

Furthermore we provided a theoretical framework for the process of electricity prices. 

More specifically we explained that the spot price should revert to an equilibrium 

level which displays a seasonal pattern due to the inelasticity of power demand and its 

dependence on weather as well as human activity. Moreover, the inelasticity of 

demand and the non-storable nature of electricity coupled with the convex shape of 

the supply curve causes prices to spike. Furthermore, we analysed the theory of 

storage and the theory of risk premium used for the pricing of commodity derivatives, 

and explained that due to the nature of electricity, the theory of risk premium is the 

most appropriate for derivatives pricing in the electricity markets. Finally, the last 

section of this chapter provided the outline of the thesis. 

The task of modelling prices for the valuation of contingent claims is very difficult in 

such a "turbulent energy induste as electricity. The next chapter will discuss the 

literature review on the subject, which will give an outline on what has been done and 

what needs to be done in order to identify the most appropriate model for Pricing and 

Risk management purposes. 

6 As the energy markets were characterised by the Professor of Finance at the University Paris Dauphine and ESSEC, Helyette 
G&nan. 
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2. LITERATURE REVIEW 

ZI Introduction 

This chapter focuses on the literature review on modelling and pricing electricity 

derivatives. This is presented in four sections, representing four different modelling 

approaches that have been proposed in the literature, using the classification by 

Eydeland and Wolyniec (2003). The first approach is the Reduced-Form Modelling, 

which consists of specifying a stochastic process of the price evolution by selecting a 

parameterised family of processes (e. g., Geometric Brownian Motion, jump-diffusion 

process, and so-on). Second, is the Forward Modelling that aims to model the 

evolution of Forward Prices without the need to take into account the market price of 

risk since this is already incorporated in the prices. Then, we have the Fundamental 

Equilibrium Models which aim to model supply/demand relations and to obtain the 

power process as a solution of certain optimisation, or more precisely equilibrium 

problems. Finally, the Hybrid Models use the fundamental approach to represent 

supply and demand relations and the stochastic techniques to represent the evolution 

of the underlying drivers. The main research in electricity that has been conducted for 

every one of the above categories will be discussed separately in the following 

subsections. Finally, the last section of the chapter explains our modelling and pricing 

approach and our contribution to the literature. 

Z2 Reduced form Models 

Starting with the Reduced Form Models, as shown by Eydeland and Geman (1999), in 

the classical Black-Scholes-Merton world, the main driver in option pricing is the 

process that describes the dynamics of the underlying asset. However in the modelling 
of price dynamics in electricity one encounters the problem of matching the fat tails of 

marginal and conditional distributions and the spikes in the spot price. The Geometric 

Brownian Motion tells us that the spot is driven by an exponential growth rate p, plus 
a noise characterised by a Brownian Motion Wt scaled up by the constant standard 
deviation term a, and the underlying price P,: 
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dP = pPdt + uPdW, (2.1) 
11 

However as explained in Chapter 1, electricity prices should mean revert to an 

equilibrium level. As shown by Schwartz (1997), in equilibrium setting one should 

expect that when prices are relatively high, supply would increase since higher cost 

producers of the commodity will enter the market, putting a downward pressure on 

prices. Conversely, when prices are low, higher cost producers will exit the market, 

thus putting an upward pressure on prices. On the other hand when specific events 

occur that affect directly the demand side (e. g. a heat-wave), then mean reversion 
depends on how quickly these events dissipate. Therefore in theory, equation (2.1), 

does not make sense as electricity prices are expected to mean revert to a long-run 

equilibrium level which is tied with the long-run marginal production cost. 

Using that fact, Lucia and Schwartz (2002) propose a one and a two-factor model to 
describe the stochastic behaviour of the 24-hour average spot price in Nord Pool, and 
test the model fit in the forward term structure. In their general extended two-factor 

model, the electricity spot price is decomposed into three components; one that is 

totally predictable and the other two, which are stochastic. The deterministic variable 
f(t), is supposed to capture the regularities that occur in the electricity market, such as 
higher prices during winter due to higher energy use. The two stochastic components 

are assumed to capture the short-term (X) and long-term (c) variations that occur in 

the market, as in Schwartz and Smith (2000). Thus their model is as follows: 

Pt=f(t)+Xt+ct 
Where 

dX, = -KXdt + uxdWx 
de, = lidt + udW, 
dW�dW, = pdt 

(2.2) 

The variable X is assumed to capture the short-run variations in the spot price process 
and thus it follows an Ornstein-Uhlenbeck with a mean reversion to zero, and speed 
of mean reversion K>O. The long-term variable c, is assumed to capture the 
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uncertainty about the equilibrium price to which prices revert. The equilibrium price 
level is assumed to follow an Arithmetic Brownian Motion (ABM) with the drift 

reflecting expectations of improving technology for the production of the commodity, 
inflation, as well as political and regulatory effects, which are very crucial in 

electricity. Hence uncertainty in prices evolves from short-term deviations from the 

long-run equilibrium level as well as from changes in the long-run equilibrium level 

to which prices revert. Long-maturity futures prices give information about changes 
in the equilibrium price, and changes in the difference between near- and long-term 

futures prices give information about the short-term deviations. 

They price futures and forwards in the Eltermin market, and the performance of each 

model was tested in terms of the Root Mean Square Errors between the actual forward 

prices and those implied by the models. The analysis was carried using both spot 

prices and log-spot prices, as well as by letting the equilibrium level C to be either 

constant or stochastic. Their results showed that seasonality is better modelled using 

sinusoidal functions, rather than monthly dummies, and they give evidence that a risk- 

premium is of paramount importance when pricing derivatives in the electricity 

market. Comparing the one-factor model (where c is assumed to be constant) against 

the two-factor model, the two-factor model performed better, since it captures the 

trend that is evident in the term-structure, but not in the spot market. Furthermore, 

another advantage of the two-factor model is that it implies a non-perfect correlation 

among forward prices of different maturities, something that is not implied by the 

one-factor model. However one of the major problems with the two-factor model is 

that it deals with non-observable state variables, and since the data they use is limited 

and the market illiquid, instead of the Kalman filter proposed by Schwartz (1997), 

they implement a filtering procedure by Cortazar and Schwarz (2003), where the state 

variables are estimated by minimising the Sum of Squared Errors at each observation 
date, and the parameters are estimated by minimising the Sum of Squared Errors for 

the whole sample. The main drawback of this procedure is that it does not provide 
standard errors from which to infer the significance of each parameter. 

As shown by Lucia and Schwartz (2002), any diffusive model at this setting is not 

compatible with the spikes as well as the fat tails realised by the distribution of the 

power prices. Therefore, Lucia and Schwartz (2002) as well as Kaminski (1997), 

37 



point out the need of introducing stochastic volatility and jumps. The former model is 

first tested by Kellerhals (2001) who uses Heston's (1993) stochastic volatility model 
to price short-term electricity derivatives. Heston (1993) assumes that the asset price 
follows a GBM but allows the volatility to be stochastic and following a mean- 

reverting process. 

However, since the electricity market is incomplete as the spot is not storable and the 

volatility is not a tradable asset, one faces two market prices of risk that arise from 

both processes. For the electricity spot the Girsanov Transformation 

dW, * = dW 
,, 

+ Arv, dt (where v, is the variance) is used, with a time invariant 

market price of risk A, in order to shift the distribution from the Real to the Equivalent 

Martingale Probability Measure. As in Heston (1993), he assumes that the market 

price of risk of the volatility process is independent from the spot, but it is 

proportional to the relative risk aversion and the covariance between the change in 

consumption and change in variance. Kellerhals (2001) proposes that the volatility 

risk premium is proportional to the volatility and has the form Avt, under the 

assumption that consumption growth and spot asset returns have a constant 

correlation. Therefore, the processes of the log-price, Xj, and that of the variance, 

under the Equivalent Martingale Probability Measure are as follows: 

dX, Av, -Iv, 
)dt+jdW, 

*, 
, 

2 (2.3) 
dV, = 

(K(C, 
- v) - Av, ) dt + aj, 

dW2*, 

However, since stochastic volatility affects the kurtosis of the distribution, he further 

assumes a correlation p between the Brownian Motions of the spot and the variance, 

which helps to capture the skewness effects, arising from the fact that electricity 
prices are more volatile at high levels, hence "spreading" the right tail of the 

probability density. Using the martingale methods developed by Geman et al (1995) 

and Scott (1997) he provides closed-form solutions for the forward prices. His model 
is tested empirically on the Californian electricity market, and estimated using the 
Kalman filter. The results show that the stochastic volatility is very important for 

modelling sport prices however it does not give any significant better fit in forward 
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prices, when compared against the mean-reverting model of Schwartz (1997). This 

may be due to the fact that his stochastic volatility model does not take into account 

the mean reversion in the spot prices. 

Another approach to capture the spikes and the fat tails of the distribution of power 

prices, are the jump diffusion models, which where first introduced by Merton (1976) 

for the stock market. As Eydeland and Geman (1999) show, this set of models explain 

intuitively the effect of extreme temperatures leading to extreme power demand, 

which happen to coincide with outages in power generation and/or transmission and 

therefore lead to large sudden increases in power prices. The general model is as 
follows: 

dP, =, uPdt + uPdW, + JPdq, (2.4) 

Where the jump-diffusion component is represented by a Poisson process qJ, with an 
intensity 1, characterising the frequency of jump occurrence and a real-valued random 

variable J representing the direction and magnitude of the jump whenever it occurs. 

The jump sizes, J, are determined by the natural logarithm of proportional jumps 

being normally distributed, In(I+J)-N(In(I+p., )-_' where pi is the mean 2 

jump size and ai is the standard deviation of the proportional jump size called the 

jump volatility. The dq, is a discrete time process charactcrised by a Poisson 

distribution, since it occurs at specific points in time. Therefore dqt=O most of the 

time and takes the value of 1, when a jump occurs. Hence the process behaves like a 
GBM when no jump occurs or when the jump frequency in near to zero. The same 

also stands when the frequency is high but the jump volatility is low. 

As stated earlier, electricity prices tend to follow a mean-reverting process, therefore 

equation (2.4) needs to take account of the fact. Barz and Johnson (1998) as well as 

Clewlow, Strickland and Kaminski (2000 and 2001), were the first papers, which 

combine a mean-reverting process with jumps. The latter use the Mean-Reverting 

Jump Diffusion (MRJD) model to capture the main features of electricity prices in the 

US: 
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dP = K(C - In P, )Pdt + aPdW, + PJdq, (2.5) 
t 

Hence the price process follows a standard mean-reverting process with probability 

equal to one minus thejump intensity, and it becomes a mean-reverting process plus a 

random jump size with probability equal to the intensity. However, since empirically 

the distribution of jump sizes in energy is positively skewed, they propose to have 

proportional jumps drawn from a normal distribution, but with different jump 

volatilities for the positive and negative jumps. They also introduce the recursive 
filter estimation, by defining as a jump every observation of returns whose absolute 

value is greater than three standard deviations of all returns. This way, they can 

capture the low frequency and high volatility component of jumps more accurately, 

compared to the Maximum Likelihood estimation of Ball and Torous (1983) which 
identifies the smallest and most frequent jump component of the actual data. However 

one major drawback of their model is that seasonality in the equilibrium level is not 
included. 

Escribano et al (2002) propose a general benchmark model that encompasses the main 
features in the main deregulated electricity markets. Using Lucia and Schwartz (2002) 

one-factor model, they specify the process by adding a jump diffusion term and 

stochastic volatility. However since continuous time models are hard to estimate and 

computationally intensive, they use a more flexible in discrete time GARCH (1, I) 

Jump Diffusion model, with seasonal jump intensity, to capture the more frequent 

jumps that occur when the demand is high. Thus their general model is as follows: 

P =f(t)+ X, t 

X 
ýXj + h, 112UI, with probability (I - 1, ) 

II ýX W +h t 
1/2UI, + 

JUJ 
+ 47JU2, with probability 1,1 

2 
with h, =co+au, -, +Ph, -, (2.6) 

1, =/, winter, +12fall, +13Spring, +14Summer, 
0= I-K 

u,, and U2, - i. i. d N(0,1) 
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where 11 for 1: 5i-<4, are seasonal jump intensity parameters, and wintert, fall,, springt 

and summert are seasonal dummies. 

The model is estimated using Maximum likelihood with a Poisson-Gaussian density 

and Likelihood Ratio Tests gave overwhelming evidence in favour of the GARCH- 

Poisson-Gaussian model for all markets against alternative model specifications. One 

main finding is that a+, B>l when no jumps are included, hence there is explosion in 

volatility process implying that the inclusion of the Jump diff-usion process is a very 

critical part. In Nord Pool they found that without the inclusion of jumps and time- 

varying volatility, mean reversion is very slow, but after incorporating these facts the 

parameter is significantly increased. They conclude that jumps and time varying 

volatility are complementary rather than substitute factors of risk. 

A drawback of the research presented until this point on the jump diffusion models, is 

that the authors do not provide any analytic results regarding derivatives valuation. 
One of the first papers that deals with the issue of derivatives pricing under a pure 
jump diffusion framework is Villaplana (2003) who extends the research by Lucia and 
Schwartz (2002). The paper is based on the argument that the price of risk is related to 

economic risks and willingness of market participants to bear it. Therefore in order to 

capture most of the electricity market characteristics, he extends the two-factor model 
by Lucia and Schwartz by introducing jump diffusion to the short-term factor. 

Moreover the author proposes two different specifications for the long-term factor: 

Arithmetic Brownian Motion or Ornstein-Uhlenbeck process. Using the Transform 

Analysis by Duffle et al (2000), closed-form solutions are derived for the prices of 
forward contracts for both spot and log-spot price models. Under this two-factor jump 

diffusion approach there are four sources of uncertainty: The two diffusive factors 

imply a short-term and a long-term uncertainty, where as the jump component 
introduces risks arising from the intensity of the jumps but also the size of the jumps. 

Hence to price derivatives he assumes that a risk premium is demanded for all three 
types of risk. He also assumes seasonal jump intensity, along the lines of Escribano et 
al (2002), and in this way the models are able to capture the "seasonal skewness" 
under the objective probability measure, that translates into a "seasonal forward 

premium7'. His empirical tests are based only on one month forward contract, and the 
long-run stochastic variable is not estimated at all. One of the important findings of 
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this research is that during periods of low jump probability, the risk premium is driven 

by the premium implied from the short-term diffusive term. That is to say that 

producers are willing to sell forward for these periods, since there is no significant 

skewness and hence, unexpected large price increases are unlikely to occur. A 

significant result was that the jump premium over summer (in the USA) was 40% of 

the total risk premium, which shows how important the jump diffusion parameter is in 

a model for derivatives pricing. However the paper uses just one contract rather than 

the whole term structure to estimate the risk premium. Furthermore, for the accurate 

estimation of the jump risk premium one needs to use options data as shown by 

Koekkebaker (2004). 

Along the same lines, Cartea and Figueroa (2005) propose a similar model to 

Clewlow et al (2000 and 2001) and Lucia and Schwartz also (2002), where electricity 

prices are modelled using a one-factor mean reversion jump diffusion, by allowing the 

equilibrium level to follow a deterministic seasonal process. The model is applied to 

the England and Wales electricity market (NETA). The speed of mean reversion and 

the risk premium are calibrated from the forward curve of one particular date. 

One main drawback of all the models up until now is that they assume that the speed 

of mean reversion of the spikes, when jumps are included in the model, is the same as 
for the diffusive shocks. However, since spikes occur mainly due to outages or major 

generators being off-line for no longer than a few days, hence, as it will be shown 
later in this thesis, their speed of mean reversion is much higher than that of normal 

shocks. Thus imposing the same mean reversion for both normal and jump shocks, 

might have serious consequences for derivatives pricing. 

Among the first papers to deal with the fast mean reversion of the spikes in a jump 

diffusion setting is Weron (2005) who uses the one-factor model of Lucia and 
Schwartz (2002) with the addition of Jump diffusion, to model prices on the spot 

prices in Nord Pool. In order to estimate the spike parameters he uses the Recursive 

filter approach by Clewlow and Strickland (2000), however he defines as a spike any 

return observation that is above three standard deviations followed by a return in the 

opposite direction of similar size. The simulated paths of the model closely resembled 
the original spot price. However as it will be shown in later chapters, this definition 

42 



might be too restrictive as a spike may last a few days, and sometimes might be 

negative. The main purpose of the model was to price and infer the market price of 

risk from Asian options using Monte Carlo simulations. No closed-form solutions 

were derived, since the model is not tractable enough, but captures the spiky 

behaviour of the market. 

Geman and Roncorony (2006) introduce another one-factor model specifically to 

describe the distribution of electricity price in the US electricity markets. The 

stochastic process of the natural logarithm of electricity prices, Xt is presented as 

follows: 

dX, = Dc(t) + k. (c(l) - X(t-)) dt + adW, + h(t-)dl(t) (2.7) 

The first term on the right hand side of (2.7) is the first derivative of the mean, c(t) to 

which prices revert, and consists a predictable seasonal trend of the price modelled by 

the sum of a constant reflecting the fixed cost of production, a trend and two 

sinusoidal functions for the two peaks per year (seasonality) of possibly different 

magnitudes. The last term of the equation capture the spikes, which are defined as a 

cluster of upward shocks, of relative large size with respect to normal shocks of the 

deseasonalised series, followed by sharp downward shocks to the equilibrium level. 

They filter the jumps from the normal process using a threshold level. If price exceeds 

that threshold, one can yield the direction of the jump, which is identified by a 

switching function h(X(t)) that takes the value of +1, if the price is below the 

threshold, and -1, if the price is above the threshold. Even though the model is able to 

capture most of the trajectoral and statistical features of the prices, no implementation 

in derivatives pricing has been given yet. Furthermore, we have to comment on the 

way they define spikes, i. e. the use of a threshold level. As we will see in latter 

chapters, electricity prices in Nord Pool reach smoothly very high levels for a long 

period of time due to the low level of water in the reservoirs, which increases the 
long-run equilibrium level. However by using this model, this type of price pattern 

would be classified as spike, which is inaccurate. 

Another area of research focused on capturing the spiky behaviour of prices in the 

electricity market is through the use of Regime Switching models. The first paper that 
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introduces Regime Switching in the electricity market is by Huisman and Mahieu 

(2003), in which electricity prices are assumed to follow different processes during 

normal and spike periods. During normal periods, their model is along the lines of 

Lucia and Schwartz (2002) one-factor model of the log-prices. Following on, the 

stochastic factor Xt is modelled as a three-regime process 7: 

Regime 0: Normal- normal price dynamics 

dx(t) = -Kýx, + a,, u(t) 

Regime + 1: Initial jump- price process at sudden increases or decreases 

dx(t) = p, + cy(l) 

Regime -1: How electricity reverts back to "normal" after a spike 

dx(t) = -K-, x, -, + a-, u(t) 

Where u(t) - N(O, 1) 

(2.8) 

(2.9) 

(2.10) 

The estimation of such a model requires a few assumptions especially about the 

Markov Transition Probability Matrix, which displays the probabilities of moving 

from one regime to another at each time step. Huisman and Mahieu (2003) assumed 

that the price cannot proceed from a normal regime to a spike reverting regime since a 

spike has to occur first; being in the reverting regime it is assumed that the process 

will be in the normal regime in one day; and also given the probability of being in the 

normal regime one can estimate the probability of a jump. The estimation becomes 

even trickier as one has to use the Kalman filter since the regimes are latent. 

Comparing the mean-reverting jump diffusion model as in Clewlow et al (2000 and 
2001) against their Regime jump model, the latter model provided a better fit. Their 

results show that their Regime-Switching model captures the jumps more accurately 

when compared against a mean-reverting jump diffusion model. However, the three- 

7 Note that the subscripts in the parameters in each model specify to which regime model that parameter belongs. 
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regime model is too restrictive in the assumptions especially due to the inclusion of 

the third regime, which restricts the duration of a jump. 

Following the above discussion, Jong and Huisman (2002) propose Regime- 

Switching models with only two regimes, rather than three, in order to allow spikes to 

last longer than only one day. That is to say that if there is a generator outage for 

example, we might have very high spikes for some time period until the generator is 

repaired; then prices will revert back to normal. Hence this time the stochastic factor 

Xj, is specified as follows: 

Stable Regime: X,,,,, =X,,,,, -, 
+k(c-X,,,,, )+u,,,,, where u,,, - N(O, a,, ) 

Spike Regime: X,, = p, + u,,,, where u,,, - N(O, a. ) 

Their estimation is along the lines of Huisman and Mahicu (2003). Their results show 

that the probability of being in the spike regime is overestimated. Their model is then 

fitted to the forward term structure by first decomposing the forward price into two 

components; one for the expected price being at the stable regime and another for the 

expected price being at the spike regime. They then adjust c and make it a function of 
time to maturity, in order for the model to fit perfectly the term structure at a given 
date. Closed-form solutions are also provided for European options on the spot price. 
One criticism made on their model is the fact that it is mainly adequate to price short- 

term derivatives, as in the long-run the spikes are averaged out and the derivatives 

depend on longer term variations, such as those on the equilibrium level as in the two- 

factor model of Lucia and Schwartz (2002). 

Deng (2000) provides three different models for the pricing of electricity derivatives, 

using the properties of all models discussed in the literature until this point, such as 

stochastic volatility, jump diffusion and regime-switching jumps. The regime- 
switching jumps capture the systematic alterations between "abnormal" (spikes) and 
"normal" (no-spikes) equilibrium states of supply and demand. He states that, these 

regime-switching jumps may be caused by weather patterns and varying 
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precipitation8, in markets where the majority of installed capacity is hydropower. 

More specifically in his main model, he assumes a joint stochastic process of the 

logarithmic prices of electricity, InP, =Xt and a generating fuel, YI, directly under the 

risk neutral measure: 

K, (t) (eý (t) - X, ) CFM) 
d dt + dw, 

yy PfflUý (t) 
iP(týCr2(t) 

K2 (t) (C2 (t) 
t) 

P(ty 

2 

where AZ, " is a compound Poisson process capturing up and down jumps and p(t) 

denotes the correlation coefficient between the Brownian Motion of the electricity 

price and that of the generating fuel price. He further extends the above model, by 

proposing two additional models: In the first he includes regime switching to 

distinguish prices between "normal" and "abnormal" states, and thus capture the 

quick speed of mean reversion for spikes. In the second extension he includes a 

stochastic volatility process along the lines of Heston (1993). In order to derive the 

formulas for derivatives valuation the author uses the transform analysis in derivatives 

pricing for affine-jump diffusion models proposed by Duffie et al (2000). Using 

hypothetical values for the parameters, the paper shows that futures prices are higher 

when jumps occur even if the upward and downward jumps are the same. He then 

derives Call options prices, and shows that their values increase with time to 

expiration, but they converge to a long-run mean showing an increasing dependence 

to the fundamental characteristics of supply and demand as maturity increases. 

However the paper does not give any empirical results on any market, as the models 

are difficult to calibrate. 

Elliot and Sick (2003) use one-factor diffusion models with jumps in the price 

explained by a finite state Markov chain describing the process of the number of 

generators on-line at every time. The paper focuses on the Power Pool of Alberta in 

the US. Suppose you have N number of generators in a pool, and that 2, represents 

9 The quantity of water failing to earth at a specific place within a specified period of time and the quantity of water deposited 
(e. g. by melting the snow). 

46 



the number of generators online at time t. Hence the dynamics of the number of 

generators on-line are modelled using a Markov Chain in continuous time. Then the 

equilibrium prices depend on the number of large plants online, which determine the 

state of the market, v= E=- R. Hence the natural logarithm of the 

deseasonalised prices, X1, is given by: 

dX, = -k (X, - (c, Z, » dt + udW, 

The results show that the long-run average level to which prices revert is actually 

significantly different at each state, however their residual analysis still shows high 

right skewness and lepto-kurtosis. This is a drawback of their approach, since jumps 

do not only occur by the availability of generators, but also by variations in demand 

and the location of the equilibrium level at that instant (if it is for example at the steep 

part of the stack function) as well as transmission constraints. The paper derives 

solutions for forwards and options however no empirical evidence is given to further 

support the validity of the model in terms of contingent claims pricing. 

Finally Benth et al (2005), model electricity prices as the sum of different stochastic 

variables, where each one follows a mean-reverting process and their shocks are 

generated by different types of jumps, each one following a Gamma distribution. 

They then provide closed-form solutions for forward prices and European options on 
forwards and swaps, which is one of the advantages of the proposed model against 

alternative model specifications and in particular log-models. Although the simulated 

paths using hypothetical values for the parameters seem to capture the behaviour of 
the electricity spot prices, the paper does not provide any empirical evidence. 
Furthermore, they do not provide any evidence on how the model captures the 
distributional characteristics of the spot, such as variance, skewness and kurtosis. This 
follows from the fact that this kind of models are very hard to calibrate and the 
literature on the econometric methods that can be applied to estimate them is very 
limited. 
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23 Forward Mode 

Up to now we have focused on spot price models of electricity, however these have 

some disadvantages: First Spot price models rely on unobservable state variables, 

such as the long- and short-term variables in Lucia and Schwartz (2002), or the 

convenience yield in other commodities. Secondly, in the spot models the forward 

price curve is an endogenous function of the model parameters and therefore will not 

necessarily be consistent with market observable forward prices, as most of the time 

the fit is not perfect. Moreover, we have to restate the fact that forwards and futures 

are often used by risk managers to hedge their risk therefore liquid forward prices will 

help the price discovery mechanism to determine the fair value for future delivery. 

Hence instead of estimating the risk-neutral parameters, one can model the dynamics 

of the forward curve, which in the risk-neutral world only consists of the volatility 
term structure. In other words the drift term should be zero because futures and 
forward contracts have zero initial investment, hence their expected return in the risk 

neutral world must be zero, therefore: 

dF(t, T) 
= T- a(t, T)dW,, where (1: 5T) (t, T) 

The equation implies that the change in a Forward price expiring at T, is explained by 

a function of the volatility of that specific forward contract scaling the standard 
Brownian Motion. However the only problem here is to specify the functional form of 
the volatility term structure. Using the one-factor model for the spot price with an 
Omstein-Uhlenbeck process as in Schwartz (1997) one can derive that functional 

form of the volatility implied by the model for each forward price as: 

dF(t, T) 
ce 

IF, 
(-t-, T) ý, - (2.16) 

The model has two volatility parameters; a determines the level of spot and forward 

price return volatility, whereas K(mean reversion speed) determines the rate at which 
the volatility declines, as the forward's maturity increases. Equation (2.16) is 
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consistent with the empirical evidence as well as with The Samuelson hypothesis 

which predicts that futures price volatility increases as the contract expiration date 

nears. Two main drawbacks of the one-factor model are that the volatility of longer 

dated to maturity contracts, T -> co, is zero, and that the correlation between the 

forward prices of different maturities is one, which is not the case, since it has been 

shown that they do not always move "identically". In the same manner one can 
increase the number of factors, such as in Lucia and Schwartz, and derive again the 
functional form of the volatilities, scaling the appropriate source of risk (Brownian 

Motion). Very good references on forward curve dynamic modelling can be found in 

Cortazar and Schwartz (1994), Amin et al (1994), Miltersen and Schwartz (1998) who 
develop a general framework for commodity derivatives valuation and risk 

management with stochastic interest rates as well as stochastic convenience yield, and 
Clewlow and Strickland (1999) who apply the different approaches in the energy 

market (oil and gas), but also adapt it to a Heath-Jarrow-Morton (1992) framework. 

Similarly all the above models fall in the category of the Heath-Jarrow-Morton 

(1992), which focuses on the dynamics of the forward curve as a whole rather than on 

the evolution of single contracts, hence in terms of the commodities where the risk 

neutral drift is zero: 

dF(t, T) KK 
=Lcr, (t, T)dW,,, oralternatively dF(t, T)=Ia, (t, T)dW,,, 

F(t, T) 

Cim A Cl.; s B 

Where 0: 5 t: 5 T 

(2.17) 

The above model implies that the financial market in the risk-ncutral world is 

described by K number of Risks, hence the K-dimensional Brownian Motion scaled 
by their respective volatilities. It has to be stated that the interest rates are assumed to 
be constant in order for common maturity forward and futures prices to be 
indistinguishable (see Cox et al (1981)). The above are multifactor models aiming to 
identify the sources of risk that cause movement in the whole forward curve. The first 

equation implies log-normality (class A) and the second normality (class B) in the 
time series of the forward prices. The spot price P, is equivalent to a forward maturing 
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at the same instant, P, = F(t, t) = lim F(t, T) , hence the spot price process from the 
T-ýt 

forward curve dynamics is implied to have the following form given a class A model: 

dP, 
=[OlnF(0,1) 

K 

a, (u, a, (u, t) A+aa, (u, t) dW, (u) dt 
P, at at at (2.18) 

K 

+ (t, t) dW, (t) 

The terms in the square parenthesis in the drift can be interpreted as the sum of the 
deterministic risk-free rate of interest and a convenience yield, or the risk premium, 

which in general will be stochastic as shown by Clewlow and Strickland (2000). 

However the drift term also involves the integration over the Brownian Motions, 

which means that spot prices depend on their history, hence in mathematical terms the 

process is said to be non-Markovian so the model is very difficult to use e. g. when 

constructing a tree for option valuation, the tree becomes non-recombining. On the 

other hand, when using the above equation and applying it to the one-factor model 

one ends up with the same model as Schwartz (1997), where the spot process is mean- 

reverting, with a time dependent drift which allows the model to fit the observed 
forward prices. 

Bjerksund et al (2000) propose two different kinds of models belonging to class B, 

implemented in Nord Pool. The first model is a one-factor model with the following 

volatility function: 

Q, T) = +c T-t+b 
(2.19) 

Where a, b and c are positive constants. Although the model does not imply that the 

volatility curve goes to zero with T -ý oo, but to a constant c, the decrease in the 

volatility curve implied by the model may be too sharp. As a remedy to that, they also 
propose a three-factor model with all parameters positive, as follows: 
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Q, T) = +c 
T-t+b 

cr2 Q, T) =( 
2ac 

1/2 

(2.20) 
T! t) 

a, (t, T) =c 

This three factor model allows a richer structure of the forward price dynamics, 

however it is not well behaved at all in the short end, because "MT-,, (a2 Q, T)) = oo , in 

other words the volatility of a forward maturing now (or the volatility of the spot) 

goes to infinity, which is not realistic. The authors state that the one-factor model is 

more adequate for pricing derivatives, where as the three-factor model is better for 

risk management. However in these models again the correlation between the forward 

contracts is one, hence forward prices of all maturities will move in the same 
direction. This conjecture contradicts with the empirical findings of Kockebakker and 
Ollmar (2005). They employ a Principal Components Analysis with the aim of 
determining the factors that explain as much of the total variation in the data as 

possible. The main advantage of the principal components analysis is that it does not 

restrict the functional form of the volatility and gives an indication of the number of 

risks in the market. Their results show that the method does not fit the data well at all, 

since 10 factors are needed to explain 94% of the variation in forward contracts, 

whereas in other markets 3 factors can explain more than 95%; for instance in the 

NYMEX Crude Oil Futures market, investigated by Clcwlow and Strickland (2000), 

the first 3 factors explain 98.4% of the total variation. Factor 1, called the shifting 
factor, causes changes in the same direction for both short- and long-term ends of the 

forward curve, however the effect is bigger for the short end. Factor 2 causes 

movements between the two ends in the opposite direction and thus it is called the 

tilting factor. The third factor is called the bending factor, moving the short and long 

end in opposite directions of the mid-range of the term structure. Very little is gained 
by adding more than five factors. The fact that there are different factors affecting the 

two ends of the forward curve, is due to the non-storability and other features of 

electricity markets. For instance, if the government plans to reduce nuclear power 

generation in two years time, futures prices with maturity of two years will rise, but 

this is not expected to affect short maturity futures. Moreover the above model cannot 
capture the presence of time varying volatility and excess kurtosis. The results from 
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this research indicate that contracts sold in the OTC market with maturities further 

into the future are even less correlated with short-term contracts, which implies that 
hedging long-term commitments using the short-term contracts may prove inefficient. 

Audet et al (2003) extend the above research by modelling the forward curve 

dynamics, allowing a deterministic (not stochastic) spot volatility curve, 

a(. ): [0, r] -* R. They also assume that forward prices are the expected future spot 

prices hence forward prices are martingales under the objective probability measure 

F[t, T] =E[P(7)1, ý]. They further assume that the forwards' volatility is decreasing 

exponentially with time to maturity; hence spot prices have the highest volatility. 
Moreover the correlation term structure is also decreasing exponentially with time to 

maturity, hence the model is as follows: 

dF(t, T) 
= e-K('-')u(T)dW, (t) for all tE [0, T], T c= [0, 

F(t, T) 

dW (t)dWT(t) = e-plT* -ýdt forall T, T*r=[O, -r] 1.0 

(2.21) 

However their analysis is more like an illustrative one as the model is calibrated 
several times for different seasons and different years (using 52 weekly contracts for 

each year) and indicates that volatility varies inside the year and also between the 

years. Volatility is higher in summer time (as also shown by Lucia and Schwartz, 

2002) when the water reservoirs are almost empty, hence small changes in demand 

cause changes in the used production technologies and production marginal costs. 
During winter however mainly condensing power is used, hence there are no major 

changes in the production marginal costs and thus volatility is lower. Moreover, 

yearly volatility depends on the accumulation of snow; if this is lower than the normal 
levels it causes uncertainty on the spring flood, and hence volatility increases. 
However, as previous research has shown, jumps occur over the winter in Nord Pool 

and sometimes the high load demand cannot be met by the available capacity of 
hydro-gencrators. 
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Finally, Benth and Koekebakker (2005), model directly the dynamics of the forwards 

and futures traded in Nord Pool, by applying different volatility functions for the swap 
dynamics, as the forward and futures prices in Nord Pool are more similar to swaps 

since they contain delivery periods over a period of time. Their approach has the main 
benefit of modelling actual traded contracts, rather than theoretical continuous 
forward prices as is the case in the Heath-Jarrow-Merton (1992) framework. Their 

modelling framework works very well in terms of pricing options on forwards traded 

in Nord Pool, however, it has the major disadvantage that one cannot associate the 

spot dynamics from the defined swap dynamics and thus the pricing of structured 

products, such as Caps, Floors and Swing Options (discussed in later chapters), 
becomes more complicated. 

As it can be seen forward curves give a better understanding about the dynamics of 
different contracts in the term structure, and there is no need to model the forward 

curve (cross sectionally), since we take it as given. However the basic models seem to 

fail to capture the main dynamics of electricity prices. One can argue however that 

Lucia and Schwartz model (2002) can also be classified as a forward curve model, 

even though they do not postulate directly the risk-neutral processes followed by 

futures prices, but define futures prices as the expected spot prices under the 

Equivalent Martingale Measure. One of the main benefits of the latter is that it has a 
high degree of intuition and furthermore, information from both the spot and the 

forward prices is used, which is very critical in capturing the market characteristics 

and completeness. Furthermore, the forward curve models rely on the complete term 

structure for each date. However in electricity not all contracts are traded every day, 

particularly long dated ones, which violates the required assumption of a liquid 

forward market and thus the estimated results may not be reliable. In addition, it has 

to be strongly stated that modelling either the forward dynamics or the swap dynamics 

would fail to capture the spikes shown in the spot market. This is caused first of all by 

the strong mean reversion of the spikes, which is not transmitted to the forward prices 
(e. g. if a spike occurs now and has a half life of one day, a forward maturing in 5 days 

will not be affected), and second the spikes are averaged out during the delivery 

period, something which also occurs for Asian options, as it will be examined later. 
For those reasons, the use of an adequate spot model that is also arbitrage free is more 
appropriate. 
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2.4 Fundamental Equilibrium Models 

Now a brief discussion will be given on Fundamental Equilibrium models. Their aim 

is to model supply/demand relations and to obtain the power process as a solution of 

certain optimisation, or more precisely equilibrium problems. These models are useful 

for a wide range of applications, especially qualitative analysis of price behaviour. 

However the challenge is that these models are not designed to capture the price 

dynamics of power price formation in a robust quantitative manner, which is 

ultimately what one needs in order to develop effective hedging and derivatives 

pricing tools. 

The most popular application of these models in power market is by Bessembinder 

and Lemmon (2001). The main assumption here is that market prices are only 

determined by industry participants and that companies are concerned about 

maximising their expected profits from power transactions in order to add value to the 

firm and minimise volatility which increases the likelihood of financial distress and 

affects future investment incentives. Forward prices are then derived using an 

equilibrium relation that they provide for forward contracts. As discussed earlier, the 

forward premium represents the compensation required in equilibrium by those who 

support the price of risk of the underlying commodity. Their findings support the 

above theory and prove that the sign and size of the forward premium is related to 

economic risks and the willingness of different market participants to bear these risks. 

Their model indicates that forward power prices are a downward biased predictor of 

the future spot price if expected power demand is low and demand risk is moderate. 

However, the equilibrium premium increases when either expected demand or 

demand variance is high, because of the positive skewness in the distribution of the 

spot price. Their empirical evidence for the PJM market indicates that the risk 

premium is positive and greater during summer months, which was also shown by 

Villaplana (2003) with the inclusion of a jump premium for those seasons. 

Continuing the discussion on the existence of a risk premium in the market and the 

existence of economic risks, Longstaff and Wang (2004) also find that forward prices 
differ from the expected spot prices. They further provide empirical evidence that risk 

premia increase if demand forecast is higher, and lower forward premia result from 
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higher volatilities in unexpected spot price and demand changes. Their results hence 

are consistent with Bessembinder and Lemmon. Botterud et al (2002) used weekly 

futures contracts and provide evidence that the electricity market in Scandinavia is in 

Contango, that is to say that futures prices on average have been above the spot prices 

in the actual week of delivery, and they find a significant evidence of a negative risk 

premium. This phenomenon exists in Nord Pool because of the greater flexibility of 

the supply side using water reservoir, so there is a greater hedging pressure from the 

demand side. Alizadeh and Nomikos (2003) give further support on the evidence of 

risk premium in Nord Pool, where they test if future contracts are unbiased estimators 

of the spot. In their tests, the hypothesis is rejected by simple univariate tests, 

however when using multivariate tests based on parameter restrictions on the 

cointegration between spot and futures prices, they find that near maturity contracts 

are unbiased predictors but, as the time to maturity increases the future contracts 

become biased, hence there is a risk premium in the market. 

Following the discussion on electricity modelling, Barlow 9 (2002) introduces an 

interesting diffusion model, in which price is determined by the equilibrium level of 

supply and demand. Hence supply and demand are functions of price and they must 
be in equilibrium, S, (Pd=d, (Pd, at every point in time especially in electricity. 

Furthermore, since electricity demand is inelastic d, (Pd=D,, for some stochastic 

process of demand. Supply is non-random and independent of time, and therefore 

becomes only a function of price, S, (Pd= g, (Pd. The above theory then leads to the 

conclusion that price is determined, by the equilibrium level by inversing the supply 
function: Pt=g"D,. Now from the supply stack function, the supply curve is 

increasing, however the total supply is limited, hence one can use the following 

function: gt(Pd=ao+b,, Pt' where a<O . Given that supply and demand are in 

equilibrium, and assuming that that demand follows an Ornstein-UhIcribeck process 

and can reach a finite maximum level, electricity prices are then proved to follow a 

non-linear Ornstein- Uhlenbeck process. The results showed that the fit of the model 
to the spot prices was good, especially in picking up the spikes when the model was 
tested for the markets of Alberta and California. However with this model there are no 

closed-form solutions for derivatives prices, and the assumption of a constant supply 
is too restrictive, as spikes are mainly generated by outages. 

91 
classify this as an equilibrium model using stochastic modelling, since it relies on the dynamics of supply and demand 
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Z5 Hvbrid Models 

A recent development in the power modelling literature has focused on another class 

of models called Hybrid Models. This method combines the distinctive features of 

both fundamental as well as pure stochastic models. The fundamental part is used to 

represent supply and demand relations, while stochastic techniques are used to 

represent the evolution of the underlying drivers. Its goal is to find out what causes 

prices to move and identify primary random variables, model the evolution of these 

variables and hence use them to identify the movements in power prices. One of the 

first models introduced is by Geman and Eydeland (1999), who suggest to 

approximate the future prices at time t for delivery at T, F(t, T), as the sum of the base 

load price, po, and the supply stack function which is a function of the expected load 

L(t, T), and the forward prices of the marginal fuello w(t, T): 

F(t, T) = p,, + ýp(w(t, T), L(t, T)) (2.22) 

Assuming that Load has a normal distribution and the forward fuel prices are driven 

by a GBM, option pricing formulas are easy to derive. A more in depth model with 

empirical evidence is build by Pirrong and Jemarkyan (2001). Arguing that a model 

for power should capture seasonality and the higher jumps occurring at hot seasons 

(in the US), the jump probability and magnitude is explained by changes in demand 

growth and capacity. Hence the equilibrium approach can give the relationship using 

two variables that reflect demand and marginal costs in order to identify how prices 

change. They propose a mean-reverting process for the demand variable (Load), 

whose equilibrium level follows a seasonal pattern. However in the stochastic process 

of Load they impose a penalty function that accounts for the fact that when load 

exceeds the physical capacity of the generating and transmission system, the system 

may fail, imposing substantial costs on power users and the ISO intervenes to reduce 

the use of power, as soon as this event happens. The second variable that needs to be 

modelled is the marginal cost, for which they use a forward model, as in section 2.3 to 

model the forward price of the marginal fuel. Then the cost of IMW of electricity 

produced is inferred using the "heat rate" which measures the amount of fuel required 

10 The fuel that is used to produce electricity and hence sets electricity prices most often 
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to generate IMW of power, and thus using a 2-step semi-parametric method they infer 

the equilibrium relationship between Load and marginal cost, in order to find the price 

of electricity. 

The model is tested empirically for the PJM (Pensylvania, New Jersey and Maryland) 

market. They find that forward prices were above expected spot prices for the summer 

months, indicating the long hedging pressure for that season due to the right skewness 

in spot prices. Hence the probability of spikes in high demand periods is high, so the 

premium demanded by the seller of forwards to bear this skewness risk is quite large. 

For the rest of the months the risk premium is negative but not as large in magnitude 

as the ones estimated for high demand periods. A very interesting conclusion of the 

paper is that in the absence of risk takers, such as investment banks and hedge funds, 

there is limited availability on risk taking, hence the market price of risk becomes 

more volatile. 

One of the main problems faced by Pirrong and Jemarkyan (2001) is that capacity 

data are not available, which is of paramount importance in order for the model to 

capture the spikes, thus in the empirical part of the paper the penalty function is not 

included. Furthermore they use one short-term forward contract to estimate the risk 

premium, rather than the whole forward term structure, thus the information about the 

expectations in the market is very limited. Also as pointed out by Geman and 

Eydeland (1999), in such models there is a problem in specifying the functional form 

of the transformation stack (the relationship given by load and marginal cost to 

calculate the price). 

Eydeland and Wolyniec (2003) overcome these problems by proposing a model 

where power prices are a function of the drivers forming its price. First, they build 

forward curve models of the Heath-Jarrow-Morton form for the evolution of the 

forward curves for each generating fuel (e. g. natural gas and heating oil) and weather 
derivatives, and simulate the spot values implied by these models". Next step is to 

find the dynamics of the load which, due to limited data availability, is approximated 

using a polynomial relation with temperature. Furthermore, a Poisson distribution is 

" In the literature it has been shown empirically that for Natural gas and Oil the HJM is very successful in modelling the 
dynamics of the forward cure. 
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used to model the process of the Rate of Outages for each generator in the system. 
Next, the generation stack is build by sorting in an ascending order all the generating 

units according to their marginal cost of generation and find the marginal cost in the 

market for each level of demand. The relation between the generation stack and prices 

gives the minimum prices that generators would be expected to bid in the market, 
based on their marginal costs of production. To estimate what actually is bid in the 

market three parameters are introduced in the model that capture the prcmia from 

numerous optionalities and market constraints, the uncertainty in the reserve levels 

and operational constraints as well as the uncertainty about the operational 

characteristics of the plants in the stack. These parameters can be estimated in order to 

match the market price of liquid tradable derivatives. 

The fundamental Hybrid Model of Eydeland and Wolyniec (2003), is perhaps one of 
the most successful models in terms of simulating price paths that resemble the 

characteristics of the physical market. As they argue, it can be used to price and hedge 

every type of uncertainty in the power market. To implement this model one needs 
detailed information such as start-up costs, rump-up and rump-down rates. However, 

the characteristics of each unit operating in a market are very difficult to find, 

especially in terms of outages but also in terms of their heat rates, capacity and 

emission costs. Moreover there has been evidence that the heat rate changes due to 

technological advances and is thus hard to estimate for every unit. Also the functional 

form between load and weather maybe accurate for explaining residential demand 

however, it may not be adequate for representing industrial demand which creates 
load growth over time. That is why it has also been argued in the RISK and EPRM 

magazines that weather derivatives may not be very efficient for hedging electricity 

prices and more specifically electricity demand, since the correlation between them 
has a high probability of breaking down. Finally, electricity in Nord Pool is mainly 
Hydroelectric; even though the storage cost of water is negligible, the investment 

costs to install water reservoirs are high, and hard to find data for. Consequently, one 
cannot identify the prices at which hydro units bid. Hence, although this model may 
look very appealing especially for market participants such as generators or retailers, 
it is very computational and data collection intensive and sensitive, and may provide 
misleading results in terms of pricing and hedging, if too many unrealistic 
assumptions are made. 
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Z6 Our contribution to the literature 

From the previous discussion on the literature review, it seems that most of the papers 

have at least one of the following four disadvantages: First, they fail to capture the 

dynamics and distributional characteristics of the market correctly (e. g. Lucia and 

Schwartz, 2002). Second, they do not provide any empirical evidence on the fit of 

their proposed models, which in most cases is due to the complicated structure of the 

models for which econometric techniques may not be yet available (e. g. Benth et al, 

2005). Third, they do not use all information given from the whole term structure and 

as a consequence they are not arbitrage free (e. g. Geman and Roncoroni, 2006). 

Fourth, if the models are too complicated, analytic solutions for derivatives pricing 

cannot be derived, thus their application is limited (e. g. Barlow, 2004). 

The aim of this thesis is to fill these gaps in the literature. As discussed in the previous 

sections, our main task will be to build an arbitrage-free model that best describes the 

dynamics of the spot prices and fits the forward/futures prices, but at the same time it 

can provide analytic solutions for derivatives pricing. Each model will be assessed in 

terms of fitting the forward prices cross-sectionally and across time. Furthermore, we 

assess each model's ability to capture both the characteristic path followed in the real 

world by the electricity spot prices, as well as capturing the four moments (mean, 

variance, skewness, kurtosis) of their distribution. 

More specifically, we introduce for the first time in the literature three Jump Diffusion 

spot models. The first is called the Spike model, which captures the seasonality and 

regularities in the market, but most importantly it incorporates two different speeds of 

mean reversion in order to capture the spiky behaviour of jumps and at the same time 

to distinguish the price behaviour between periods when there are jumps and when the 

process follows a smoother path. The second model is the Regime Switching Spike 

model which is an extension of the Spike model, but takes into account the large 

amount of hydropower generation in Nord Pool and thus captures short- and mid-run 
risks, by distinguishing between periods when there is enough water to produce cheap 
hydroelectricity and periods when users have to rely on more expensive sources of 
generation such as natural gas and oil. The third model is the Three-factor Spike 

model which is a more general extension of the Spike model but captures both short- 
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and long-run variations, however this time the long-run dynamics are not dependent 

only on the water availability in the system as in the Regime Switching Spike model, 
but depend on general long-run risks that are expected to persist and arise mainly 
from regulation risk, possibility of horizontal or vertical disintegration, threat of 
increased competition, load growth and generation plants closing down. 

In addition, we provide Closed-fomi solutions for the term structure for each model 

using the Transform analysis by Duffie et at (2000), since these models belong to the 

family of Affine Jump Diffusion. The models will be tested both in terms of their 

goodness of fit to the forward term structure, as well as in terms of capturing the 

distributional characteristics and price paths of the spot prices. In this way the 

proposed models are tested from all aspects that a model needs to be assessed in order 

to ascertain whether it is suitable for derivatives pricing in the power market. 

To our knowledge very little evidence has been given in the literature on how well a 

model fits the term structure in the cross-sectional and time series level in electricity 

markets using all information that is available about the term structure, from futures 

and forward prices. Furthermore, in the power market literature no model has been 

proposed that is able to capture the spiky behaviour in a way that is easy to calibrate 

and at the same time can provide closed-form solutions for derivatives pricing, which 
is of paramount importance for market practitioners that need quick answers to make 
their decisions. In addition, the effect that water levels in the reservoirs may have on 
the equilibrium level of electricity prices, is an issue that has not been investigated in 

the literature. This is very important since the equilibrium level adjusts the level of 
mean reversion of prices, hence if there is a high probability of the water reservoir 
levels being low in the future, this will increase the expected equilibrium price level 

and consequently, the price of derivatives with the right to buy the underlying 
commodity for these maturities will increase. The opposite of course stands when 
water levels in the reservoirs are high. Furthermore, our spot models use a limited 

number of unobservable factors to summarise the shape of the whole term structure of 
electricity in a way that is sufficiently accurate and tractable, which is along the lines 

of Schwartz and Smith (2000), Manoliu and Tompaidis (2002), Sorensen (2002) and 
Lucia and Schwartz (2002), and thus imply non-perfect correlation across forward 

contracts with different times to maturity, something that is captured by the three- 
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factor spike model. However our study not only extends the application of these 

models in the electricity markets, but also expands these models to incorporate Affine 

Jump Difftision processes, which will let us go beyond the Gaussian framework and 

hence capture more accurately the distributional characteristics of power prices. 

Furthermore, given that the proposed models provide a very good fit to electricity spot 

and forward prices, the next logical step is to examine their implications in terms of 

option pricing. Therefore in the thesis we also investigate the proposed models' 

implied volatilities generated using the Black and Scholes formula, and interpret their 

intuition in terms of reflecting the kurtosis and skewness of the underlying 

distribution. With the exception of Branger (2004) who applies general extensions of 

the GBM model in the equity market, such analysis lucks in the option pricing 

literature for electricity derivatives even for the simplest mean reversion model which 

has not yet been examined for any market. As it will also be shown the implied 

volatility for mean-reverting models produces a skewness by itself as mean reversion 

does not allow the underlying prices to reach extremely high or low price levels, thus 

reducing the probability of OTM call options ending ITM. Furthermore, based on our 

proposed spike model, we find that the mean jump size explains the volatility skew 

whereas it is the jump size volatility, rather than the jump intensity, that plays a more 

significant role in making the volatility smile more pronounced and thus increasing 

the kurtosis of the price distribution. 

Next, we also explore the option prices generated by the three proposed models and 

provide the intuition behind them. More specifically we find two very interesting 

results which are pointed out for the first time in the literature; one is that mean 

reversion causes European Option prices to reach a constant value as time to maturity 
increases and then the discounting starts affecting the option values more thus 
decreasing the value of European options as time to maturity increases, something 

which is totally different to what one would get from using the Black and Scholes 

model where prices increase with time to maturity. On the other hand we find that 

using the regime switching spike model gives more intuitive results than using the 
three-factor spike model. Given that we are currently in a regime with no water the 

regime switching spike model produces a humped shape for European option prices as 
time to maturity increases, whereas an exponentially increasing shape is produced if 
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we are currently in a regime with water. The three-factor spike model on the other 
hand may produce a similar shape, but translates the water reservoir risk as a short- 

term effect rather than a mid-terin (or more precisely yearly) effect, which is not 
intuitive. 

in addition, using our spike model we also perform a sensitivity analysis on the prices 

of Asian options. We show how Asian options prices are affected by changes in the 

parameters and more importantly how option prices change due to a change in the 

mean reversion of spikes. We also examine how the importance of spikes changes as 

the jump intensity increases, since the averaging effect may not diminish their 

contribution to the option's price. These findings are important to practitioners who 

are interested on the factors that will significantly change the moneyness of Asian 

options, when engaged in trading these products, and are presented for the first time in 

the literature on Asian options. 

Finally, the last chapter is devoted on the so-called Swing contracts that have been 

developed in order to give their holder flexibility with respect to the amount 

purchased in the future. These contracts are mainly found in energy markets and allow 
for flexibility in the amount delivered depending on the customer's needs. This refers 

especially to electricity, but Swing contracts appear also in coal (as in Joskow 1985 

and 1987) and gas markets (Clewlow and Strickland 2000). We explain the theoretical 

complications in pricing these exotic options, using a stochastic optimal control 

technique, since no closed-form solution is available due to their early exercise 
features. However, since our spot price processes are based on complicated reduced 
form models that have jumps, lattice methods and trees become impractical since the 

dimension of the problem is too big. We thus use the extended Least Squares Monte 

Carlo algorithm for swing options, by D6rr (2003). We perform for the first time in 

the literature, a sensitivity analysis on the main drivers of the incremental swing 

premium with respect to strips of European options whose maturities are within the 

period of the swing rights. Moreover, we provide the lower and upper bounds of the 

swing options, which are strips of corresponding European options and Bermudan 

options, and we see how the swing options converge to their lower bounds as the 

number of swing rights approaches the number of swing dates. We also carry a 
comparative analysis on the pricing of swing options, between the different proposed 
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short-term models. Finally, we explore how the swing premium is affected by 

penalties imposed, when the total number of swing rights exercised during the 

delivery period does not satisfy special contracted restrictions. 

2.61 Comparative advantages offroj2osed Methodology ofModelli 

2.6.1.1 "y is our approach better than the rest of the Reduced Form Models? 

As discussed earlier, only Lucia and Schwartz (2002) consider a model for electricity 

prices based on both spot and forwards. Most of the reduced form literature has 

focused on modelling the spot only hence the models are not arbitrage free. 

Furthermore, most models are one-factor and do not capture the most significant 

characteristics of the market, while at the same time they impose a perfect correlation 
between forward prices of different maturities. Some of the papers, like Huisman and 
Mahieu (2003), specify that for long-term obligations different models have to be 

developed, or in Elliot and Sick (2003) it is mentioned that even though there is a 

trend in spot prices there exists some uncertainty about this trend. However none of 
the papers has specifically addressed these issues. 

In our research, we want to be able to capture as many as possible sources of 

uncertainty, irrespective of whether they originate from short-term variations, 

macroeconomic uncertainty or technological advances. Our approach estimates the 

models in the real and the risk-neutral world, by estimating their parameters using 
both the spot and forward term structure (since the forward market is the most liquid 

market for derivatives trading in electricity). Even though the spike model captures 

mainly the short-term variations of electricity prices, we extend it by introducing the 

regime switching spike model, which can capture longer term variations mainly 
caused by the amount of water in the reservoirs which affects the marginal cost of 

production and thus the equilibrium level to which prices revert. On the other hand, 

the three-factor spike model is a more general extension of the spike model, and is 

able to capture both short- and long-term variations, where the former is inferred from 

the spot market and near maturity forward contracts and the latter is inferred using 
long-maturity contracts. 
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Finally, we also capture the spiky behaviour of the spot prices in a practical, easy and 

at the same time accurate way, using our spike models where we impose two speeds 

of mean reversion, to distinguish between periods when spikes occur and when the 

price follows a normal mean-reverting process. This in turn improves the spot- 
forward relationship, which is very helpful both in terms of hedging but also in terms 

of capturing the distributional characteristics of prices. The above facts are very 
important in providing an accurate model for pricing derivatives, and it is to some 

extend surprising that not all of them have been examined at the same time in the 

literature. By investigating these issues, this is then a contribution to the literature. 

2.6.1.2 "y is our approach better than the Forward Curve models? 

As discussed in the literature review, previous attempts have shown that modelling 
the Forward curve directly has failed to capture the dynamics of both spot and 
forward contracts. First of all the contract specification for a delivery period averages 

out the jumps occurring in the spot market (since the forwards in the electricity 

market are more like swaps), hence if one uses only financial contracts in the 

electricity market, he will be ignoring information about the behaviour of spot price 
dynamics. Second, in the electricity market, even in Nord Pool which is considered as 
the most liquid market internationally, long maturity contracts are not traded very 

often; this creates a problem of sparse data sets in which at each date there are only a 
few different maturity contracts traded and thus the use of daily data on the term 

structure needed to calibrate these models may not yield reliable results. Furthermore, 

our modelling procedure is more practical and tractable in pricing derivatives on the 

spot, and at the same time it provides a clear relationship with the forward market 

which can be used for delta hedging strategies, as it is shown in the appendix of 
Chapter 5. 
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2.6.1.3 "y prefer this approach than the Hybrid? 

The Hybrid model by Eydeland and Wolyniec is considered to be the most successful 

in terms of simulating the spot electricity price paths. However it relies on detailed 

information, such as plant availability and generating capacity and generators' 

operating characteristics, that is perhaps available only to regulators. It is very hard to 

find the exact characteristics of every generator in the market such as the number of 

times of forced and unforced outages, the fuel it bums, its exact Heat rate and the 

capacity data. Therefore empirically these models will have to rely on too many 

assumptions, which may be too restrictive and give misleading results. On the other 

hand our approach relies on more liquid data that are publicly available in the market 

and, as it will be shown in the subsequent chapters, our models can capture the most 

significant characteristics in the market and at the same time derive analytic formulas 

for derivatives pricing. The latter is important especially for traders and market 

participants who need to have quick results to take decisions. 

Z7 Conclusions 

In this chapter we examine the literature review on electricity modelling for the 

purposes of derivatives pricing. We followed the same classification as in Eydeland 

and Wolyniec (2003) and discussed the main advantages and disadvantages of each 

modelling approach. More specifically we found that in the spot price modelling, 

none of the papers address the issues of capturing the dynamics of electricity price 

accurately and at the same time implementing them in derivatives pricing and thus 

finding their risk-neutral measure. On the other hand, the Forward curve models have 

not been successful up to date since a large number of factors is required to capture 
the dynamics of the whole term structure. At the same time modelling the forward 

curve directly cannot capture the spiky behaviour of the spot prices, since the spikes 
are averaged out during the delivery period. We also explained that the fundamental 

equilibrium models are not suitable for derivatives pricing since they do not capture 
the dynamics of prices in a robust quantitative manner. Finally, the hybrid models, 
even though they are very appealing, their required dataset is difficult to obtain. 
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The last section of the chapter discussed our contribution to the literature, where we 

pointed out that our modelling framework aims to provide an arbitrage free model that 

is able to capture the spot dynamics accurately, and at the same time provide closed- 
form solutions for derivatives prices and therefore analyse the implications of each 

model on the prices of plain vanilla as well as exotic products. The next chapter 
describes the operational functions of the Scandinavian power market, which is 

investigated in this thesis, and examines its stylised facts in order to identify the main 
features a successfiil model needs to capture. 
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3. DESCRIPTION OF THE NORDIC MARKET AND 

PROPERTIES OF THE POWER SERIES 

3.1 Introduction 

Before we start building models for the pricing of derivatives and risk management in 

the electricity market, we first have to understand how the market under investigation 

functions and the properties of its spot series. Thus, this chapter is an introduction to 

the empirical part of the thesis. The second section of this chapter provides an in 

depth description of the different market structures that exist in electricity markets 
internationally. In section 3 we focus more specifically on the Scandinavian electricity 

market, by first giving a brief history of its development and then explain its two 

major market segments, i. e. the spot and the financial market. After explaining how 

the market functions, section 4 starts the empirical analysis, by first looking at the 

descriptive statistics and thus the distributional and path characteristics of the 

Scandinavian electricity spot market. This analysis will then give a clear 

understanding on the main features a model needs to capture for the pricing of 
derivatives in the Nordic market. Section 5, analyses the relationship between the 

level of water in the reservoirs and the spot price, which will lead us to one of the 

main driving forces for the changes in the equilibrium level that occur at different 

periods in time, and finally section 6 concludes the chapter. 

3.2 Market Structure and Revoulation 

3.2.1 The Services and regulation in the flectriciaý Market 

The electricity business, competitive or otherwise, generally comprises five 
independent services. First of all the Generation process is where production takes 

place for the wholesale quantities of power. Transmission then is responsible for the 
transportation of the generated wholesale power over large distances using high- 

voltage cable networks. Ancillary Services are provided by generation units (through 

resources which are brought in full capacity to maintain balance) and used by 
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transmission operators to balance supply and demand in real time and to maintain 

overall system security, in order for demand and supply to be always in equilibrium. 
Distribution then takes place for the transportation of power from the transmission 

system to the consumer. Finally the "olesalel Retail Supply services facilitate the 

purchase and sale of the physical commodity. 

The common thread running through every reconstruction is the rcalisation that 

providing at least some of these services does not necessarily require a monopoly 

market structure. Consequently each of these services must be unbundled and treated 

as a separate market. In particular, the essential feature of every reformed electricity 

market is the separation of the Generating Function from the Transmission Function 

and the provision for equal access to and fair use of transmission service. Separation 

generally means the privatisation of generating, transmission and distribution assets as 

three or more specialised entities. Generation and Supply of wholesale power are 

made into an explicit competitive market, while transmission and distribution 

continue to be considered as natural monopolies and regulated as such. 

3.2.2 PrimaCE Market Structures 

After reconstruction the cash (physical) markets in electricity fall under one of the 

two contracting structures: pools and bilateral markets. 

The main characteristic of the pool market is the formal establishment of the market 

clearing price, also known as the system price, at which all cash transactions clear. 
The generators sell and the suppliers buy electricity through the same pool, therefore 

physical risk is removed from individuals and concentrated to the pool. Examples of 
this market structure include Nord Pool in the Nordic countries, New England Power 

Pool (NEPOOL) and the California Independent System Operator (CAISO). 

In the Bilateral Markets all transactions are entered by two parties and are 
independent of any other transactions in the market. Utilities do not own generating 
assets and must buy power to serve their native load through long-term "full 

requirement" contracts. Examples of these markets include the East Central Area 
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Reliability Council (ECAR) in North America (more specifically east central US) and 

the Electricity Reliability Council of Texas (ERCOT). 

Moreover in any given market, energy cash settlement can be handled in different 

ways. Day-ahead markets, transact for generation of energy for the next day, and each 
hour is transacted separately. Day-of markets, transact for generation of energy for the 

rest of the day, and every hour is transacted separately. Hour-ahead markets, transact 

generation of energy for the next hour. Real-time markets are reconciliation markets 

that clear any deviations from the predicted schedules entered in the previous markets 
(day-ahead, day-of and hour-ahead). 

3.3 THE SCANDINAVIAN ELECTRICITYMARKET 

3.3.1 Histoa 

The history of the Scandinavian electricity market starts from 1971 when a new 

market structure was established, called Samkjoringen, to coordinate the Norwegian 

electricity production. Every week Samkjoringen set the daily or part-of-the-day price 
for electricity. This price was used to decide the Norwegian electricity production and 
the exchange with other countries. However the market changed in 1991, when the 
Norwegian Parliament approved a new Energy Law. This law introduced market- 
based principles for the production and consumption of electricity in Norway. It 

introduced competition as a tool for ensuring a more efficient and reliable energy 
supply. The act mandated separation of grid transmission activities from competitive 

activities such as generation and supply of wholesale power. The main aims of the 
Power market reform were to obtain a better balance between power generation 
capacity and power demand, increase efficiency within the power industry and reduce 
regional differences in electricity prices to end-users. Therefore, after England and 
Wales in 1989, Norway was the second country in Europe to deregulate the electricity 
market. 

In 1993 Samkjoringen merged with Statnett SF to create a new company called 
Statnett Marked AS. Statnett Marked AS organiscd the new Norwegian market place 
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for electricity from 1993 to 1996. In 1996 the Swedish grid company, Svenske 

Krafindt, bought 50% of Statnett Marked AS and became part of the power exchange 

area. At the same time Statnett Marked AS was renamed to Nord Pool ASA. Finland 

joined the power exchange area in 1998, western Denmark in 1999 and eastern 
Denmark in 2000, and the first successful multinational market was formed. 

As a result of the deregulation process in the Nordic electricity system, the 

transmission network is owned and operated by a number of independent 

Transmission System Operators (TSOs), whose activity is subject to regulation and 

control by public authorities. This guarantees a non-discriminatory access to the grid 

to all market participants in the new electricity market. 

3.3.2 Power Generation and StorabiliU in the Nordic Area 

As we argued before storability of electricity is in general not possible for consumers 

of electricity unless they have some kind of pumping storage facilities or very large 

batteries, which very rarely happens. The consumers do not need storing facilities 

either, as long as they are continuously served with a sufficient quantity of power. The 

electricity market is in this way different from other commodity markets, where 

supply does not take place continuously. For suppliers with water reservoirs on the 

other hand, it is possible to store energy in the form of water behind dams. The 

volume kept in the reservoirs is usually between 30% and 100% of the total electricity 

generating capacity in Norway, depending on the time of the year, and is always well 

above the demand for the following month (for Norway only though). As it will be 

shown later in this chapter, 1996 was a year with high import of power because of the 

extremely low inflow to the reservoirs. The prices were accordingly very high. The 

limited storage capacity does therefore also contribute to uncertainty about prices. 

More generally power generation in Scandinavia is mixed as shown in Figure 3.1, 

Denmark uses 85-90% fossil fuel-based generation and 10- 15% wind power. Norway 

has nearly 100% hydropower production. Sweden and Finland rely on a mix of 
hydropower, nuclear power, and conventional thermal generation. 
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Fieure 3.1: Power p_eneration by source in Scandinavia, 2003 
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Source: Nord Pool report 

3.3.3 The Phvsical Market 

The physical market is called Elspot, which is a "spot" market where day-ahead 

electric power contracts are traded for physical delivery for each one of the 24 hours 

during the following day. It provides a neutral, transparent reference price for both the 

wholesale and retail markets. Every contract in Elspot refers to a load, in megawatt- 

hours (MWh, I MWh equals 1,000 kWh), during a given hour, and a price per MWh. 

A price, called the System Price, is fixed separately for each hour for the next day, 

based on the balance between aggregate supply and demand for all participants in the 

whole market area (the so-called Nordic Power Exchange Area), without considering 

capacity limits in the grid among countries. The participants in the spot market submit 

sealed bids and offers for the following day to Nord Pool before 12.00. These orders 

are demand and supply schedules that spccifý the price-quantity combinations at 

which buyers and sellers are willing to trade for each single hour the following day 

(see L ab I _e3. 
I). 
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Table 3.1: Dailv routines for tradinp_ in Nord Pool's spot market. 

10: 30 : Deadline for TSOs to submit their capacity allocations for Elspot 
(row normally contracts. 

giver by 10: 00) 

12: 00: Deadline for receiving all participants' Elspot market bids covering hourly 

contracts for delivery the next day. The market closes; Elspot price 
Calculations begin. 

At the latest Elspot price calculations are completed, confirmations of trades are 
13: 30: executed; these state Volumes and prices, and are dispatched to all 

participants who submitted bids and to Nordic TSOs and others 
(rormally by 13: 00, responsible for power balance adjustments. Participants must file 

but in rare cases complaints about trades within 30 minutes of distribution from Nord Pool 

delayed to after Spot of their Elspot schedules. 
13: 30) 

14: 00: Deadline for filing COMPlainItS, Unless a delay of price-setting beyond 

13: 30 has occurred. All Elspot contracts are binding between buyers, 

sellers, and Nord Pool Spot. 

Source: Nord Pool reports 

A system price can thus be defined as the market-clearing price at which market 

participants trade electricity for the entire exchange area when no transmission 

constraints apply (see Figure 1.1). The spot market is also the primary Nordic market 

place for handling potential grid congestion (called grid bottlenecks) that is, 

insufficient transmission capacity in a sector of the grid. In other words, Elspot is a 

market place where energy and capacity is combined in to one simultaneous auction. 

Within the Norwegian power system and at the border interconnectors between 

Nordic countries, the spot market price mechanism is used to alleviate grid congestion 
by establishing different area prices. The Nordic market is partitioned into separate 

bidding areas, which can become separate price areas, if the contractual flow between 

bidding areas exceeds the capacity allocated by TSOs for spot contracts. If there are 

no such capacity constraints, the spot system price is also the spot price throughout 

the entire Nordic Power Exchange Area. If contractual flow at System PrIce exceeds 

grid capacity limits, two or more area prices are calculated for the affected spot 

market delivery hour. Once spot market prices and volumes are determined, it can be 

said that the Nordic Market is in planned balance according to predicted generation, 
loads and contractual flows. Since 1993 the turnover in Elspot market has increased 
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steadily from about 10 TWh (1012 Watts) in 1993 to almost 120 TWh in 2004, and the 

trend seems to continue. In 1999, more than one fifth of the total consumption of 

electricity power in the Nordic countries was traded via Nord Pool, and in 2003 this 

increased to one third (as reported by Nord Pool statistics). 

In addition, in order to handle any unpredictable differences between the planned and 
the real exchange during delivery, once the Elspot market is closed, the national 

system operators have additionally set up regulating or balance markets from which 
12 

the required upward or downward regulation is obtained on short notice 

3.3.4 The Financial Market 

Eltermin and Eloption is Nord Pool's financial market where derivatives are traded, 

and it has been designed to serve as a risk management tool for generators and 

retailers that want to hedge their future profits. At the same time, the market also tries 

to attract speculators who seek to profit from the highly volatile electricity prices in 

order to increase the liquidity in the market. Eltermin allows trading in financial 

contracts such as forward and futures with delivery periods up to three years in 

advance. Since September 1995, none of these contracts entails physical delivery; 

they are all settled in cash against the system price in the spot market. They refer to a 
base load of I MW during every hour for a given delivery period of one day, one 

week, one month (replaced block contracts = four weeks), one season, and one year 

that may be available for trading depending on the type of contract. European style 

option contracts are also available for trading since October 29,1999. 

Thefutures market trades mainly for short- to medium-term purposes. Until the end of 
1999, futures contracts with delivery periods of one season were available for trading 

up to three years in advance. There were three season contracts during a given year: 
Season I or VI (with delivery period including weeks I to 16 of any -given year), 
Season 2 or SO (weeks 17 to 40), and Season 3 or V2 (weeks 41 to 52/53). They were 

available for trading until the beginning of the second previous season. Then, the 

12 Nord Pool is involved in Elbas, a physical market for short-term trade launched in March 1999 by the Finish electricity 
exchange EI-Ex, Electricity Exchange Ltd., that allows traders mainly in Sweden and Finland to adjust imbalances after the day- 
ahead spot market is closed (see Nord Pool (2004)). 
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season contracts were split into 3 to 6 block contracts. Each block contract had a 
delivery period of 4 weeks (5 weeks for the case of the last block for a year with 53 

weeks), and each one was available for trading until the beginning of the delivery 

period of the previous block. Then, they were split into weekly contracts with delivery 

period of one week each, which stop trading before the beginning of their respective 
delivery periods. Additionally, futures contracts with a delivery period of one day are 

also available for trading several days in advance until the day before they are due for 

delivery. As of fall 2003 the block contracts have been replaced by monthly forward 

contracts, whose delivery period equal to the number of days in a given month. 

Since 2003 the futures market has a time horizon of 8 weeks. The settlement of the 

futures contracts involves a daily mark-to-market settlement during the trading period, 

and a final settlement in the delivery period. The mark-to-market settlement covers 

the gains and losses from the daily changes in the market price of the futures 

contracts. The final price-securing settlement covers the difference between the last 

closing price of the futures contract and the system price during the delivery period. 

Figpre 3.2 gives an illustrative example of how the settlement procedure works in the 

futures market. By taking a position in the futures market, and making the 

corresponding trade in the spot market during the delivery period, a participant is 

completely hedged for the contractual volumes. The settlement procedure therefore 

removes the basis risk form the electricity futures market. Still the participants cannot 

use the futures market to hedge against uncertainties concerning future load (volume 

risk). 

The forward market facilitates hedging of positions further ahead in the future, and 

consists of Month contracts which have replaced Block futures contracts and Seasonal 

contracts which have gradually been replaced by Quarter contracts since the 
beginning of 2004 and Yearly contracts. Year contracts with delivery period 

corresponding to the entire calendar year are available for trading till two days before 

the beginning of the delivery. period. These are then split into Quarter contracts 
(which replaced Season contracts since 2004) which are available for trading until the 
beginning of their respective delivery period. There are four Quarter contracts each 
one corresponding to the appropriate quarter with its three months. Quarterly 

contracts are then split into Monthly contracts available for up to six months in 
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advance. As opposed to the futures market, there is no mark-to-market settlement in 

the forward market. Therefore, the accumulated profit and loss during the trading 

period is not realised until the delivery period. This is so as to increase liquidity for 

the long-term forward contracts, since no cash payment is required during the trading 

period. The additional settlement throughout the delivery period is, however, 

orgamsed in the same way as the futures contracts. 

Fii! ure 3.2: Settlement Drocedures in the futures market. 

No'. ý, N INý ýI Fumit- I'i-z hire Securing settlement: 
Market wttlement: Comaracti. for dclivcry. 
Realised profit for long pos 
Rcalised loss for sbort Pos. 

'ý' 
\-\ \\ý' 

- Fixing price ----------------- ---------------- ----- io 

Acciumilited rcaliýcd 
Sý Stein price 11, 

.......... profi, for 10112 Pos 'lie Spot 111.111et 

: 1113 tor ýIlort poý. Profit Alort Ix- 
Loss lon? pos ................ 140 ------- a/ 

------ 

Profit lolisr poi 
Loss short pos. 

Ti:: 13III? pel-103 

11adilig Trading Ti-nding Week of dchvciý- Tillie 
day I div 2 (Liv 

The figure above gives an illustration of the settlement procedure for a futures contract traded at Nord Pool. The purchaser ofthe 
contract receives 10 NOK'MWh in the mark-to-market settlement. Deviations front the futures closing price on the last trading 
day (fixed price) is taken care of the price-securing settlement, so that the contract holder ends up with a final price equal to the 
initial price ofthe t*LIILII*CS contract, when buying the contractual amount in the spot market. 
Source: Nord Pool reports 

As an example oil hedging using the futures or forward market, assume there is a 
load-serving entity, ABC, which is searching for ways to provide power to its clients 
during winter. ABC however has concerns that the winter power prices may be high, 

and it wants to shield itself from the price volatility. One solution is to lock in the 

winter prices as early as possibly, e. g. in June. ABC can go long oil Winter Quarter 

contracts, to ensure a fixed price of electricity for the whole delivery period I'M tile 

contractual amount. Of course that means that in the event oflower spot prices, ABC 

cannot take advantage of it and may end up losing money with respect to the market. 
However the aim of futures and forwards is not to profit, but to have a constant price 
at highly volatile periods. 
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The Options market in Nord Pool was launched in 1999 for standardised option 

products. An option in Nord Pool is a right to buy or sell an underlying Financial 

Market contract (Forward), at a predetermined price (Exercise or Strike Price) at a 

predefined date in the future (Exercise Date). Options are available with the two 

nearest Quarter (replaced Season) contracts and two nearest year contracts as the 

underlying forward contract. Option contracts to buy are termed call options, and 

option contracts to sell are termed put options. Thus, the holder of a call has the right 

to buy the underlying contract, and the holder of a put has the right to sell. The option 

contracts at Nord Pool are European-style, i. e., they can only be exercised at the 

expiry date. New option series are listed for trade on the first trading day after the 

exercise day of the previous contract series. Expiry day is set as the third Thursday in 

the month before the delivery period of the underlying contract starts, as def"incd in 

the option's product specifications. Nord Pool sets five strikes when an options series 
is initially listed for trade. Strikes are based on the closing prices of the underlying 
forwards. The spread intervals between the five strikes are defined in the option 

product specifications. New exercise prices are automatically generated when the 

traded price or the closing price of an underlying forward is at or below (above) the 

second lowest (highest) exercise price. The contract size of the underlying Financial 

Market forward contract is I MW; therefore the size of an option contract is 

calculated by multiplying the number of MW by the number of hours in the 

underlying contract. There are four different contract sizes, in MWh (with the 

exception of leap years): 

FWV1: I MW * 2,879 hours = 2,879 MWh 

FWSO: I MW * 3,672 hours = 3,672 MWh 

FWV2: I MW * 2,209 hours = 2,209 MWh 

FWYR: 1 MW * 8,760 hours = 8,760 MWh 

The option premium is quoted in Norwegian Kroner, NOK/MWh and it is settled the 
day after the option is traded. On the exercise day, options have four basic profit and 
loss curves. Potential profits and losses for each option strategy depend on the price of 
the underlying forward contracts, exercise prices, and the premium paid. In the case of 
a purchased option, the risk of loss is limited to the premium paid and the potential 
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profit is unlimited. The contrary applies to written options; i. e. the risk of loss is 

unlimited while the potential profit is the premium received. The pay-offs for each 

type of option contract depending on the position taken are illustrated in Figure 3.3: 

Figure 3.3: Option Pay-offs at Expir_V Date 
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A purchased call option can be compared to an insurance against increases in the 

forward price of power. A buyer can use call options to insure that his fixed price of 

future power will not exceed certain levels, while at the same time enjoying a fall in 

power prices should it occur. A producer that wants to insure future sale of power can 

go long a put option. A variety of options strategies are used for price hedging. 

Because of their flexibility, options are useful to both hedgers and traders. An 

Exchange Member seeking trading profit, rather than price hedging, might combine a 

put and a call in positions known as a straddle or a strangle, if prices are expected to 

move sharply up or down. 

An option can be described as "in-the-money" if it would result in a profit if exercised 
immediately (i. e., the underlying forward price is above (below) the strike price for a 

call (put) option). An option that would result in loss of premium is "out-of-the- 

money" while it is "at-the-money" if the underlying forward price is equal to the 

strike price. The profitability of an in-the-money purchased call option is similar to 
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the profit potential of holding a long position in the underlying instrument. Out-of- 

the-money puts or calls offer potential profits, if they move as anticipated past at-the- 

money value into an in-the-money position. 

3.3.5 Daily Trading in Nord Pool's Financial Market 

The derivatives market is open between 8: 00 and 15: 30, Norwegian local time. An 

Exchange Member's orders are binding until the end of the trading day, or until the 

member has changed or cancelled them and received a confirmation receipt. Once the 

market has closed for the day, written trade confirmations are made available for 

Exchange Members. For derivatives trading 17: 30 is the deadline for Filling 

Complaints for Exchange Trades. Closing prices for financial derivatives contracts, 

used for settlement and margin calculations, are determined at a random time within 

the last 10 minutes of the trading day. The precise time is selected by a random 

number generator to avoid any potential closing price manipulation. Nord Pool 

distributes closing prices to the market as soon as possible after the market closes at 

15: 30. 

The closing price of a financial derivatives contract is calculated as the last trading 

price if the traded price is within the buy and sell spread, or bid and offer price, at the 

randomly selected time. For contracts outside the spread, or contracts that have not 
been traded, the closing price is defined as the average of the bid and offer, as 

specified by the rulebook for the financial electricity market. 

Through its clearing function, currently conducted by a separate business area called 

the Nordic Electricity Clearing (NEC), Nord Pool guarantees settlement and delivery 

of all trades made at the market, by entering into the contracts as a legal counter-party 
for both the buyer and the seller. NEC also offers clearing services of standardized 
OTC bilateral financial contracts registered in the market for that purpose. 

Figure 3.4 displays the time series of the yearly total volume of traded financial 

contracts in Nord Pool since 1993. Liquidity has increased substantially since the 
beginning of the market, however as Nord Pool report (2004) states, liquidity is very 
low for long maturity contracts, such as the second nearest quarter contracts. In 
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addition the options market is also very illiquid. The reasons behind the latter will be 

explained in more detail in chapter 5. 

Fieure 3.4: Total volume of financial contracts traded in Nord Pool 
The figure shows the total volume of financial contracts that haNc been traded in Nord Pool each year since 1993, in TWh. 
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3.4 Stvlised Factv of Svstem Price 

To model a series and identify its risks empirically, one has to first look at the 

distributional characteristics of the market to be examined. For that purpose we 

collect daily system prices from Nord Pool's FTP server files. The data consists of 

twenty-four time series (one for each hour per day), of the daily system prices (seven 

days a week since electricity is "traded" every day). The nominated currency is 

Norwegian Kroner (NOK) since the financial market is settled in that currency. The 

prices represent the amount of NOK per MWh in two decimal points, and the data set 

is collected from I" of January 1993 to 291h of February 2004. The twenty-four hourly 

series are highly correlated (Table 3.2), with an average linear correlation between 

any two hours of 0.96, and are always above 0.96 between any consecutive hours. 

Elten-nin uses the arithmetic average of all hourly prices for a given day, as a 

reference price in the cash-settlement calculations at expiration of the derivatives 

contracts. It makes sense then to generate a new series of the arithmetic average daily 

prices, and carry the analysis on that series which will be referred from now on as the 

"Spot" price. 
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Figure 3.5 shows the time series of the spot price and the logarithmic spot price, as 

well as their changes. It can be seen that the electricity market is very volatile. There 

is however a characteristic behaviour in terms of upward spikes, which seem to occur 

primarily during winter (December to February). This is due to the fact that in cold 

seasons severe weather conditions are more likely in Scandinavia, causing extreme 
load fluctuations, which in combination with generating outages (especially of large 

generating plants) or transmission failures cause short-lived price "jumps". Clearly, 

the pattern in electricity prices also reflects changes in supply and demand. For 

instance, in February 1994 spot prices reached very high levels, due to the high 

demand during the Olympic Winter Games in Lillhammer. Similarly, the higher level 

of prices during recent years reflects lower water levels in the reservoirs. Looking at 

the price differences, it seems that they vary with time forming clusters, which is an 
indication of time-varying volatility. Moreover, the log-returns in Panel B show that 

volatility is higher at low price levels, which is an indication of seasonality. However 

care has to be taken since this might be a result of the log transformation of prices as 

we explain in more detail later. Also log-returns show very high percentage 
fluctuations, being as high as 100% (in absolute terms), on some dates. 
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Fieure 3.5: Time Series 
These figures show the time series of the spot prices in Nord Pool from I" of January 1993 to 29" of February 2004. Panel A 
displays the daily average system price in Nord Pool, as well as the daily price changes, both measured in NOK/MWh. Panel B 
displays the logarithm ofthe daily average system price as well as the log returns. 
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Table 3.3: Descriptive Statistics of Nord Pool Prices 
The table displays the descriptive statistics and the Unit Root tests (see e. g. Green, 1993 and Hamilton, 1994) of the average 
daily System Price in log-levels and log-differences (returns). The data sample is from January 1,1993 to February 29,2004. The 
first column is for the whole sample, and the remaining divides the data into the four seasons. Ile definition for each season is as 
follows: Winter (December, January and February), Spring (March, April and May), Summer (June, July and August), and 
Autumn or Fall (September, October and November). For the estimation and hypothesis testing on the coefficients of Skewness 
(S) and Kurtosis (K) the following formulas are used respectively- 

r, r 
-N(0,6/n) 

-4 
r, r 

-N(0,24/n) 

Where n is the number of observations. The null for each test is that the population Skewness and Kurtosis are 0 and 3, 
respectively. (*) and (**) imply significance at 5% and 1% levels, respectively. Note also that forthe ADFtest, alargenumberof 
lags is needed in the relevant regression, to account for the serial correlation that is present in the changes of the relevant 
variables. In our case the number of lags is 21 based on Schwartz Infon-nation Criterion. 13 

Descriptive 
Statistics 

Whole 
Sample Winter Spring Summer Autumn 

mean 5.00 5.20 4.94 4.75 5.10 
Median 5.00 5.15 4.90 4.81 5.03 
Maximum 6.72 6.72 6.04 5.84 5.93 
Minimum 2.69 4.35 2.89 2.69 3.56 

CL Std. Dev. 0.54 0.40 0.50 0.66 0.41 
0 Skewness -0.70** 1.06** -0.76** -0.54** -0.21 
.j Kurtosis 4.47** 4.86** 4.43** 2.67* 2.84 

Jarque-Bera 758 ** 356** 200** 58.81** 9.09* 
ADF -3.37* 
PP -4.73** 

Mean 0.00 0.00 0.00 0.00 0.00 

Median 0.00 -0.01 -0.01 0.00 0.00 

Maximum 1.19 1.19 0.69 0.70 0.50 

U) Minimum -0.77 -0.77 -0.67 -0.72 -0.43 
Std. Dev. 0.10 0.10 0.11 0.12 0.07 
Skewness 1.06** 2.52** 0.37** 0.71 0.87** 

Kurtosis 21** 50.68** 12.35** 8.78** 14.05** 

Jarque-Bera 59941** 103448** 4047.86** 1627** 5689** 

13 We also performed the ADF and PP tests for the log-spot series, and the results revealed that unit root is rejected at 5% and 1% 
significance levels for this series too. 
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In order to build successful stochastic models for electricity it is essential to 

understand its distributional characteristics. Modelling methodologies, model testing 

and acceptance, and model parameters, depend on the choice of the relevant 
distributions. In financial pricing models, we find that most of them are based on the 

assumption of normality or log-normality (such as the Arithmetic and Geometric 

Brownian Motion) of the underlying price distribution. Even a histogram of electricity 

price returns can give an indication of which model can capture realistically the 

properties of the empirical distribution. Alternative statistical tests such as the Jarque- 

Berra (1980), allows us to quantify our intuition and provide a formal foundation for 

acceptance or rejection of a particular choice of distributions build into the pricing 

models. 

Table 3.3 presents the descriptive statistics of the daily electricity data, in log-levcls 

and log differences. The logarithm of the spot for the whole sample period has a mean 

value of 5.00, and has reached maximum and minimum values of 6.72 and 2.69, 

respectively. However, prices seem to be different between warm and cold seasons. 

The mean value during winter reaches its peak at 5.20 and it smoothly decreases to 

4.75 during summer. This difference is caused by fluctuations in residential demand, 

which increases in winter mainly for heating (as the winter is very cold in the Nordic 

Countries) and lighting purposes, and then drops, as the summer is milder and the 

days are longer. 

Using the standard volatility measure (standard deviation of log-returns), it is 

observed that electricity is a highly volatile market. The standard deviation of the 
daily log-returns is 0.10, which translates into an annualised volatility of 199%11. 

This is very high compared to the volatility in other markets such as LIBOR rates 
(10% - 20%), or NASDAQ (30% - 50%). Volatility is also different between cold and 
warm seasons; the annualised volatility of log-retums is 229% during summer and 
smoothly declines to 191% in winter. One can thus state that there exists some 
distinguishable seasonal pattern in volatility. Different theories have been suggested 
for that, such as the fact that during warmer periods, water reservoirs are almost 
empty, thus the equilibrium moves to the steep part of the supply stack. On the other 

14 Annualiscd volatility = Daily Standard Deviation * 43-6-5 
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hand, one can also argue that during warmer periods, demand volatility in 

Scandinavia is much lower; therefore price volatility should be lower. However, we 

see that volatility is negatively correlated to prices, meaning that at lower price levels 

volatility is higher than at high price levels. This is caused by the fact that the slope of 

the logarithmic function is a decreasing function of price; therefore it makes price 
differences to be more volatile at low-price levels than at higher price levels, a fact 

that has been discussed by Lucia and Schwartz (2002). As argued by Simonsen et al 
(2004), for the notion of log-returns to make sense as a measure of gain and loss, the 

spot prices have to possess no seasonality, an assumption that is clearly rejected in our 
data set. Thus in order to interpret returns and their volatilities consistently across 

seasons, one has to first pre-process the spot prices in order to remove any apparent 

periodicity. We thus follow an approach similar to Weron et al (2005), by firstly 

deseasonalising the price level data (using a simple sinusoidal function, discussed in 

Chapter 4) and then taking the logarithm of the residual terms. Using this method, the 

annualised volatility is found to be 224%, 169%, 162% and 157% during the periods 

of winter, spring, summer and autumn, respectively. Thus the distinguishable pattern 

we find in volatility is that it is significantly higher during winter. This is a 

consequence of the winter peak demand, bringing the equilibrium at the steep part of 
the supply stack. Therefore any outage or transmission failure can cause more severe 

price movements in winter. 

The kurtosis coefficient gives an indication of the probability of extreme values in a 

series. In Nord Pool, the estimate of kurtosis for the logarithmic spot price series is 

4.47, implying that log-prices are leptokurtic. This means that the probability of high 

or low prices is much higher in the market, than that dictated by the normal 
distribution. Leptokurtosis is mainly evident in the winter and spring but not so much 
in warm periods. However are these extreme values due to abnormal larger variations 
in prices called jumps? The parameter of kurtosis (2 1) of log-returns is significantly 
larger than that of a Normal distribution (3), which implies that daily variations are 
indeed relative more frequent than what a Normally distributed variable would 
capture. The case is far more extreme in winter than during the rest of the seasons, 
and this can be explained by the fact that during winter, the occurrence of jumps is 
high. 
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Moreover the coefficient of skewness measures the degree of symmetry of the 

distribution and shows whether high prices are indeed more probable than low values. 

The positive sign of the skewness coefficient indicates that extreme positive returns 

are more likely than negative, especially during winter. From these stylised facts it 

can be concluded that the empirical distribution of electricity in Nord Pool is not 

normal. The Jarque-Berra statistic (1980) is based on the empirical kurtosis and 

skewness (jBýn skeVt, 11e'VS2 + (kurtosis - 3)2 
'X2 

(2) and is used to test the hypothesis of 
16 

24 

normality in the distribution of electricity prices. In all series normality is 

overwhelmingly rejected. From the histograms on log returns (Figure 3.6) and the 

price history (Figure 3.5) one can reveal that non-non-nality occurs due to the large 

price movements/spikes yielding exceptional fat tails. Overall, it can be argued that 

extreme price movements (spikes) mainly occur at peak demand periods and are 

predominantly positive, reflecting outages causing very short-lived supply 

disruptions. 

Figure 3.6: Histogram of Log-returns 
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To carry on the analysis we have to test whether electricity prices are stationary or 

not. A process is stationary if its distributional properties are time invariant; that is to 

say, its joint distributions P 
... 

P are the same as those for P 
... 

P for all d. 11 "1 'I. d "'-d 
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Stationarity thus implies that the process has no trend, so that prices may either be 

drift-less or may stay roughly within some range. If we model a non-stationary series 

with a stationary model, regression results will be misleading and spurious as shown 
by Granger and Newbold (1974). Non-stationarity implies that an innovation may 

have a permanent impact in the future. An AR(l) model, P, =0+ OP, + C,, gives an 

indication of whether the series is stationary or not. If the coefficient is not -1 <0<1, 

then the series is non-stationary; that is to say that if the process is started at some 

point, the variance of Pt increases with time to infinity and explodes. A formal test for 

unit root in a series is the Augmented Dickey Fuller (ADF, 1979) Test: 

P-1 

Ap, =O+ý * S, 
-l +Eý, *Ap, 

-, + U, 
J-1 (3.1) 

where u, - iid(O, a 
2) 

In equation (3.1) the null hypothesis is ý* = 0, which is equivalent to say, that the 

series has a unit root. Moreover, by adding lagged difference terms of the dependent 

variables, we are able to control for the higher-order correlation and hence the 

assumption of white noise disturbances is not violated. In the electricity series, Figure 

3.7 shows that there is a high serial correlation between lagged variables, which is 

mainly due to the daily, weekly and seasonal variation. Therefore we use Schwartz 

Information Criterion (SIC) to adjust for the number of lags required to run the above 

test. Using the critical values provided by Dickey and Fuller (1979), Table 3.3 shows 

that the presence of unit root is rejected at 5% significance level. Another test is given 
by Phillips and Perron (PP, 1998), which uses a non-parametric method for 

controlling the higher-order serial correlation in a series. While the ADF test corrects 
for higher order autocoffelation by adding lagged differenced terms, the PP test makes 

a correction to the t-statistic of the 0* coefficient from the AR (1) regression to 

account for the serial correlation u,. The correction is nonparametric since an estimate 

of the spectrum of u, at frequency zero is used that is robust to heteroskedasticity and 

autocorrelation of unknown form. The PP test in Table 3.3 gives overwhelming 

evidence that the electricity price series does not contain a unit root. Therefore these 

tests also give statistical evidence to support the theory that electricity prices in Nord 

Pool follow a mean-reverting process. This result is surprising, because we have 
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jumps in the series. However these jumps do not seem to affect so much the 

stationarity of the series because they are mean-reverting, and hence the shocks 

generated by these large price movements do not have a persistent effect on the price 

process. 

Fi2ure 3.7: Autocorrelation between time laas of the series 
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The above analysis on the descriptive statistics for the different seasons, and the 

autocorrelation between time lags, indicates that prices follow some regular distinct 

pattern. The correlograrn above shows that the first differences in terms of prices and 

log-prices, are significantly correlated at several time lags, which are multiples of 

seven. For example, the autocorrelation at lag seven of the daily change of price (log- 

price) is 22.10% (38.6%) which implies that if we regress the first-differences of the 

prices (log-prices) on a constant and its seventh lag the R2 will be almost 

5%(15%)(i. e. the square of the autocorrelation coefficient). Hence 5% (15%) of the 

variation in the daily price (log-price) increments is predictable using the daily 

increments seven days apart. The same can be done for several consecutive weeks in 

the future. This is due to the fact that demand for electricity varies following a 

noticeable regular pattern within the week. 
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Given the above analysis, it is also interesting to examine how human activity and 

hence regularities in demand, affect the spot price levels. Figure 3.8 A) shows the 

average price for the whole sample for every one of the 24 hours in every day of the 

week. It is clearly observed that prices are higher during working hours and reach 

their low levels during non-working hours. In particular there are two peaks during a 

day; one in the morning when people go to work (at 9 a. m. ), and one in the afternoon 

(between 5 and 6 p. m. ) when they come back from work and start preparing dinner, 

watch TV etc. Moreover there is a clear difference in terms of the mean and shape 

level between weekdays and weekends. Weekdays have higher prices than weekends, 

especially during working hours. This is also evident in part B of the figure, which 

reveals that on average, prices are higher during working days for the reasons stated 

before. On the other hand, even though there is a small difference between weekends 

and holidays", the behaviour of the price is identical; hence one can say from the 

analysis that there is a significant difference of electricity prices between working 
days and non-working days (holidays and weekends). 

Moreover Figpre 3.5 reveals that there is a distinct cyclical behaviour every year, and 

thus seasonality is evident. Since there are distinctive features in the spot price 
depending on the day and the time of the year, this means that they are also taken into 

account for the valuation of derivatives. One would thus expect futures prices for 

warm seasons, to be lower than futures prices for cold seasons. To provide evidence 
for the above fact, Figge 3.9 plots a sample of the Forward Curve for March 27, 

2000. It is clear from the shape of the curve that the term structure displays a cyclical 

pattern during a given year. This indicates, that market participants in the valuation of 
derivatives take into account the seasonality observed in the spot market. I1cncc there 

is always a seasonal deterministic component when valuing derivatives in electricity. 

15 Official Public Holidays available from the ministries of Foreign Affairs of Norway and Sweden. Most holidays are the same 
for all Nordic counties. Also more than 75% of spot trading volume is represented by Norway and Sweden (see Nord Pool 
reports). 
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Fip-ure 3.8: Hourly Averap-e Prices 
1-he graphs present the a\ crage belim i our for each hour ofthe day during i lie period January 1993 to February 2004, across the 
different days of the Week (A) and between Working and Non-Working days (13). 
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Fiaure 3.9: Term Structure in Nord Pool on 27/3/2000 
The graph shows the seasonality pattern in the forward market. The contracts used are Week, Block Futures and Forward Season 
contracts listed on that particular date. Ile flat section (in dots) represents the actual price, during the delivery period of a 
contract in weeks. The continuous curve section is generated using ELVIZ (developed by Viz Risk Management Services AS, 
www. viz. no , which is an algorithm that produces the smoothest function that prices all traded contracts within the bid/ask 
spread. Viz Risk Management is the major provider of risk management software solutions in Nord Pool. 
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3.5 The Impact ofHvdro-zeneration 

Another point worth noting is that almost 50% of the electricity produced in 
Scandinavia comes from hydro-generation, whose marginal cost of production is very 
low compared to gas turbines, as mentioned in Chapter 1. Hence, the level of water in 

the reservoirs will have a direct impact on price. In a wholesale electricity spot 
market, the marginal cost of electricity influences the price at which generating 
capacity is offered to the market. However, although for a thermal plant the cost of 
generation is relatively clear-cut - the input fuel is purchased and the cost of 
combustion can be estimated - for a hydro plant, the input "fuel" is water, hence for 

the efficient dispatch of generation, some assessment is necessary about the 
(marginal) value of water in storage that the generator can "buy" from the reservoirs 
as fuel for generation. 
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Fi2ure 3.10: Actual Reservoir Levels Vs Seasonal Averap-e 
The graph shows the time series of weekly observations for the percentage level of water in the reservoirs (weighted average 
from Sweden and Norway), the water reservoir seasonal average, and the spot prices. 
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Table 3.4: Parameter Estimates of Seasonalitv in the Reservoir Levels 

Deterministic Seasonality 
Parameters 

, 80 61.07" 
(128.36) 

, 81 -25.89- 
(-39.55) 

TI -0.92" 
(4.18) 

. 
82 6.10" 

(9.231 
72 3.03" 

(6.55) 
The table shows the parameter estimates for the seasonality in the percentage of water in the reservoirs as shown in equation 
(3.2). Estimates followed by (*) or (**), indicate that they arc significant at the 5% or 1% level, respectively. Standard errors are 
(White, 1980) Heteroskedasticity consistent. The regression model is as follows: 

2; r 4; r Seasonality 60 +Asin Q+TI) + 62 sin 
(Q 

+ r2) 
365) 65)) 

Fip, urc 3.10 shows the time series of the weekly percentage level of water in the 

reservoirs in Norway and Sweden (since 96% of the hydro-production comes from 

these countries), against their seasonal average and the spot price. The seasonal 

average is estimated using a sinusoidal function with two terms to capture the annual 

and semi-annual peaks that occur during the winter as follows: 
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The estimates of the regression are shown in Table 3.4,, where all parameters are 

found to be highly significant at the 1% level. Focusing on this clearly distinguishable 

pattern shown in Figure 3.10, water levels start to increase in the mid-spring time 

mainly from snow melting and precipitation and reach their peak between the months 

of August and September. Then, water supplies are gradually used during the high 

demand cold seasons, and reach their lowest level in April. Water levels seem also to 

vary between different years. For instance, water reservoir levels were high from 1998 

to 2001. In the second quarter of 2001 they dropped below their long-run seasonal 

average, which translated into higher spot prices. In 2003, reservoir levels reached 

their lowest level (during our sample) resulting in high spot prices, especially during 

winter. The percentage water level was also very low between the periods of 1995 to 

mid- 1997, which again resulted in very high spot prices. From this graphical analysis, 
it seems that system prices are mainly affected by the deviation of water levels in the 

reservoirs from their seasonal average. It seems that this is the critical factor affecting 

the equilibrium level of system prices, rather than the water level in the reservoirs. For 

example during early winter when the reservoirs are almost full, the spot price is still 
higher than the rest of the seasons and the opposite occurs during summer. However 

when comparing periods where the actual water levels is lower than its seasonal 

average (e. g. in 1997 and 2003), we can clearly see that the spot is higher, compared 

to other periods when water levels were higher (e. g. in 1998). 
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3.6 Conclusions 

In the current chapter, we provided a summary of the different market structures that 

exist in electricity markets, and then went into more depth on how the Nordic power 

market functions. More specifically, we explained that Nord Pool is a pool market, 

where generators and suppliers sell and buy electricity respectively through the same 

pool. Then we showed how the spot price is settled and described the different 

financial products offered in the financial market of Nord Pool (Eltermin and 

Eloption). We then analysed the stylised facts of electricity spot prices and the shape 

of the forward curve. Our main findings are that electricity spot prices are highly 

volatile, and the major contributing factor to that are the short-lived spikes, caused 

mainly by outages or transmission failures. We also showed evidence of a distinct 

pattern between different seasons and days of the week (working and non-working 

days), which is mainly driven by variation in electricity demand due to human 

activity. This seasonal pattern is also taken into account when valuing derivatives on 

the underlying electricity price. Our analysis also showed that due to the non-storable 

nature of electricity, the spot price is mean-reverting, however since in Scandinavia, 

50% of electricity supply comes from hydro-generation, the equilibrium level seems 

to be affected by the level of water in the reservoirs. Since the scope of this thesis is to 

value electricity derivatives, the next chapter is devoted on capturing all of the above 

stylised facts in reduced form models, that are tractable, easy to estimate, and can 

provide closed-form. solutions for derivatives prices. 
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4. MODELS FOR ELECTRICITY PRICES 

4.1 Introduction 

In the previous chapters we saw that reconstruction and deregulation, let prices to be 

determined by the fundamental rules of Supply and Demand, which brought a 

substitution from Supply Risk in the pre-regulation period, to Price risk, thus 

increasing the need for hedging using derivatives such as futures and options. We 

further explained that electricity is a commodity with some unique features and under 

the new market framework, the issue of price risk management is becoming of 

paramount importance. First, electricity is a non-storable commodity and a non- 

tradable asset; hence arbitrage across time and space is limited. Second, electricity 

prices exhibit extreme movements and volatility over short periods of time to an 

extent, which is not evidenced in any other market. 

The above features present challenges for researchers in this market. More 

specifically, the non-storability of the underlying affects the relationship between spot 

and forward prices. Although spot electricity is not a storable asset, the futures and 
forward contracts are regular financial contracts that are traded and hcnce can be used 
in a replicating strategy. Completeness of the market is in fact the key issue relating 
these activities. This in turn depends on the choice of the stochastic process that is 

used to model the securities; the market will be complete as long as the model 

remains diffusive and the price of risk can be uniquely dcten-nined by the term 

structure. However, this may not always be the case as there may not exist a unique 

price of risk under which forward prices are the expected risk neutral spot. In this 

case, it is not possible to develop a model that describes the entire term structure 
under the real world and, at the same time eliminate all arbitrage opportunities. One 

way round this is to estimate the spot price dynamics and use a probability measure 
implied by the risk premia in the market, which fits best the observed tcrm-structurc 

of forward prices. 

As examined in the descriptive statistics section of the previous chapter, electricity 
prices also exhibit very high volatility, the main feature of power prices being the 
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large jumps in prices, called "spikes". Spikes are extreme very short-lived price 

movements in the spot market that usually do not spill over to the forward market 16 
. 

They are caused by extreme load fluctuations, combined with generating outages or 

transmission failures, which may take from a few hours up to a few days to fix. From 

the modelling point of view, the existence of spikes implies that the use of a simple 

mean reversion model will not be appropriate since it will not capture the dynamics in 

the spot market. On the other hand, modelling prices using an ordinary jump-diffusion 

model (as in Clewlow and Strickland, 2000) will result in the jump component being 

transferred to the forward prices as well, particularly if the speed of mean reversion in 

the market is not fast enough. Also, such a model will not be able to capture the spiky 

nature of the jump, especially in cases where shocks in the market die out at a slower 

rate. 

The aim of this chapter is to model the distributional and trajectorial characteristics of 

the Scandinavian electricity spot market (Nord Pool) and identify the most significant 

risks for which market participants ask for insurance. Nord Pool is one of the most 

successful deregulated power markets; it has a very liquid financial (i. e. electricity 
derivatives) market and its market structure model has been replicated in other 

markets where deregulation has taken place. Another significant factor that has been 

shown to affect electricity prices at hydropower-dominated areas (such as in 

Scandinavia and New Zealand) is the level of water in the reservoirs. It has been 

shown that during periods of lower water levels, suppliers have to switch to more 

expensive generators, such as thermal units, with higher marginal costs of production 
thus increasing the equilibrium price. This empirical fact is significant and affects 
both the short- and the long-run dynamics of prices, as well as the speed with which 

prices revert back to their equilibrium level. As it was shown in Chapter 3, the major 
factor affecting the spot prices is whether the reservoir levels are above or below their 

significant seasonal pattern. 

Our modelling methodology is as follows. In order to capture the fast mean reversion 
of spikes, we model electricity prices as a two-factor spike model along the lines 

proposed by Weron (2005). This model has different coefficients of mean reversion in 

16 See e. g. Geman (2005). 
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the spike and normal variables, and provides a better fit to the observed spot and 

forward prices over alternative model specifications, particularly at time periods when 

spikes occur. We provide evidence that our model is able to capture the trajectorial 

properties of the spot market and also, that it improves the fit to the forward prices 

observed in the market, since the larger coefficient of mean reversion for spikes is 

able to discount the impact of spikes in prices much faster than a model with a single 

coefficient of mean reversion for both normal and spike shocks. Since electricity is a 

non-storable asset, specifying a process that yields price paths resembling the paths 

observed in the market, and improves the fit to the observed forward prices, is very 

important for the pricing and hedging of derivative instruments. 

Although the stylised fact of mean reversion of spikes is well documented in the 

literature, and relevant models have been proposed, as in Benth et al (2005), no 

evidence has been given up to date on such model's performance in fitting the 

forward term structure and also capturing its distributional characteristics. Therefore, 

in this chapter we aim to introduce a model that is compared empirically against 

simpler ones, in terms of fitting the forward prices as well as capturing the first four 

moments of the actual distribution and yielding similar price paths to the real world. 

Furthermore, we also show that spikes are able to explain, to some extent, the 

seasonal risk premia observed in the market. This is in line with previous research by 

Bessembinder and Lernmon (2002), Longstaff and Wang (2004) and Villaplana 

(2003) who show that periods of high demand and volatility correspond to periods of 

excess skewness in the spot market, which result in higher risk prcmia in the 

American power market. It is during these periods that spikes are more likely to occur 

since any outages or transmission failures will translate into jumps in the prices due to 

the high inelasticity of demand. Hence, at these periods market participants, such as 

electricity suppliers, need to transfer their risk through the use of the financial market. 
At the same time, speculators in the market require a risk premium in order to assume 
the risk of the suppliers. As a consequence, at periods of high probability of spikes the 
demand for hedging increases and the number of un-hedged risks riscs, thus resulting 
in higher futures prices. 
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In addition, we also implement, for the first time in the literature, a Regime-Switching 

Spike model in order to capture the differences in the equilibrium price level between 

periods of low and high water reservoir levels. Such a model distinguishes in an 
intuitive way the medium-run dynamics, mainly caused by fluctuations in the water 
levels, from the short-run dynamics, and results in a lower speed of mean reversion 
for the short-run component of the model. Finally, another contribution of the chapter 
is the development of closed-form solutions for forward prices. Closed-forin formulas 

are more insightful and convenient to use than simulation-based calculations 

particularly for electricity traders who often need to get quick answers in their day-to- 

day activities on the relative pricing of different options in the market. For them, 

speed is often so important that it is necessary to use closcd-form formulas instead of 

simulation-based methods. Closed-fonn formulas are also useful if options are being 

valued in a risk management application; for instance, Value-at-Risk statistics can be 

computed much more quickly if closed-form solutions are available for individual 

products in the portfolio. 

Finally, we extend the spike model to a three-factor spike model, where we let the 

equilibrium level to follow a stochastic process. The main advantage of this model is 

that is able to capture both short- and long-term dynamics of the market, and is very 

similar to models proposed by Schwartz and Smith (2000), Soresnsen (2002) and 
Manoliu and Tompaidis (2002). This is particularly important for investments that 
depend on both short-term and long-term market uncertainties, such as in the 

valuation of power plants and other Real Options. In this way we need to get 
information mainly from forward prices that mature after one year, for the more 

precise estimation of the long-term state variables. 

The structure of this chapter is as follows: Section 2 introduces the Spike and Regime 
Switching Spike models. Section 3, presents the calibration and estimation results of 
the models, and also compares their performance to that of an extended Vasicek 

model (1977) in terms of fitting the forward prices. Section 4 compares the models in 

terms of capturing the trajectorial and statistical properties through simulation 
evidence, and provides closed-form solution for the moments of each model. Section 
5 introduces the three-factor model and shows its calibration via the Kalman Filter, 
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and its fit to the forward term structurc. Scction 6 givcs an intuitivc comparison 
between the proposed models, and finally, Section 7 concludes this chapter. 

4.2 The Spike Model and the Revaime-Switchine Spike Model 

Electricity prices and more generally energy prices tend to fluctuate around values 
determined by the marginal cost of production and the level of demand, in other 

words they have a tendency of mean reversion to an equilibrium price. Empirical 

evidence on mean reversion in Nord Pool has been given by Lucia and Schwartz 

(2002) using the Augmented Dickey Fuller (1981) test, Escribano et al (2002) after 

accounting for time-varying volatility and jumps, Weron (2005) via the use of the 

Hurst exponent, and in the previous chapter of the thesis. Another feature of 

electricity prices are the extreme short-lived price movements called spikes. The 

impact of spikes is very important especially for suppliers of electricity, since their 

costs depend on the variable price of electricity whereas their revenues are fixed as 

they supply electricity to customers at fixed prices. Despite the fact that spikes occur 

rarely (and not continuously), they are one of the most important motives for hcdging 

in the power market. 

As discussed earlier spikes occur due to intense events, such as extreme load 

fluctuations, caused mainly by severe weather conditions in combination with 

generation outages of large generators or transmission failures. These extreme events 

are normally short-lived and as soon as the outage is fixed (e. g. when a significant 

generator is back on-line) or the weather phenomenon is over, prices fall back to their 

normal levels. On the other hand, we also have some downward spikes which are 

negative jumps. These may occur during spring when traders receive news about the 
inflow in the water reservoirs from the melting of the snow pack, and also, generators 
need to get rid of the excess water in the reservoirs to minimisc their storage costs. 
Hence, there is excess capacity in the system and buy-side traders may bid at much 
lower prices than expected. This occurs primarily during non-working days or days 

when demand is low. 
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On the other hand, one should distinguish between short-term fluctuations in supply 

or demand, and spikes. The normal short-term fluctuations may be caused by shifts in 

demand, pushing prices upwards and thus increasing the economic incentives of more 

expensive generators to enter the supply side thus inducing mean reversion in prices. 

Another factor might be due to weather, which follows a cyclical mean-revcrting 

process, thus affecting the evolution of demand for electricity and influencing the 

equilibrium spot price. Overall, one should expect that the duration of a spike is much 

shorter than the life of any other short-term shock caused by shifts in supply or 

demand, and may hence take from a few hours up to a few days to fix. Another 

important point is that the speed of mean reversion and its significance are highly 

affected by the equilibrium level to which power prices revert. As explained in the 

previous section, the equilibrium price level is not constant, but seems to follow a 

yearly seasonal pattern and is also affected by the availability of hydropower. These 

arc factors that are considered in our modelling methodology, which is described next. 

We model system prices (PI) as the sum of a predictable component (f(t)) and the 

exponential sum of two stocbastic components as sbown in equation (4.1). The 

predictable component takes into account the deterministic regularities in the 

evolution of prices. The first stocbastic component (Xt) is assumed to follow a 

stationary (as in Vasicek, 1977) process reverting to an equilibrium value, in order to 

account for the short-term deviations from the equilibrium level due to short-term 

changes in demand resulting from variations in weather as well as due to market 

behaviour. The second stochastic component (Yt) represents the spike component, 

which is assumed to follow a mean-rcverting process whose shocks are modelled by a 

compound Poisson process. 

f (t) + exp(X, + Y, ) 

dX, = k, (e - Xj dt + ax dWx 

dY, = -ký Y, dt +J(, uj, , aj'i ) dq (11) 

In equation (4.1), ki represents the speed at which X reverts to its mean-equilibrium 

value under the real probability measure, c, after a shock has occurred. dWx represents 
the increments of the Brownian motion that cause the random shocks in the short-term 
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factor, X, and it is scaled up by the volatility factor q, For the spike factor Y, k2 is the 

speed of its mean reversion and its shocks are modelled via a compound Poisson 

process. The arrival of jumps is modelled via a Poisson process with intensity 11, 

where i accounts for the difference of jump arrivals between cold seasons and the rest 

of the year. The distribution of the jump size is assumed to be Normal with mean p, 

and standard deviation a,,, which are again assumed to be different between winter and 

the rest of the year. Note that the seasonality in the jump distribution implies a higher 

degree of skewness and kurtosis during winter, hence capturing the higher 

leptokurtosis and asymmetry in the returns distribution observed in winter. Since the 

spike shock is expected to have a much shorter life than a normal shock, k2 should be 

much higher than kI. This stronger mean reversion for the spike shock is what actually 

improves the relationship with the futures price, as it will be shown later. 

in addition, given the fact that the level of water in the reservoirs affects the 

equilibrium price level, c, we also specify a model that takes into account this feature. 

This model, presented in equation (4.2), is very similar to the first, but we now allow 

the equilibrium level to vary between periods when the water level is higher (state w), 

and periods when it is not (state d), with the associated probabilities. 

P, =f (t) + CXP(X, + Y) 
dr, = k, (c -X, ) 4+ ax&Vx 

dY, = -ký Yid + J(Ijjl, cj7, )dq(11) 
(4.2) 

W 
if uaer reservoir leveds ere above seasard amrage regine, A=w 

ed if uder resenuir levels ore below semonal awmge reginu, A=d 

Thus c is a continuous time Markov chain assuming values ej, for i=wd. The variable 
R, determines the current state and is a random variable that follows a Markov chain 

with two possible states R, =(wd), which are assumed to be observable based on 

whether the water levels in the reservoirs are above or below their seasonal average, 

at time t. Thus the transition matrix Q contains the probabilities py of switching from 

regime i at the current time t, to regimej at t+I: 
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Q (4.3) 

The Transition Matrix gives the probability of staying at the same regime (e. g. p.. ") in 

the next time step, or moving from one regime to the other (e. g. I-p,,, =p,, d). Thus the 

probability of being in statej at time t+m, starting from state i at the current time, t is 

given by: 

p� j= (P(9,.. =w1R, : -- i» 
= (Q')m ei (4.4) 

(Pd 

p(g.. =d1P, = i) 

where Q' is the transpose of the transition matrix, and el denotes the ith column of a 
W identity matrix. In Equation (4.4), pd measures the probability of the water levels 

being below their seasonal average in the future and p,,, the opposite. According to 

this, we should expect &,, to be significantly lower than ed. 
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4.2.1 Forward and Futures Contracts Valuation 

The value of any derivative must be the expected value of its payoff, under the risk- 

neutral measure, discounted to the valuation date at the risk-free rate of return. 

However for futures contracts there is a daily settlement, taking place during the 

trading period, where as for forward contracts settlement occurs only at maturity. This 

difference in cash settlement may create a price difference between the two contracts. 

it has been shown though (see for example Duffie (1992)) that, if interest rates are 

deterministic and independent from the spot, futures prices are equal to the forward 

prices for contracts that have identical terms. Clewlow and Strickland (2000) also 

show that interest rates do not affect significantly forward prices of non-storable 

commodities. Consequently in the ensuing analysis, we assume that forward and 

futures prices are equal. Letting vo(PTT) represent the value of a forward contract on 

the spot maturing at T, and assuming that the initial cost of entering a forward contract 

is zero, the forward price F(O, TPo), is derived as follows: 

= e7rTEO* [p vo (PT, T) T- F(O, T, Po)] =0 
(4.5) 

F(O, T, PO) = Eo (PT) 

Where E, *, is the expectation at 1=0, under the Equivalent Martingale Measure. 

Electricity is not a storable asset, and thus we are left with an incomplete market. On 

the other hand, since forward contracts are tradable assets and can thus be used for 

hedging, we may find a risk-neutral probability measure that best fits the forward term 

structure (Harrison and Kreps, 1979 and Cox et al, 198 1). This is achieved by taking 

into account the risk premium or the extra return required per unit of risk. Letting A to 

represent the market price per diffusive risk or the degree of risk aversion, which is 

assumed constant17, then the market risk implied from the market is lax = Ax. 

Therefore using Girsanov's Theorem, the drift is adjusted to the risk-ncutral rate of 

return. By allowing dW; =dWx+kxdt, to represent the increments of a standard 

Brownian Motion under the risk-neutral measure, the theoretical valuation of 

17 The assumption of constant market price of risk is consistent with the changes in the state variables and aggregate wealth in the 
economy being constant and have constant covariance (Merton, 1973 and Cox et al, 1985). Another proposed method is to allow 
A to be function of time, and thus calibrate perfectly the model to the forward curve. However, since our aim is to examine which 
model provides the best fit for derivatives pricing, the use of a constant A is recommended. See also Lucia and Schwartz (2002). 
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contingent claims under the assumption of no-arbitrage opportunities can then be 

formulated. 

Investors in the market may also require a premium for jump risk. However there are 

some difficulties when it comes down to estimating the jump risk premium. First of 

all as Pan (2002) shows, when minimising the Root Mean Square error between the 

actual price of the derivative and the theoretical price from the model, the procedure 

cannot distinguish whether the jump risk is coming from the jump timing parameter, 1i 

or the mean jump size, p.,. Another problem stems from the fact that in order to 

estimate accurately the risk neutral parameters for the jump part, we need a very long 

liquid daily time series for the forward prices, as discussed by Koekebakker and Lien 

(2004), otherwise we need liquid option prices. The main reason for this being that 

jumps violate the perfect hedge assumption in the Black and Scholes framework (as it 

will be shown in Chapter 5). Without a riskless hedge, option prices will mainly be 

determined by supply and demand. For instance, if market participants believe that the 

possibility of upward jumps in the market is high, they would prefer to buy high strike 

call prices which are cheaper, and this will create excess demand for Out-Of-the- 

Money Call options and their price would increase. This will then create a smile when 

using the implied volatility from the Black and Scholes model such as for the model 

to perfectly fit the option prices. In this respect then, the smile in the option prices is 

the risk premium for jumps. However, the daily liquidity of forward contracts, and 

more specifically that of long dated ones is low in Nord Pool. On the other hand, 

options in Nord Pool are traded once a month on average, as it will be discussed in 

more detail in Chapter 5. Since liquidity is low, results from the processes may not be 

reliable and thus we proceed with the proposed risk-neutral measure for the diffusive 

risk, which is also used by Cartea and Figueroa (2001), in their MRJD model. 

Using the results from the Appendix of the current chapter (section 4.8), we can write 
analytic forms for the distributions of the state variables and spot prices. Since our 
model is in line with an Affine Jump-Diffusion process, we apply the elementary 
transform function, which was originally developed by Duffle ct al, (2000). Hence 
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equation (4.6) shows the expected risk-neutral value of the spot price in the ftiture 

implied by the Spike model. 18 

*(R e-4TX, +Y+1 UJ2i e -2k2s Eo r) = f(T) + exp e 
7k2T + 

El 

i 

IISEI 

exp uj, e 
Iml 02 

2 
x -2kT)+ _Lx -kT AT ax e (I -e 2 2k, k, (4.6) 

The integral in equation (4.6) represents the expected number of jumps times the 

expected jump size, over the entire life of the forward contract, and how each jump 

affects the forward price. Thus the integration is performed numerically as follows: if 

s is an element of 1, meaning that s is in winter, then the jump parameters take the 

values estimated for winter, and if s passes from spring, summer or autumn, then the 

jump parameters take the respective values for the rest of the seasons. In this manner, 

at least theoretically, the model seems to improve the spot-forward relationship 

especially during spiky periods. 

Several points can be noticed about the importance of the state variables to the 

forward prices, in equation (4.6). First, as the time to maturity increases, the impact of 

the state variables decreases. Second, the significance of the state variables in the 

forward price depends on the speed of mean reversion, which acts as a discounting 

factor. Also this implies that a jump in the price, and hcncc an increasc/decrease in the 

state variable Y, will have no significant effect in the forward price, as long as k2 is 

very high. This is in line with several empirical findings that a spike in the spot prices 
does not disseminate as a spike in the forward price, since this shock is very short 
lived. Moreover the higher value of k2, compared to kI, suggests that the value for 

short-term contracts is mainly governed by the jump component, where as for longer- 

term contracts the premium is governed by the sum of all risk factors, with the jump 

component playing a lesser role. In this manner, at least theoretically, the model 

seems to improve the spot-forward relationship especially during spiky pcriods. 

18 Note that equation (4.6) contains an integral term. In our case we expand the intcgrand in a first order Taylor series and 
perform the integration analytically (see Cartea and Figueroa, 2005). 
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Finally equation (4.6) shows that in the long run as T--+oo, the spot price in the risk 

neutral world tends to a mean value of- 

22T 
a. x+s+ 072, e-2k2s 

Lx (eXp 
p., e7k2 d f(T) exp + . 6- 

k, 
Ili flsei 

s) (4.7) 
2k, 1-1 02 

Turning now to equation (4.8), this shows the expected risk-neutral spot price using 

the Regime Switching model. Here EO(P, )d denotes the risk neutral expected spot 

price for time t using the equilibrium level ed , and Eo (P, ),,, is the risk neutral 

expected spot price for time t using the equilibrium level c., 

Eo* (P, ) =p- Eo* (P, ),,, + p'Eo' (4.8) wd 
(pt)d 

In other words, we find the futures prices in the two states and multiply each value by 

the corresponding risk neutral ( PW and Pd ) probability, which is calculated using 

equation (4.4). However due to the same reasons described before for the jump 

premium, the calibration of the risk adjusted state probabilities is very hard. Therefore 

in the ensuing analysis we assume that the state probabilities are the same under the 

real and the risk-adjusted world. Hence formula (4.8) decomposes the forward prices 
into two values; one for being in the regime of having higher water levels and hence 

cheaper electricity (state w), and another for the possibility of the water reservoir 
levels running low and relying on more expensive generators to supply electricity 
(state d). 

The previous discussion presented the valuation for ordinary forward or futures 

contracts for a delivery period of one day. However, futures and forwards traded in 

Nord Pool's financial market are very similar to interest rate swaps, since they trade 

to fix the electricity price level for a specific delivery period (one day, week, block 

(month), season (quarter) or year) in the future. A fixed price reference is agreed 
before the delivery period and the difference from the floating realisation of the spot 

price is settled financially. Hence the forward price in Nord Pool (FoT,. T, ), can be 

shown to be intuitively the average of the forward prices over the delivery period 
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[TI, T21, where the weights are adjusted by the time value of money function, as in 

equation (4.9). 

vo (P,, TI, T2) = Eo* 

e"P, 
FO, 

7. 
Eo* 

1 . 7.2 T2 
L e's 
S. T, 

0 -"' (P 

± 
e-"-F(O, s, P. ) (4.9) 

e's 
3 7$ 

4.3 Model Calibration and Resultv 

4.3.1 Descdption ofDataset 

For the empirical estimation of the model, we use spot data for the period March 1, 

1997 to February 29,2004. This period reflects the period after the entrance of 

Sweden in the Nord Pool market, which together with Norway are the major players 

accounting for more than 60% of the market. On the other hand, the derivatives data 

start from January 1,1998 when liquidity in the financial market increased more (See 

Nord Pool reports on derivatives). Furthermore, investigation of this period is also 
interesting since it covers periods of very low water levels in the reservoirs, thus 

resulting in higher system prices such as in 2001 and 2003-2004. Even though it is 

expected that this will result in a lower speed of mean reversion, we believe that the 

estimator is more precise since it also accounts in general how shocks dic out in the 

market on average when such an event occurs. Previous studies in the literature, have 

not considered this period and hence when such an event occurs, the speed of mean 

reversion is too high, thus discounting these shocks too fast. 

Regarding the forward and futures prices in the dataset, we use constant maturity 

prices, provided by Viz Risk Management AS. The use of the dataset is motivated by 

the following reasons; first, they make the calibration of our models easier in terms of 

computational complexity and intensiveness and, second, it enables us to consistently 
compare the differences in the pricing errors across maturities. On the other hand as it 

will be explained in more detail in section 4.5, equation (4.9) does not allow the 
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Kalman filter that will be used for the three-factor model, to estimate the state 

variables efficiently. Note also that by using standard maturity forward prices the 

models can be further adjusted to match exactly the term structure as in Clewlow et al 

(1999) (an example of the forward curve using ELVIZ was given in Chapter 3 in 

Figure 3.9 . 
19 

For the empirical results of the Spike and the Regime Switching Spike models the 

estimation under the objective probability measure is carried using daily spot prices 

and weekly observations of the water level in the reservoirs. However to obtain the 

risk-neutral parameters, we use weekly data for the futures. The weekly frequency for 

the futures observations is chosen in order to avoid any liquidity problems (especially 

since longer term contracts are not traded every day), and weekend effects caused by 

the fact that spot prices are available for all days where as derivatives prices are 

available only for working days 20 
. We use forward prices for every Wednesday, as it 

is the only day that is less affected by holidays. If Wednesday is a holiday, we use 

Thursday's prices. The forwards used in this part of the analysis reflect short- to 

medium-tenn maturities (1,2,4,7,12,16,20 and 24 weeks to maturity). These 

maturities are selected to reflect actual traded contracts in the market. Filzure 4.1 

graphs the time series of the 1 and 7 weeks to maturity forward prices. A very 

distinctive pattern is that the longer maturity contract moves similarly to the shorter, 

but in a much smoother manner. It is also interesting to note that forward prices 

increased, especially in 2003, as a result of the extremely low reservoir levels. These 

facts, show that forward prices in Nord Pool depend to a large extent on the spot 

market, but the effect of spikes is not as pronounced in the forward market. Thus we 

should expect a lower coefficient of mean reversion, for normal diffusive shocks, than 

the one noticed in other marketS21. 

" Similar data have also been used by other studies such as Kockebakker and Ollmar (2001). The forward curve thus is 
computed by a program called ELVIZ which uses a maximum smoothness function with a sinusoidal prior continuous forward 
price function, that prices all traded contracts within the bid/ask spread, using equation (4.9). For more details on the forward 
curve calculation see www. viz. no. 

20 Lucia and Schwartz (2002) for example use actual traded forward contracts with 28-day frequency. 
21 See section 4.13.2 for further discussion on the difference in the speed of mean reversion between different power markets. 
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Fip-ure 4.1: Time series of Forward Prices 
The figure shows the time series of the weekly observations for the I and 7 weeks to maturity contracts. 
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4.3.2 Model Estimation 

4.3.2.1 The Deterministic Component 

Before estimating the model, we have to define the functional form of the 

deterministic component. Figure 3.8 indicates that there is a difference between the 

price level in working and non-working days. Furthermore the descriptive statistics 
(Table 3.3 and graphical presentation of the spot, together with the shape of the term 

structure, provide evidence of a significant seasonal behaviour of electricity prices 

that seem to follow an annual cycle. Hcnce in order to account for this periodic 
behaviour we follow Pilipovic (1998) who suggests fitting a sinusoidal function to the 

system price. 22 Therefore, the deterministic component is modelled via a combination 

of sine functions, to capture seasonality, and a dummy variable, to distinguish 

between working and non-working days, and is estimated via Maximum Likelihood 

(ML). The first sine term has an annual frequency and captures the main yearly cycle, 

with the peak occurring during winter, and the second term captures the half yearly 

22 Alternatively we can also use a piecewise constant function of one year period, using monthly or seasonal dummies, as in 
Manoliu and Tompaidis (2002). Despite the fact that this is a flexible approach, it can be criticised on the grounds that dummy 
variables are very sensitive to anomalies in the sample such as jumps; hence the method does not provide a smooth function for 
the seasonal component, which may create discontinuities in the forward prices (Lucia and Schwartz, 2002). 
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cycle in the data. The inclusion of the second sine function is justified on the grounds 

that it accounts for the longer period the spot price remains at low levels (from Spring 

to mid-Autumn). 

2; r ) 4z 
f(t)=PD, +ysin (t+r)-)+8sin((t+ý) 

365 6-5) 

D, 
tl if date I is Non-Working day 

0 otherwise 

4.3.2.2 Estimation of Spike, Regime Probabilities and Short-termfactors and Risk- 

Neutral Parameters 

In order to identify the spiky regime, and since we want to capture the most extreme 

price movements we use a modified Clewlow and Strickland (2000) approach. Our 

definition of a spike is as follows: A spike is a return of the deseasonalised series 

which is greater in absolute value than 3 standard deviations of all returns, followed 

by a reduction or extreme returns of the opposite sign which accounts for at least half 

of the original movement within the most 5 days. Hence this definition is consistent 

with the spike having a half-life of at most 5 days. If another jump of the same sign 

occurs within these 5 days, the day-count starts from the occurrence of the last jUMP23. 

After the spikes are identified, they are removed from the spot series and the missing 

values are substituted by the average of the two neighbouring values. Yj is then 

estimated as the difference between the actual price at that instant and the replaced 

price. This algorithm is then repeated until no further spikes can be identified. The 

choice of the 5-day window is motivated by the fact that according to market sources 

this is the most that an outage or transmission failure, combined with extreme load 

fluctuations, lasts in the market. 

This approach has a number of advantages over alternative approaches for estimating 

spikes. First, in Clewlow and Strickland (2000) the filtering is implemented along the 

same lines, however it captures all general jumps in the market (spikes or long-term 

23 Note that the probability of the Brownian Motion scaled by the volatility parameter, in capturing these returns is almost zero. 
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shifts). Moreover, in their model the speed of mean reversion is the same for both 

spikes and normal shocks in the market, inducing some persistence in the jump 

particularly if the coefficient of mean reversion is not high. However, due to the 

reasons discussed earlier, spikes live much shorter than other shocks in the market. 

Consequently, the use of two different coefficients of mean reversion, one for normal 

small shocks and another for abnormal rare extreme shocks causing the spikes, is 

more appropriate. Second, Weron (2005) imposes the restriction of allowing a spike 

to last one day, thus disregarding spikes that die out at a lower rate, as it was the case 

during the winter of 2001. Finally, as Clewlow and Strickland (2000) state, electricity 

price returns have "numerous different jump components, typically ranging from very 
high frequency, low volatility to low frequency, high volatility jumps". The proposed 

method picks out the lower frequency higher volatility jumps, which is what we 

mainly want to capture; this offers an advantage compared to the ML method for 

jump estimation (as in Ball and Torous, 1983,1985), which captures the higher 

frequency lower volatilityjump components. 

After the algorithm is performed, the intensity is then calculated as the number of 

spikes in the sample divided by the number of observations, and the mean jump size is 

calculated as the average of the spiky returns. Then, the speed of mean reversion for Y 

is estimated from the extracted data series by the following regression: 

Y, 
-, e- 

k2At 
+ u,; u, - lid (0, cr. 2 ) and At = 1/365 

Fiaure 4.2 shows the time series of the Spiky State variable. It is quite distinguishable 

that upward spikes occur mainly during winter, and their size is much bigger than that 

of downward spikes. One important empirical finding is the fact that out of a total 

number of 39 spikes, 21 occur during December, January and February from which 
20 are upward spikes; this is expected since, as stated earlier, in winter, equilibrium 
takes place at the steep part of the supply stack which, combined with any outage or 
transmission failure, may cause these extreme price movements. The downward 

spikes on the other hand, occur mainly during the spring and summer periods and 

non-working days. According to the above findings therefore we have very strong 

evidence of seasonality in the spikes. 
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Fieure 4.2: Time series of Y 
The figure shows the time series of spike factor Y using the proposed algorithm. 
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in addition, the existence of spikes implies fat tails for the returns distribution. Figur 

4.3 compares the probability distribution of the original descasonalised return series, 

against that of the deaseasonalised and filtered return series. In order for the returns to 

be Normally Distributed, the QQ-Plots have to lie on a 45 . line. Looking at the 

original series, the existence of fat tails suggests that the probability of rare events 

occurring is much higher than that captured by a normal distribution. However 

looking at the filtered series' QQ-Plot, it is clearly distinguishable that the Gaussian 

distribution test of the returns series is significantly improved. 
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Figure 4.3: 00 plots of Original Returns and Filtered Returns 

Vs Normal Distribution 
The first figure shows the QQ plot for the returns of the original deseasonalised series, where as the second shows the QQ plot of 
the deseasonalised and spike-less series. 
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Next, we use the filtered series to estimate the parameters for variable X, in 

continuous time, using ML. For the estimate of crx, we use the standard error from the 
following regression: 
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e -k, At) +X_ 
le- 

k IA t+u; 
u, - Ud (0, a .2) 

For the Regime-Switching Spike model of equation (4.2), the regimes relating to the 

level of water in the reservoirs are assumed to be observable. The parameters of the 

model are estimated as follows: first, we take the deviations of the percentage level of 

water in the reservoirs from their seasonal adjusted mean (modelled via a sine 
ftinction as discussed in section 4.3.2). We then define a dummy variable (d, ) taking 

the value of I if this deviation is negative (i. e. if the water level is below the seasonal 

average at day t) and 0 otherwise as in equation (4.13). Then using these observations 

we estimate the transition probabilities of equation (4.2), and then regress X as in 

(4.13), to identify the speed of mean reversion. 

X, = (c + wd, ) (I - e-*, ")+ X, 
-, e- kjAt + u,; u, - iid(O, a. 2) 

tl if date t has low water (4.13) 
0 otherwise 

The transition probabilities are calculated as follows: divide the total number of 

observations whose current state (t) and previous state Q-1) are the same, by the total 

number of observations. Since we have weekly observations for the water levels, we 

estimate the daily levels using linear interpolation between successive weekly values. 
This kind of approximation does not affect our results since, if one week is in regime 

one, it is found that it would remain to this regime for a long period of time. Using the 
forward prices, we then estimate the remaining parameters, which represent the 

market price of risk (Q, by minimising the Root Mean Square Error (RMSE) 

between the actual forward prices and the theoretical prices implied by each model, as 
in equations (4.6) and (4.8). For comparison purposes, we also estimate a simple 
Mean-Reverting model (MR) in which the spot prices are the same as in equation 
(4.1), but without Y and its parameters. Therefore the forward price in this case is 

given by: 

F(0, T, P0) = EO(PI. ) f (T)+ exp(e-k, TX, 

2 
x -2k, T )+k, T 

Ar ax (I 
-e C-I-x (I-e' 

2 2k, k, 
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Table 4.1: Annualised estimated Parameters 

MR Spike 
Spike & 
Regime 

Panel A: Deterministic Seasonality Parameters 

7 48.61- 
(2.767) 
432.17'- 
(2.303) 

3 11.92" 
(2.57Q 

-156.98" 
(5.292) 
-15.06" 
(3.659) 

Panel B: Parameters for Stochastic Processes 

5.05** 
(0.079) 

5.06** 
(0.13) 

4.83 
(0.085) 

w 0.60" 
(0.13) 

k, 
8.07*' 
(1.85) 

2.98" 
(1.03ý 

5.78" 
(I. 

,4 
k2 

287.61" 
(52.99) 

287.61** 
(52.99) 

Oýv 167.33% 103% 103% 

12.17 12.17 

3.41 3.41 

41.86% 41.86% 

fit h 8.41% 8.41% 

g ia) 38.12% 38.12% 

ýr J(2) 20.40% 20.40% 

N lw) 99.73% 

P (dd) 99.60% 

A x -0.55 -0.23 -0.45 
The table shows the parameter estimates for the simple MR (equation (4.12)), the spike (equation (4.1)) and the Regime Spike 
(equation (4.2)) models. Estimates followed by (*) or (**ý indicate that they are significant at the 5% or 1% level, respectively. 
Standard errors are White (1980) Heteroskedasticity consistent. For the general model such as the Regime Switching Model: 
P, -f (1) + dxP(X ,+ Y') 
f (I) D, +y sin 

( 
(I +T2a+8 sin 

(0+94a 

Dr:::. a in NON-W asking day 

at14 
dXk, (a -Xdt+a, dW 

d Y, k, Y, dt+J 
ju ,, tr ,)d 

aa. 
If w aler reservoir levels are above seasonal average regint a, R, aw 

a, if w ater reservoir levels are below seasonal average regim a. R, -d 

TransIIIaxUa or is P.. P 
P"PI 

Where i=lfor Winter or 2for Spring, Summer, Autumn and ed- v+w. 
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Table 4.1 shows the estimated parameters of the two models. Several points merit 
discussion: First, the seasonal parameters are all highly significant reflecting the 

strong seasonal pattern in the series. Also 8 is significantly negative, indicating that 

electricity prices are lower during non-working days. Second, the degree of mean 

reversion in Nord Pool is lower than that evidenced in other markets (e. g. in PJM 

investigated by Escribano et al (2002)). This is due to the fact that in Nord Pool about 
50% of the electricity is produced using hydro generators; this implies that electricity 

can be stored indirectly (although in limited amounts) and hence there is some inter- 

temporal substitution for generating electricity which can dampen very short-term 

variations, thus lowering the coefficient of mean reversion. 

The half-life of a shock, Qn(2)1k), caused by the short term Gaussian factor X, will be 

on average I month for the simple MR model. However when extracting the spikes 
from the sample we see that the coefficient reduces, and the half-life of the shocks is 

on average two and a half months. On the other hand, the half-life of a spike, k2, is 

found to be less than a day. This reflects the effect of the strong mean reversion 

caused when a spike occurs. The high speed of mean reversion in the spiky regime is 

one of the significant features of this model, which also improves the relationship 
between forward prices and the spot. Also notice that the volatility parameter falls 
from 167% to 103%, thus, spikes seem to play a very significant role in terms of 

explaining the volatility in the market. 

For the Regime Switching Spike model, the speed of mean reversion of the diffusive 

shock is almost twice that of the Spike model; hence the half-life of a shock is almost 
one month. This is due to the fact that econometrically the model distinguishes the 
difference in the equilibrium level of power, when water reservoirs are low. To that 

extent, we find very strong evidence that the equilibrium level is almost 100 
NOK/MWh higher during periods of lower water, as the marginal costs of production 
increase. Furthermore, the transition probabilities show that if the spot is in one state, 
it will remain at this state for a long time, thus inducing some persistence. Hamilton 
(1989) suggested the following formula to calculate the average expected duration of 
being in state w and d respectively: 
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, 
jpl-'(1-p. )=(I-p. 

w) =370days %W J-1 (4.15) 
J-' Pdd) pfd)-' = 250 days pdd 

j-1 

Thus the expected duration when we arc in a regime with high water reservoir levels, 

is one year and 5 days, where as when we are in a regime with low water reservoir 
levels, the expected duration is almost 8 months and a half. This is expected since if a 

year is dry or the water level in the reservoirs is low, it will remain like this for 

approximately one year. This also implies that for short maturities, reservoir risk has 

little impact on forward prices; as the time horizon increases, uncertainty regarding 

future water levels increases as well which has a greater impact on forward prices in 

the market. 

In terms of the intensity parameters, upward spikes occur mainly during winter, 

causing severe upward price movements of approximately 42%. In the rest of the 

seasons, spikes occur mainly during spring and summer, but the intensity is much less 

than that of the cold season, with a mean size of 8.4%. This also induces seasonal 

volatility, which is found to be particularly high during winter. 

Turning next into the estimation of the price of risk, the magnitude of the risk 

premium is smaller for the Spike and Regime switching spike models, compared to 

the MR model. Generally, the risk premium in the market is negative, which is 

explained by the fact that in Nord Pool there is greater flexibility on the supply side 

using the water reservoirs, which in turn induces greater hedging pressures from the 
demand side of the market that buys derivatives in order to hedge against higher 

prices. The seasonality on the spike factor makes the derivatives maturing during 

winter, more expensive than those maturing the rest of the year. This is in line with 
previous studies (Villaplana 2003, Bessembidcr et al 2002 and Pirrong and Jermakyan 
2000) who argue that during periods of extreme price movements and especially 

spikes, distributors of electricity increase their demand to hedge their price risk and 
are willing to buy at even higher prices, in order to persuade "speculators" who 
cannot hedge their risk to trade with them. Furthermore, the results show that for the 
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short-term forwards, their price is mainly governed by the expected value added from 

the spike factor, as the value of k2 is greater than that of kj. However, as the maturity 
increases the forward price is governed by the value of all risk factors as well as the 

risk premium. 

Table 4.2: RMSE 
The table reports the RMSE (NOK/MWh) for the simple Mean Reverting model (MR) the Regime Switching Spike (RSSP) and 
the Spike model. Errors are reported for the entire sample, when a jump occurs (at 1), during periods of probable upward jumps 
IM-1- 1. -nm Výh-- -1-h - -fýr 1- ae Wint-) anti thp npet nf thp vpnr Mnrrh tn NnvP-mhPrI 

Weeks to Whole Sample Winter Rest of the Year At Y 

maturit MR Spike RSSP MR Spike MR Spike MR Spike 
1 36.98 30.04 30.30 66.58 53.88 16.24 13.05 53.88 20.79 
2 47.52 34.74 35.16 83.83 62.11 23.83 16.34 48.95 24.45 
4 63.51 42.99 44.46 106.69 72.81 38.89 25.75 46.26 26.50 
7 71.92 46.81 47.48 114.30 73.97 50.53 33.21 45.49 23.40 
12 76.58 52.35 53.82 84.04 64.38 74.02 47.86 43.86 26.33 
16 76.90 56.21 55.85 71.99 58.90 78.42 55.31 39.40 25.11 
20 68.67 52.20 51.83 71.37 58.50 67.78 50.01 42.98 28.72 
24 

_60.82 
1 48.08 1 47.12 1 71.24 1 60.84 1 57.07 1 43.20 1 52.31 1 38.54 

Table 4.2 presents the Root Mean Square Error (RMSE) between the theoretical and 

actual forward prices, for the entire sample and also between winter and rest of the 

year periods and at days when a spike occurs. First, looking at the days when a spike 

occurs, the spike model reduces the RMSE by almost 33 NOK/MWh for the 1-wcek 

to maturity price compared to the MR modcl24 . This is because when a spike occurs in 

the spot market, this does not translate as a spike in the forward market since the spike 
lasts for a very short time, where as our contract matures in a week. Thus, the large 

value of the coefficient of mean reversion on the spike state variable discounts that 

shock making its impact on the forward price very small. Compared to the MR model 

our Spike Model is better on average, by 20.58 NOK/MWh in Winter (which 

coincides with the period of more frequent and higher returns spikes), and by 15.26 
NOK/MWh for the entire sample period. Thus the above analysis indicates, that our 
model significantly improves the fit in the forward market, especially at times when 
spikes occur, and is also able to explain the seasonal premium during high demand 

periods when the probability of a spike increases. Moreover, the RMSE seem to 

24 Note that we found that especially for the upward spikes the difference in RMSE was almost 60 NOK/MWh 
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increase with time to maturity, which is in line with the findings of Lucia and 
Schwartz (2002). This may be due to the fact that as time to maturity increases, 

forward prices start to depend more on other factors rather than the short-term spot 

price. 

Finally, comparing the Regime-Switching Spike model (RSSP), with the Spike model 

over the entire period, we can note that the results are very similar. One reason why 

might this be happening is the fact that kI in the spike model, is almost half of that in 

the RSSP model, thus the shocks in the spike model are discounted at a much slower 

rate. Therefore, when we are in a regime where the water reservoir levels are low, 

spot prices are high, thus the value of X increases and the discount term exp(-kj T) is 

higher in the spike model than in the RSSP model, hence affecting forward prices 

more, and increasing their value. On the other hand, in the RSSP model this effect is 

captured by decreasing the effect of the X (since k, is higher), and at the same time 
increasing the weight of the higher risk neutral equilibrium level. Overall, it seems 
that the impact of theses factors is offsetting each other hence overall, there is no 

significant difference between the two models. 

Table 4.3: Models Pricint! Performance usint! Diebold-Mariano's test 
The table reports the ratios of the RMSE of the model on the row to the RMSE of the model on the column. The Diebold- 
Mariano (1995) pair-wise test of the hypothesis that the RMSEs from two competing models are equal is estimated using the 
NeweyýWest (1987) covariance estimator with a truncation of 5 lags. * and **, indicates that the ratio is significantly different 
from I at the 5% and 1% sienificance level. respectiveiv. 

Weeks to 
maturity 

MR MR Spike 

1 0.81* O. U* 1.01 
2 0.73* 0.74* 1.01 
4 0.68* 0.76' 1.03 
7 w 0.65* 

IL4 

0.66' 1.01 
12 0.68- 0.70- 1.03 
16 0.73- 0.73** 0.99 
20 0.76- 0.75 0.99 
24 0.797 0.77 0.98 

In order to test the significance of the difference in the pricing perfonnance between 

the models, we also carried out the Diebold-Mariano (1995) pair-wise test statistic. 
Table 4.3 shows the ratios of the RMSE of the model on the row to the RMSE of the 

119 



model on the column; hence if the ratio is less than 1, the model on the row performs 
better than the model on the column. Both our models perform significantly better 

than the simple MR model, and, as the time to maturity increases, the significance in 

the RMSE increases as well. The difference between the Spike and RSSP models is 

not statistically significant, however, we find that as the time to maturity increases so 
does the test statistic between the two models in favour of the RSSP model, in 

nominal terms. 

4.4 Simulation evidence of the models 

In Figure 4.4 we show simulated paths for the spot price, which result from 

discretising each stochastic model and using the estimated parameters under the real 

probability measure. For comparison purposes, we also include simulated paths 

generated by a Mean reversion Jump Diffusion process (MRJD), which allows factor 

X to be affected directly by jumps, along the lines of Clewlow and Strickland (2000). 

Several points are worth noting. First, although the MR model captures the 

seasonality and volatility in the series, it is not able to capture the extreme jumps 

(Spikes) caused in the market. On the other hand the MRJD is able to capture the 
jumps, however it does not revert back to the normal price level fast enough, since the 

speed of mean reversion in the model is the same for non-nal and jump shocks. 
Consequently, once a jump has occurred the price level remains high for a 

considerable period of time. The Spike and the Regime Switching Spike models on 
the other hand, capture most of the main features of the market; extreme upward 

spikes that occur mainly in the cold season, small spikes and their very fast speed of 

mean reversion, seasonality and high volatility. What actually distinguishes the two 

models is that the Regime Switching Spike model is more stationary, reverting faster 

and more steadily to its equilibrium mean depending on the state, where as the Spike 

model forces shocks to last for longer time, and mean reverts to a higher price than 

what is actually the case in the market, when water levels are low. Hence according 
to the above, both of our models describe the short-term dynamics of price better, and 
the Regime Switching Spike seems to be more accurate in the long run. 
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Fieure 4.4: Simulated Spot prices under different model specifications 
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4.4.1 Monte Carlo simulations and the moments of the distributio 

Table 4.4 reports the descriptive statistics of the deseasonalised spot price returns, 
25 

implied by each model and the actual series . In order to get accurate descriptive 

statistics for all models, we run 60,000 sample paths for each, with 365 time steps 

each. First thing to note is that all models seem to capture the standard deviation quite 

well. The MR model does not explain the excess skewness and kurtosis of the actual 

price, since its implied distribution is normal. On the other hand, all other models 

capture the excess skewness and kurtosis of the original data. The kurtosis coefficient 

is slightly better for our models compared to that of the MRJD. However none of the 

models is able to match exactly the extremely high kurtosis of the actual returns, 66 in 

Table 4.4. In terms of skewness our models outperform the MRJD, which 

underestimates the actual skewness considerably. Turing next to the seasonal 

statistics, our models do a better job in terms of capturing the seasonal distributional 

characteristics of returns. Compared to the other models, both kurtosis and skewness 

is much more closer and accurate to that of the actual series. This is expected since in 

the MRJD model no seasonality on the jumps is induced. Finally our models seem to 

capture seasonal volatility quite accuratel Y. 26 

The Spike and the Regime-Switching models seem to capture the significant 

characteristics of the spot prices in an intuitive and more parsimonious way. From all 

the above results, it seems that the Spike and Regime-Switching Spike models explain 

the spikes, and especially their very fast mean reversion, quite well. The MRJD on the 

other hand, is able to explain general jumps in the market, but cannot distinguish 

between spikes, which are a transitory phenomenon, and long-term shifts in prices. 

This has important implications for derivatives pricing especially for path dependent 

options, such as Asian options, because it implies that if for example an upward jump 

occurs, prices will remain at high levels for some time, making the average price 

much higher than what is actually the case in the market. Our models however adjust 
for this, by making prices to revert towards their normal levels at a much faster rate. 

" The results for the Regime Switching spike model are not reported, as they are identical to the Spike model, which is expected 
since the only difference between the two is in the long run level of the equilibrium to which prices revert. This however does not 
affect the daily returns levels, which should be similar for both models. 
26 Note that we also ran simulations for log-normally and exponentially distributed jump sizes. However the results showed that 
there was a high probability that prices would Teach levels of more than 1500 NOKIMWh, which has never been observed in the 
market. Mcnce care has to be taken when using such distributions, since they have to be truncated (see for instance Weron, 2005). 
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Table 4.4: Actual Vs Simulated descriptive Statistics 
The table reports the descriptive statistics for the actual deseasonalised. spot returns, and those implied by the simulations of each 
model: Spike, Mean reversion Jump Diffusion (MRJD, ) and Mean reversion (MR). Panel A reports the results for the entire 
sample, Panel B for the months of December, January and February and Panel C for the remaining seaso s. 

Spike MRJD MR Actual 
Panel A: Whole Sam ple 

Mean 0.00 0.00 0.00 0.00 
St. Deviation 0.09 0.09 0.09 0.09 
Skewness 2.96 1.00 0.00 2.18 
Kurtosis 49.0 40.0 3.00 66.0 

Panel B: Winter 
Mean 0.00 0.00 0.00 0.00 
St. Deviation 0.14 0.09 0.09 0.14 
Skewness 2.91 1.00 0.00 1.95 
Kurtosis 31.0 40.0 3.0 34.0 

Pan I C: Sprin g, Summer & Autumn 
Mean 0.00 0.00 0.00 0.00 
St. Deviation 0.06 0.09 0.09 0.06 
Skewness 0.38 1.00 0.00 0.25 
IKurtosis 8.54 40.0 3.00 8.64 

4.4.2 Closed-form Solutions of the Moments 

In the previous section we analysed the moments generated by each model using an 
Euler discretisation method of the Stochastic Differential Equations for the Monte 

Carlo Simulations. However, as shown by Das (2001), one can obtain closcd-form 

solutions for the moments for any jump distribution, by first dcriving the 

characteristic function F(X, Y, t, T; s), given that the jump intensity or jump 

distribution do not depend on the state variables. The solution of the characteristic 
function can be found using the DPS transfonn as follows: 

F(X, T, t, T=I, s) = exp(is(Xt+yd),, 

where i= [--I 
. The above equation is also the boundary condition for the 

characteristic function. Therefore, the relation between the characteristic function and 
the transfonn is given by: 
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Ol(u, X�t, T) = e-""F(X, Y, T; s) 

where X=(X, I) and u=(is, is). Therefore the solution of the characteristic function 

takes the form of the transform and with the above mentioned boundary conditions: 

F (X, Y, t, T; s) = exp(a(t)+ß, (t) *X+ ß2(t) o Y) (4.17) 

with boundary conditions a(T) = 0, PI(T) = fl2(T) = is. Thus, using the results from 

the transform analysis, and letting r=T-t: 

ý&' 
= k,, 8, and fl, (T) = is =>, 6, (t) = ise*" 

at 
Hence 8, (t) = ise"", A (t) = ise*" 

a(t) = rr + 
(, 

S)2 
I Cýx (I_e72kr)+isc(, 

_ekýr)+, 
fE(exp(isJeý-kýr 

2 2ký 

Now in order to find closed-form solutions for the moments, we need to differentiate 

the characteristic function successively with respect to s and then find the value of the 

derivative when s=O. Thus if we denote the nth moment by m,, and the nth derivative 

of the characteristic function respectively, by F. = a"F / as", then the moments can be 

derived by m. =l1i"[F. js=O]. However, since the characteristic function F, 

depends on a andfl, we first have to derive their derivatives with respect to s. First of 

all the derivatives offl with respect to s are as follows: 

dA 
= ie-klr, ýýP, = 

ýP, 
= 

dA 
=0 (4.18) d2 d3 d4 ds sss 

Like wise for a: 
l(daý 

t' (1 e') + -L E (J) (1 e-*") -ds k, 

1 (d'a) cý 
ü-2k, r +, E(J')(1-e -2k2r 

Pý ds' ) 2k, 2k, 
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I (da 
=IE 

(j3)(I 

-e 
-3k2r 

i3( ds7-) 
'. 0 3ký 

1 (d a=IE (j4 ) (I 
-ek2' 

i" WS7 
) 

4k, 

Having derived the above derivatives, and using a lengthy and tedious algebraic 

manipulation, the moments are given as follows: 

M, [F, Is = 0] = Xe-"" + Ye-kl" +c (I - e-l") + -LE(J)(I-e-k2") k2 

I 
(j2 ) (1 

_ e-2kjr + M2 m, = -, [F2 Is=O]=EL(l-e"')+ 1EI 
2k, 2k, 

II 
=7[Fjs=O]=-E(X)(1-e-"I")+q 3k, 

2 
(j2 ) (I 

-2*2r a; 

j(I-eý')+-l 
E -e 3ný 

kI 2ký 

M4 
[F 

1 
(j4 

�ls = 0] =E) 
(1 

- e'k") + 4m, E(J')(1-e-'*") 
i4 4ký 3ký 

+3 
1E (P) (I -e 

-2k2f 
) 

2 
t, 

2k, 
2 

-2kv +1E (J') (I - e-1k,, + Mýl +6m2 Efý-(I-e 
-I ' 2k, 2ký 

where, assuming that the jump size distribution is normal, i. e. N(p, a, ): 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

E(J) = p,, E(j2)= 2+q,, E (P) = p. ' ,+3p, a,, 2 and E (J') + 6p., a, ' + 3a., pj 

Having derived the moments, one can show explicit solutions for the variance, 

skewness and Kurtosis of the deseasonalised spike process: 

2 -2ý, )+I (j2 ) (I 
_ C2kr Variancc: M2 -M (I -e'E (4.24) 

2k. 2k, 
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E[(z-nýy] 
I 

E(J')(1-e-"") 
Skewness: 

V ri _ e3/2 
ý- 

3k, 
V ri e3/2 

(4.25) 
a anc a anc 

E[(z-ti; 
)4 

1 
E(j4)(j_e-4lr2r) 

Kurtosis: 
Vtviance7 

1=3 

+. 
4k, 

Va7ionce - (4.26) 

Likewise for the MR model we can derive the moments and thus find closed-form 

solutions for the Variance, Skewness and Kurotisis: 
2 

Variance: M2 _ M12 = 
ax (I -e 

-2kr (4.27) 
2k, 

Skewness: 
[(z 

m, )'] 
.0 (4.28) 

Variance"' 

Kurtosis: 
E[(z _MI)4] 

=3 (4.29) 
Variance' 

Thus comparing the moments of the spike model against the MR model, the main 
difference lies in the spike factor Y, which is present in the spike model but not in the 

MR. Therefore the distribution of MR process is consistent with the normal 
distribution. However the spike model displays excess Skewness and Kurtosis, whose 

sign and magnitude depend on the jump parameters 1, pj and aj. This is consistent of 

course with the results found in the simulation section. For the Mean reversion Jump 

diffusion, the moments have the same functional form as that of the moments of the 

spike model; however, this time k, and k2 are equal. 
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, 
Table 4.5: Actual Vs Model specific descriptive Statistics 

The table reports the statistics for the actual deseasonalised spot returns, and those given by the closed-form solutions for each 
model: Spike, Mean reversion Jump Diffusion (MRJD), and Mean Reversion (MR). Panel A reports the results for the entire 
sample, Panel B for the months of December, January and February and Panel C for the remaining seasons. 

Spike MRJD MR Actual 
Panel A: Whole Sam ple 

Mean 0.00 0.00 0.00 0.00 
St. Deviation 0.07 0.09 0.09 0.09 
Skewness 3.32 1.00 0.00 2.18 
Kurtosis 39.2 40.0 3.00 66.0 

Panel B: Winter 
Mean 0.00 0.00 0.00 0.00 
St. Deviation 0.09 0.09 0.09 0.14 
Skewness 1.44 1.00 0.00 1.95 
Kurtosis 39.6 40.0 3.0 34.0 

Pa el C: Sp ring, Summer & Autumn 
Mean 0.00 0.00 0.00 0.00 
St. Deviation 0.06 0.09 0.9 0.06 
Skewness 0.15 1.00 0.00 0.25 

, Kurtosis 5.05 40.0 3.00 8.64 

As it was also done in Das (2001), we can compute the moment of the conditional 
distribution of the deaseasonalised. log-spot prices using the estimated parameters for 

the proposed models. Since our data is daily, the horizon r is 1/365, given the number 
of trading days in a year in Nord Pool 's spot market. In order to make a rough 
comparison as stated by Das (2001), the moments of the changes in the 
deseasonalised spot prices will correspond to the computed moments at r=11365. 
Table 4.5 reports the descriptive statistics of the deseasonalised spot returns, using the 

closed-form solutions for each model and the actual. First thing to note is that all 
models except the spike model, capture the whole sample standard deviation 

accurately. On the other hand, focusing on the different seasons the spike model fits 

the standard deviation for the rest of the seasons accurately, but for winter its 

performance is the same as that of the other models. Why is this happening though? 
Looking at equation (4.24), we can notice that increasing the speed of mean reversion, 
for either X or Y, decreases the variance and thus the standard deviation. This directly 
implies that the high coefficient of the speed of mean reversion of spikes decreases 
the overall volatility of the spot returns, given the spike model. On the other hand the 
MRJD model imposes the same mean reversion for both normal and jump shocks, and 
its coefficient is low; thus the theoretical standard devation implied by the MRJD 
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model is anticipated to be higher than that of the spike model, other things being 

equal. 

The other difference between the two models comes from the definition of jumps and 

spikes between the two models. In the MRJD model, a jump is defined as any return 

whose absolute value is greater than 3 standard deviations of all returns. On the other 

hand in the spike model a jump is any return whose absolute value is greater than 

three standard deviations of all returns, followed by a reduction or extreme returns of 

the opposite sign which account for at least half of the original movement within at 

most 5 days. Therefore, in the spike model if for example we have a positive 
(negative) jump in the actual series and the next time step we have a negative 
(positive) jump, the first jump is defined as an actual jump and the second is captured 

as part of the spike mean reversion. On the other hand, in the MRJD model, both of 

these shocks will be defined as jumps and they will be taken into account to estimate 

the jump intensity, 1. Therefore we should expect the intensity in the MRJD model to 

be higher than in the spike model. 

Therefore, combining both of the above arguments, since many jumps are captured as 

part of the spike mean reversion in the spike model and also since the speed of mean 

reversion is inversely related to the variance, we have this inconsistency. To show 
how standard deviation, skewness and kurtosis are affected by the spike speed of 

mean reversion, we have performed a sensitivity analysis, by finding the values of the 

three moments for different spike speeds of mean reversion, as shown in Figure 4.5. 

From the analysis it can be clearly seen that by increasing the spike speed of mean 

reversion, k2, the values of the descriptive statistics, i. e. standard deviation, skewness 

and kurtosis, decay exponentially. 

Another issue we are facing is the fact that for the spike model, the descriptive 

statistics given form the closed-form solutions, do not match with those from the 

simulated state variables, whereas for the MR and MRJD they do. In the simulation 

example for the spike model, the discretization time step was one day (i. e. dt=11365). 

Thus using for instance the intensity parameter during winter, 11, the chance of a jump 

occurring during one time step is Idt=11365*12.17=0.0333. Thus our simulation is 

correct up to this point since the probability of one jump is less than one. From the 
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econometric point of view, this simulation approach is correct since the simulation 

uses daily time steps, which is consistent with the frequency of the data and the 

estimates for the parameters. Therefore, on this basis we can use the simulations and 

compare the descriptive statistics generated from the estimates of the models, against 

those displayed from the data. 

However from the continuous time point of view the simulations are not correct. This 

is mainly caused from the parameter of the speed of mean reversion, which as shown 

by Clewlow and Strickland (2000), in order for the simulation to approach the 

continuous distribution of the process, the time step has to be a small fraction of the 

half-life. In our case the half-life of a spike is 0.88 days, thus the time step has to be 

less than a day, and therefore we have this inconsistency between the descriptive 

statistics generated from the simulation using daily time steps and the continuous time 

formulas for the moments. However simulation experiments showed that our Monte 

Carlo estimates converged to the continuous time descriptive statistics, when we took 

hourly time steps, however the paths generated when using hourly or daily time steps 

are qualitatively similar to those presented in Figure 4.4. A more detailed description 

of the appropriate Monte Carlo Simulation is shown in the next chapter, where it is 

used to price Asian Option. As it will be shown there, when a process involves jumps 

it is not possible to get an "exacf ' discretisation. 
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Fitwe 4.5: Descriptive statistics Vs Spike Mean Reversion k2 
The following figures shoA ho, the theoretical standard deN iation, skewness and kurtosis (using equations (4.24), (4.25) and 
(4.26) respectively) change when increasing the speed of mean reversion of spikes. 
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4.5 The Three-factor Model 

in the previous sections we assumed that the equilibrium level was constant or it was 

switching values between two regimes depending on the level of water in the 

reservoirs, as shown by the Regime Switching spike model. On the other hand Lucia 

and Schwartz (2002) show that the forward term structure cannot be explained by just 

one factor. Furthermore, Figure 3.9 shows that the forward curve seems to have a 

significant trend, which is clearly distinguishable by looking at the difference in the 

price of seasonal contracts for two consecutive years. This trend mainly exists due to 

uncertainties about the equilibrium level, to which prices revert. The uncertainty 

about the long run equilibrium level does not depend solely on the levels of the water 
in the reservoirs, as this does not represent a permanent effect. Long-run risks arise 

mainly from regulation risk, possibility of horizontal or vertical disintegration, threat 

of increased competition, load growth and generation plants closing down. 

The above facts are important when considering both short- and long-term 

investments, such as the valuation of power plants using Real Options and are thus 

particularly relevant for the valuation of long-term future contracts. Moreover, as it 

will be shown in Section 4.5.1, the observations on the forward prices of different 

maturity contracts in Figure 4.6 reveal that for most of the period the two year 

contracts are always higher than the one-year contracts, however in 2003 when the 

water reservoir levels were low, the opposite occurred. That is due to the fact that 

market participants, believed that this shock in the water reservoirs would not persist 
longer than a year, which is consistent with the average expected duration of a state in 

the regime switching spike model, as is given in equation (4.15). Thus, it would be 

interesting to extend the spike model in order to capture the relationship between the 

spot, the short- and long-term contracts. In such a model we allow the equilibrium 
level of the price to be stochastic and follow a non-stationary Wiener process with 
constant drift and diffusion, which can be described as the geometric diffusion 

process of the logarithm. The model was introduced by Schwartz and Smith (2000) 

and Sorensen (2002), and is extended in this thesis with the inclusion of the spike 
component. 
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We start the analysis by specifying our model. First in equation (4.30) we model 

prices (P, ) as the sum of a predictable component (f(t)) and the exponential sum of 

three stochastic components. The predictable component takes into account the 

regularities in the evolution of prices. The first stochastic component (XI) is assumed 

to follow a stationary process as in Vasicek (1977), in order to account for the short- 

term deviations resulting from the difference between the spot and the equilibrium 
level due to short-term changes in demand resulting from variations in weather or 

intermittent supply disruptions as well as due to the market behaviour. The second 

stochastic component (YI) represents the spike component and is assumed to follow a 

mean-reverting process whose shocks are modelled by a compound Poisson process. 

Thus up until now the first two factors follow exactly the same processes as the ones 

in the spike and regime switching spike model. However changes in the equilibrium 

level, el, represent fundamental changes that are expected to persist for the reasons 

discussed, and thus follows a non-stationary process with constant drift and diffusion 

parameters: 

P, =f (t) + exp(X, + Y, + 
dX, -k, Xtdt + axdWx 

del p, -1 cr 2) dt + a, dW, (4.30) 
2" 

dY, -k2Y, dt +J (P,, , cr,, ) dq (1, ) 

where the Wiener processes dWx and M, are assumed to be correlated with a 

constant correlation coefficient 

As before, in equation (4.30), k, represents the speed at which X reverts to zero after a 

shock has occurred. The dWx represents the increments of the Brownian motion that 

cause the random shocks in the short-term factor, and it is scaled up by the volatility 
factor orx. For the long-term dynamics, c is the long-run equilibrium level whose 
logarithm is assumed to follow a Geometric Brownian motion, with trend it, and 
volatility a,. As in the spike and the regime switching spike model, k2 is the speed of 

mean reversion of the spikes whose shocks are modelled via a compound Poisson 

process with seasonal intensity Ii. J is a random variable that accounts for the size of 
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the jump, and is assumed to follow a Normal distribution with seasonal mean p,, and 

variance (72 
. 11 - 

As shown before in order to price any kind of derivatives, the model should not allow 
for arbitrage opportunities. Therefore following Harrison and Kreps (1979) and Cox, 

Ingresoll and Ross (198 1) under risk-neutrality the processes become as follows: 

P, =f (t) + exp (X, + c, + Y, ) 

dX, = -(Ax + kX, )dt + a, dWx* 
(4.31) 

dc, = 
(ju. 

- -Ia. ' dt + a. dW, * -A, 2) 
dY, = -k, Ydt + J(Ai.,,, a, ' )dq(l, ) Jj 

Using the results from Appendix 4.8, we can write analytic forms for the distributions 

of the state variables and spot prices. Since our model is in line with an Affine Jump- 

Diffusion process, we apply the elementary transform function of Duffie, Pan and 
Singleton (2000). Hence equation (4.32) shows the expected risk-neutral value of the 

spot price in the future implied by the model. 

2T 

+y E. *(P, 
-f(T)+exp 

-4TX -kiT e743 +1 
&�e, -2k23 ds + ee+ 

Ili 11�, 
exp juj, 2 

1-1 0j 
Ia2 -Paa A, =" 

(I-e -2kýT J- ý tý x (I. e'kr)+pT 
2 2k, k, 

(4.32) 

Using the discussion in the previous section equation (4.32) is the theoretical price of 

a forward maturing at time T. As before several points can be noted about the 

importance of the state variables to the forward price in equation (4.32). First, as the 

time to maturity increases, the impact of the state variables Y and X decreases, and 
forward price relies more on the long-term equilibrium level. Second, the significance 

of the state variables in the forward price depends on the mean reversion factor, which 

acts as a discounting factor. Also this fact shows that a jump in the price, and hence 

an increase/decrease in the state variable Y, will have no significant effect in the 
forward price, as long as k2 is very high. This is in line with several empirical findings 

that a spike in the spot prices, does not translate as a spike in the forward price, since 
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this shock is very short lived. Moreover the higher value of k2 implies that the value 
for short-term contracts is mainly governed by the jump component, whereas for 

longer-term contracts, the premium is governed by the sum of all the risk factors. 

Finally equation (4.32) shows that in the long run as t-+oo, the spot price does not 

converge to a constant value, but rather grows at a rate specified by the drift of the 

long-term factor: 

2T 

+ 12S +L2e -2k2s (T) + exp 
I li J1 

I IE I exp pje' aj, I ds+co + p: T 
2 2k, k, 

Z2 

1-1 0) 

4.5.1 Model Calibration and Results 

4.5.1.1 Data used 

For the empirical estimation of the three-factor model, we use the same dataset as in 

the case of the spike and regime switching spike models. We also use the same 

constant maturity forward prices, as in the previous sections. Another advantage from 

the use of this dataset is that it reduces the computational complexity introduced by 

equation (4.9) for the theoretical forward price, especially for the Kalman filter where 

we have averages of exponential terms, therefore the state variables do not have a 
linear relationship with the log-forward prices. Thus the use of constant maturity 

contracts with no delivery period makes the calibration of our models easier. 

The forwards used in this part of the analysis reflect short- to mid-tenn maturities (1, 

2,4,7,12,16,20 and 24 weeks, 1,2 and 3 years to maturity). These maturities arc 

selected to reflect actual traded contracts in the market. Since the model consists of 

unobserved state variables, both spot and forward prices have to be used 

simultaneously. The long maturity contracts were chosen so as to give us the most 
available information about the long-term factor as shown by Schwartz and Smith 
(2000). However one factor that may affect our results is the fact that the contracts 
with 1,2, and 3 years to maturity have a low liquidity, whereas liquidity is high for 

the first weekly contracts, and the nearest block (month) and seasonal (Quarter) 

contracts. Figure 4.6 displays the time series of three forward prices used. As already 
discussed, when compared to the 1-week to maturity contracts, the long-term 
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contracts (2-year) behave in a smoother fashion and seem to not be affected by short- 

tenn fluctuations at all. 

Fi2ure 4.6: Time series of Forward Prices 
The figure shows the tinte series ot* the %keekly obser% ations for the I and 2 weeks to maturity contracts representing shot-run 
forward prices. as well as for I and 2 ýcars mo maturný contracts representing long-run forward prices, used in the analysis. 
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fiactor Model's latent variables and 4.5.1.2 Estimation of the Three- 

The Kalman Filter: 

For the empirical part of the analysis, the estimates of the seasonal and spike 

component were the same as the ones in the previous section, for the spike and regime 

switching spike models, respectively. However for the remaining estimates, since the 

model relies on state variables that are not directly observable, we need a model that 

"best fits" both spot and forward (futures) prices as well as a filter. Over the years the 

Kalman filter has been extensively used in finance. In this section we present a 

general description of the Kalman filter to estimate unobserved state variables. For a 

more detailed explanation, see for example Harvey (1989), Chapter 3 or Hamilton 

(1994), Chapter 13. 

The Kalman filter may be applied to dynamic models that are in a state-space 

representation, which include measurement and transition equations. At each point 
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in time, the measurement equation relates a vector of observable variables z, with a 

vector of state variables x,, which in general is not observable: 

zt = Hxj + d, + v, vt - N(ORd 

Where, given equation (4.32), we can define the following matrices, for each 

observation date 1: 

(4.33) 

zi = 11 xI vector of the de-seasonalised spike-less spot and futures log-prices at time t 

IIx2 matrix with row elements 
(e"I (T-) 1) 

(eg(. 

U., e 
ki +I Cý dl= ll x1 vector of 

4k, k, 1-) 0 

elements. 

RI= 11 x 11 diagonal matrix, whose diagonal contains the variance, (S12t 
S2 2t 

... S112), of measurement errors vt. 

xj= 2x I vector of state variables, [X,, c, ]" 

The measurement equation assumes the existence of a linear relation between the 

observed and the state variables. Also, note that the measurement equation contains a 
disturbance term to allow for measurement errors in the observed data. In other words 

these measurement errors represent the errors present in the reporting prices or cffors 
in the model's fit to observed prices. 

The transition equation describes the dynamics of the state variables: 

x, = Aixt-I + ct + cl ct - N(O, Qd (4.34) 

Where, given the stochastic differential equations forXand c in (4.30), we have: 

[0, 

'U, 
0.2 

-" 0 
ax, (I-e -2k, &I) PaaX (I_ e7k, Al) 

C, 2 "'ýt], 
(e 

2k, k, -ý 01, and Pc"ax (I -e-kA') q, At 

Under this representation, the state variables have a multivariate Normal distribution. 
This assumption can also be relaxed to include non-Gaussian models for the state 
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variables. The measurement and transition equations define what is called the state 

space representation. 

The Kalman filter is a recursive procedure for computing the optimal estimator of the 

state variables at time t, based on information at time t, and it is continuously updated 

as new information become available, (Harvey (1989)). The Kalman filter is thus a 

particular type of Bayesian estimation. Another useful characteristic of the Kalman 

filter is that it provides consistent model parameter estimates, when maximizing the 

log-likelihood function of error innovations 27 
. Letting Ft denote the conditional 

variance of z, conditional on information available at time t-1, the log-likelihood takes 

the form: 

NT 1 71 7' 
log L(VI) log2z- I: IogIF, - 

Tv, F, -lv, 
22A.. d 

(4.35) 

where V, is the vector of parameters to be estimated. 

We start the Kalman filter with a prior mean and covariance matrix based on the 

observed means and covariance of the data over the entire sample. The estimated state 

variables and parameters did not appear to be sensitive to different initial values. 

Moreover since in the electricity market the spot price exists and is reliable and liquid 

(unlike in the other markets such as oil), and since the main aim of this model is to 

capture spot dynamics and price contingent claims on the spot, it makes sense to 

assume a zero measurement error for the spot price. This is implemented by choosing 

a measurement error covariance matrix with zero variance for the spot price. 

4.5.2 Results on the 7hree-factor model 

Table 4.6 shows the parameter estimates of the model. First thing to notice is that 

although the trend for the long-run factor is significant under the risk neutral world 
(u, ), the trend under the objective probability measure is insignificant. Thus we may 

conclude that although there is always a significant trend in the forward curve, due to 

27 We used the BFGS (Bolgano et al) algorithm to find the optimal estimates of the coefricicnts that maximise the log-likelihood, 
in GAUSS 5.0. 
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the long-run risk faced when trading long-maturity forward contracts in the actual 

market, there is no significant trend in the spot market. The remaining parameters are 

significant. Not surprisingly, there is a big difference between the volatility of the 

short-term factor and that of the long-term factor. The parameter is three times greater 

than that of the long-term (which is high too). Using this procedure and that kind of 
data we find that the half-life of the short- term deviations is almost 6 months. 

Table 4.6: Annualised Parameter estimates for the 3-Factor Spike model 
The table shows the estimated parameters for the three-factor model. (*) and (**) means that the estimate is significant at 5% 
and 1% significance level respectively. 211 

I 
Three Factor Spike Model 

Parameters of Stochastic Processes Measurement 
Errors 

0.097 
PC (0.119) sl 0.000 

1.32" 0.099- 
k, (0.041) S2 

- 
(0.004) 

287.61 " 0.117" 
k2 (52.99ý S3 (0.005) 

100%" 0.153" 
ax (0.0386) S4 (0.0 6) 

32.48%" 0.195'* 
ffe (0.0134) S5 (0.008) 

-0.42" 0.242" 
p (0.050) S6 (0-010) 

0.267" 
, (1) 12.17 S7 (0.011) 

0.267" 
1(2) 3.41 S8 (0.011) 

0.267" 
41.86% S9 (0.011) 

0.050" 
AU(2) 8.41% SIO (0.002) 

fria) 38.12% sil 0.000 
0.080'* 

lffJ(2) 20.40% S12 (0.0032) 

0.0623** 
(0.005) 
0.5416" Log-Likelihhod 
(0.062) 2798.35 

P, .f(I)+0xP (X 
,+8, +Y, ) 

f (t ). PD, +r sin 
( 

it +T)32 
jr )+6 

sin 
( 

(, +4)4 Jr ) 

dX 
,- -(I,, + k, X )di +axdw; 

d c, -(p: - -La ') dt + cy dW.. 
2, 

d Y, k, Y, dt+J (Ai dq (1, 
Where i=lfor Winter or 2for Spring, Summer, Autumn 

28 The deterministic seasonality parameters forf(i), are the same as those for the spike and regime switching spike models shown 
in Table 4.1. 
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Fi2ure 4.7: The estimated Equilibrium Price and Spot Price 
The figure displays the estimates of (lie State % ariables implied bý the Kalman Filter as well as the time series of the percentage 
of water in the reservoirs with its seasonal average. The Equilibrium price -ftt)-exp(Ed. where as the Spot price -ftt)-exp(i., + 
x, + Yd. 
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Figure 4.7 shows the estimated time-series of the equilibrium price (. /*(I)+ exp (c, )) 

and the actual spot price (ý z-- fW+ cxp (X, + Y, + c, )) at the weekly frequency. The 

extreme volatility in the spot price is quite distinguishable; however the spot price is 

sometimes above and sometimes below the equilibrium level. Until 2001, the spot 

was below the equilibrium due to the high level of water in the reservoirs, providing 

cheaper energy. In 2001 the water level fell and hence prices increased. At the end of 
2002 the water reservoir levels dropped to their lowest level of the past 10 years, 
hence the prices in Nord Pool increased dramatically. The fact that the equilibrium 

price did not follow the spot price shows that market participants did not expect this 

phenomenon to persist. Focusing at the RMSE in Table 4.7, we see that the largest 

Errors occur for mid-term contracts. Furthermore, the long-term variable seems to 

give very good fit especially for the prices of 2-year contracts, whic Ih is why their 

measurement error is zero in Table 4.6. Finally, the magnitude of these errors is 

comparable to those of Lucia and Schwartz (2002). 
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Table 4.7: Root Mean Square Error for Three-factor model 
The table shows the Root of Mean Square Error (RMSE) for the entire sample, between the actual forward price and the 
theoretical forward price given from the three-factor model, for contracts of different maturities. 

M t it RMSE 
a ur y Whole sample 

1 Week 17.57 
2 Weeks 20.88 
4 Weeks 26.49 
7 Weeks 27.84 
12 Weeks 32.04 
16 Weeks 37.13 
20 Weeks 34.27 
24 Weeks 30.64 

1 Year 2.52 
2 Years 0.00 
3 Years 13.10 

4.6 Three-Factor model Vs Spike and Revaime Switchinje Spike models 

Comparing Table 4.2 against Table 4.7. i. e. the RMSEs of the Threc-factor spike 
model, against the RMSEs of the spike and Regime switching spike models 
respectively, we note that the threc-factor spike model is superior to the other two, for 

all contracts. However there are some disadvantages when relying on this model. First 

of all as explained earlier, the threc-factor model relies on two unobservable variables, 
X and c, which have to be calibrated using the Kalman Filter. However, information 
from the spot is not enough to extract both of the state variables, especially for the 
long-run factor, which determines the dynamics of the equilibrium level, c. We thus 
have to use long-term to maturity contracts to extract information about the long-term 

dynamics. However as discussed in the data section, long-dated forward contracts 
have a very low liquidity, which implies as well a large bid-ask spread on the prices. 
In the Kalman Filter, this is supposed to be captured by the measurement errors. As a 
result, the estimation of these models may be problematic and the subsequent 
estimation results may not be reliable. 

The second disadvantage of the three-factor spike model stems from the fact that the 
risk in the reservoirs levels is not captured by the long-run factor, c, as shown in the 
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analysis, but rather form the short-run factor X. 29 This can be clearly seen from the 

time series of the state variables in Figure 4.7, which shows especially for 2003, when 

the reservoir levels reached their historical lowest, it was not the equilibrium level, C, 

that increased, but rather the short-term variable, X However, intuitively this does 

not make sense, as the short-term factor is supposed to mainly capture the shorter- 

term risks such as changes in demand resulting from variations in weather as well as 

market behaviour. Intuitively, the half-life of these shocks should be less than that 

implied from the three-factor spike model (6 moths). This fact may have serious 

implications especially for derivatives pricing and more specifically option prices, as 

it will be shown in the next chapter. This is not to say that the three-factor spike 

model is not appropriate. One main advantage of the three-factor spike model, except 

that it provides a better fit, is the fact that it gives a clearer relationship between short- 

and long-term contracts, and also implies an imperfect correlation between contracts 

of different maturities. Thus the selection of a model depends on the judgement of a 

market participant, using his intuition in combination with the empirical findings, and 

the purpose of its use. For example, as it was mentioned at the beginning of this 

section, the three-factor spike model might be a very good alternative when valuing 

long-tenn contracts such as Power Plants, whose life expectancy is greater than a 

year, and therefore depend on both long- and short-term risks. On the other hand the 

regime-switching spike model will capture the risk emanating from fluctuations in the 

levels of water in the reservoirs, but will not reflect any other long-term risks resulting 

from changes in supply and demand long-run factors. However if the power plant 

user, is mainly concerned about the price risk for next year, which is mainly produced 

by the hydro conditions, the Regime Switching spike model might be more 

appropriate, as it accounts for changes in the hydro conditions which are the main 

price determinants in the mid-run. 

29 We also extend the three-factor model by adding another diffusive factor whose dynamics are the same as X, in order to 
capture the reservoir level risk, however the results gave insignificant estimates. 
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4.7 Conclusions 

in this chapter we examined the major risks involved in the power prices in Nord 

Pool, and introduced a new model that accounts for the different speeds of mean 

reversion between normal and spiky shocks in the market. Our proposed model 

improves significantly the fit between theoretical and observed forward prices as the 

spikes in the model are discounted at a very fast rate due to their high speed of mean 

reversion. Consequently, spikes in the spot market do not spillover to the forward 

market, a finding that is consistent with the actual patterns observed in the market. 

Furthermore, our proposed model also accounts for seasonality in the risk premium, 

which reflects the increasing need to hedge against spikes when their probability of 

occurrence is higher during the colder winter months. These results are in line with 

previous theoretical and empirical research in other markets, which shows that at 

these periods the need for hedging is higher and thus forward prices increase in order 

to entice speculators to trade with market participants. Moreover, we also propose the 

use of a Regime Switching Spike model that incorporates two separate regimes to 

distinguish between periods of high and low water levels in the reservoirs. This model 

is found to be significant in explaining the change in the equilibrium level in the spot 

market. Finally we extend the spike model, by allowing the equilibrium level not to be 

dependent just on the level of water in the reservoirs, but also to be affected by 

longer-run risk, such as load growth, plants shutting down ect. In this model all three 

stochastic variables are unobservable, and hence two of them have to be estimated 

using the Kalman Filter; as such we have to rely on long-maturity forward contracts, 

whose liquidity in the market is very low. 

The performance of our proposed models is compared to that of other models 

proposed in the literature such as a simple mean reversion (MR) and a mean reversion 
jump diff-usion model (MRJD), estimated along the lines suggested by Clewlow and 
Strickland (2000). This comparison takes place by considering both the accuracy of 
the theoretical forward prices, implied by each model, in fitting the observed term 

structure, as well as by observing the trajectorial and distributional properties of the 

simulated series under the objective probability measure. In particular both the Spike 

and Regime Switching Spike models provide more realistic simulated price series 
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than the MR and MRJD models, in terms of capturing the jumps and explaining their 

fast mean reversion. Finally, our models also perform better when the sample is 

divided up into separate seasons, especially during the winter period, which is 

expected due to the imposed seasonality in the jump distribution. Overall, it seems 

that the proposed models' trade-off between complexity and practicality is well 

behaved, as it accounts for the most significant risks in this extremely volatile market 
in a parsimonious and intuitive way. 

Having discussed the properties of the models in this chapter, the next chapter looks 

at the implications of these models in terms of options pricing. More specifically we 

see what kind of volatility shapes we should anticipate from a spike model, by 

changing each parameter of the stochastic process. We look at the implications of 

pricing European Options using each of the different models, and give an intuitive 

explanation on their differences in terms of options pricing and hedging. Finally, we 

also derive semi-closed form solutions under each of the models. 
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4.8 Appendix: 

Introduction and Application of the Transform Function for the Forward Prices in the 
Factor Models 

A very useful assumption in the finance literature is that the state vector X follows an 

affine jump-diffusion process (AJD). An AJD is a jump-diffusion process for which 

the drift vector, the "instantaneous" covariance matrix, and jump intensities all have 

an aff ine (linear) dependence on the state vector. The affine jump-diffusion processes 

have been synthesized and extended by Duffie, Pan and Singleton (2000) (henceforth 

DPS); see also Chacko, and Das (2002). Affine diffusions (AD) and affine jump- 

diffusions (AJD) are quite useful in modelling underlying state variable for several 

reasons. DPS have shown the close connection between the structure of this kind of 

models and Fourier transforms, and how from this transform one can obtain derivative 

prices. The jump diffusion model presented in the main body of the chapter belongs 

to the class of AJD. Hence, we can use the results provided by DPS in their transform 

analysis to obtain closed-form solutions implied by our models for forward prices. 

The DPS transform can be described as follows: 

Fix a probability space (Q, P) and an information filtration (. F, )=(. rt: t ý. - 0), 

and suppose that Xt is a Markov process in some state space Dc R", following the 

stochastic differential equation (SDE): 

dXt =p (Xt)dt +a (Xt)dWt + dZt (4.36) 

Where W is an (, Xt')-standard Brownian motion in R"; p: D -+ R", a: D -+ R" "", and Z 

is a pure jump process whose jump sizes have a fixed probability distribution v on R" 

and arrive at frequency JI(Xd :tý: 0) for some 1: D --+ [O, oo). To be precise, suppose 

that X is a Markov process whose transition semi-group has an infinitesimal generator 
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p 30of the Uvy type, defined at a bounded C2 function f., D -* R, with bounded first 

and second derivatives, by 

f (X, t) (X, t) + (X, t), u (x) tr f 
2E 'x 

(X't)7 (X)'7 (x) 

I(x) f[f (x + z, t) -f (x, t)] dv(z) 
R 

(4.37) 

Intuitively, p(x, ) and a(X, ) are the drift and diffusion terms of the process when no 

jump occurs, and the jump term captures the discontinuous change of the path with 
both random arrival of jumps and random jump sizes. That is, conditional on the path 

of X, the jump times of the jump term are the jumps times of a Poisson process with, 

possibly, time-varying intensity (I(X, ): 0 :! ý s :ý t), and the size of the jump of at a 
jump time m is independent of JX,: 0: 5 s:! g m) and has the probability distribution v. 

In order for the transform function to work as stated by DPS (2000), the drift, 

variance-covariance, intensity and discount rate have to be affine functions of the 

state variables, hence: 

p (x) = Ko + K, o x, for K= (KO, KI) r= R" x R"'». 
nxn nxnxn (a(x)a(x)r), =(Ho), +(HI), j *x, for H =(Hog HI)EER xR 

I(x) = 10 + 11 9 x, for I= (10,11) ERx R". 

R(x)= po +p, ex, for p= (po, pl) E RxR". 

(4.38) 

Let 0 (c) =J exp (c x z) dv(z) , be the characteristic function of the jump size 
110 

distribution. The function O(e) determines completely the jump size distribution. Also 

assuming constant interest rates (po), futures prices are equal to forward prices. Let X 

= (K, A 1, p, 0), it captures both the distribution of the vector process X as well as 

30 The generator V is defined by the property that If (X, 9 t) - Pf (X,, S)dS :t ý-- 0) is a 

martingale for anyfin its domain (Ethier and Kurtz, 1986). 

145 



the effects of discounting and determines a transform VA C" xDxR., x R., -> C of 

XT conditional on 'xl' , when well defined at t.:! ý T, by 

0' (u, X� t, T) =Ex 
[exp (- fR (X, ) ds) e`T 1 

JF, 
] 

(4.39) 

Where 9 denotes the expectation operator under the distribution of X determined by 

X. Hcnce the difference between the conditional characteristic function of XT and the 

transform function V/ is the discount factor R(XT). Therefore under technical 

regularity conditions DPS (2000) show that 

VI (u, X,, t, T) = e' 
(t)+, 8 (#)ox (4.40) 

Where a and P satisfy the complex-valued Ordinary-Differential-Equations: 

ý(t) 
= p, - Kl', 8(t) - 

"6(t)T 

H., 6(t) - 1. (0 (, 8 (t)) - 1) 
2 

(t) = p, ) - Ko, 6(t) -I 6(t)'HO, 6(t) -4 (0 (, 6(t)) - 1) 
2 

With boundary conditions a(T)=0 and fl(T)=u. 

Application to the Spike Model: 

Now for the Spike model of equation (4.1), however with constant jump parameters 
the connection between the transform function and its use to find the forward prices is 

as follows: 

P=f (t) + exp I (X, + Y, ) 
dX, (-A, + k, (c - Xj) dt + ax dW, * (4.42) 
dY, -k 2 Y, dt +J(, u.,, cr., ) dq (1) 

146 



Therefore, 

E, (P, -f (T» = e*'E, ' (e-" exp (X, + Y, » = e"v(u, X� t, T) 
(4.43) 

= e" exp(a(t) + ßý (t) 9X+ß, (t) 9 Y) 

Where the vectors u =(], 1), and X= (X, Y) andr= T-t. 

From (4.43) we use (4.41) to reach to the Ordinary Differential Equations and solve 
them: 

afl' 
= k,, B, and, 6, (T) =I 

kir 

at (4.44) 
Hence e -k, r 

, 
6, ekr 

0(, 82(t)) = exp 
(p, 

e 
k2(T-s) +Ic., 

e 
.2 k2 (T-S) 

2 

a(t) r+ (Aý, 
- kc) e" 

Ie -2k, 
(T-s) 

a2 -1 exp pje 
k, (T-s) 

+lcr. 2e"'(T-') 

2x2 

Hence using equation (4.43), and the results from (4.44), we have the expected value 

of the spot, under the risk neutral probability measure: 

Eo* (P, ) f (t) + exp e, k, tX 
0+Y. e -k2t 

2 
x . 2kt + kýt A, 

2 2k, k, 

exp p., e -k2s +Ia2e "2k2S I dS + A, 
2 

(4.45) 

Note that for the simple Mean-Reverting model, we exclude Y and its parameters 
describing its SDE. Similarly, for the Regime Switching spike model, we have two 

different values for (4.45), depending on the equilibrium price, c. Equation (4.45) is 

the general case when the jump parameters remain constant. 

Application to the Three-Factor Model: 

For the three-factor model, the connection between the transform function and its use 
to find the forward prices is as follows: 
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P= f(t) + exp t (X, + --, + y, ) 
dX, =- (A, + k, X) dt + a., d Wx* 

de, =1C, 
2 dt + a, dW, * P, * = P. -A, 

(4.46) 

2 
dY, = -k 2 Y, dt +J (p, a., ) dq (1) 

where the two Brownian Motions, W., and Wx are correlated with a constant 

corrclation cocfficicnt, 

Therefore, 

E, * (P, - f(T» = e"E, * (e" exp (X, + c� + Y, » = e-Vx (u, X� t, T) 
(4.47) 

= e"' exp(a(t) + ßý (t) oX+ß, (t) oY+ß, (t) o e) 

Where u =(l, 1,1), and X= (X, c, Y). 

Solving the Ordinary Equations we get: 

aß' 
= kß, and ß, (T) =1 =* ß, (t) = e, ' Ft (4.48) 

Hence ß, (t) = e-hrl ß, (t) ß3 (t) 

1 
-2. b «ß2(t» + de , 

(7-3) (fli 
2 

(ek(T-s)C2 
+C2) -1 ek(T-s) + 

a(t)=fr+(4-pt3; ax)el' -(P'. 22x, 2 CXP(Pl 

Hence using equation (4.43), and the results from (4.44), we have the expected value 

of the spot, under the risk neutral probability measure: 

E*(P, )=f(t)+exp e -k, tXo 
+ co + Ye -k2' +I exp p, e -k2i + 

la 
2e "2k2S -1 ds+A, 

I 

0 
J( 

0 
A, =1 

0'2 (I-e . 2k, t 
AX ý Par 

roýX (1 (4.49) 
2 2k, k, 
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5. OPTION PRICING ANATOMY OF THE ELECTRICITY 
MODELS 

5.1 Introduction 

The previous chapter introduced a spike, a regime switching spike and a Three-Factor 

spike model that are able to describe the spot price processes of electricity in Nord 

Pool. We provided closed-from solutions for forward contracts and we then examined 

their fit on the forward term structure. We also looked at the spot price behaviour 

using simulations and derived their first four moments that explain the spot price 

distribution. The obvious next step is therefore to discuss the intuition and 

implications behind each model in terms of option pricing. 

In this chapter we are going to discuss the properties of European and Asian Options 

using the reduced form models of the previous chapters. In order to do so we first 

provide semi-closed form solutions, using the transform analysis by Duffic ct al 

(2000) for European Options, which are particularly useful in the option pricing 

theory for traders and analysts in order to get quick results and make conclusions on 
how to trade volatility. We discuss the properties of each model in terms of pricing 
European Options, by looking at the Implied Volatility Skews and performing 

sensitivity analyses, which we call the pricing anatomy of European option prices. 

The pricing anatomy of European option prices is significant, as they have a direct 

impact on the pricing of products used in the market. In this setting it is important for 

market practitioners to use option pricing models that are able to price the most 

significant risks that exist in the market. Thus the aim of this chapter is to provide the 

potential usefulness of the pricing model introduced in the earlier chapter, in terms of 

pricing all of the above products. When it comes down to choosing among different 

models, it is important to have an idea of their similarities and differences particularly 
in terms of pricing and hedging. What are the implications of choosing the spike 

model rather than the mean-reverting model? Can we provide some kind of closed- 
form solutions by making the model more complex and introducing jumps? Which 

parameters play the most crucial part in order to fit the volatility structure across 
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strike prices and maturities? Does the regime switching spike model give more 
intuitive prices than the plain spike model? The intuition for European option prices is 

demonstrated in terms of implied model volatilities, as traders make their decisions in 

the options market, in terms of Black and Scholes implied volatilities. In this way we 

can explore the volatility shape implied by the model and thus understand what kind 

of structure it can capture in the real market. Asian options are then examined in a 

separate section. The main questions stemming in the Asian option pricing section are 
to give intuitive explanations on the sensitivity of the products by changing different 

parameters. This is of paramount importance to market practitioners, who are very 

much interested on the factors that drive the value and the moneyness of an option, 

when engaged in trading these products. For example, questions such as, do the jumps 

affect Asian options traded in the market or are they averaged out, or what does the 

speed of mean reversion imply, are important for traders in the market. As a priori we 

would expect the prices of Asian options to increase when increasing the equilibrium 
level, difftisive volatility, jump intensity, jump size mean and volatility. Interestingly 

our analysis shows that this is not always the case. The effect of the jump size 
becomes pronounced only when the jump intensity is high and more particularly when 

the jump speed of mean reversion is low. Moreover, the effect of the equilibrium price 
depends strongly on the speed of the mean reversion of the diffusive component. The 

reasons and the intuition behind these results are examined in the subsequent sections. 

Thus the chapter is formed as follows: the following section describes the use of 
European in the electricity markets. Section 3 reviews the theory of option pricing and 
derives closed and semi-closed form solutions for the mean-reverting and the spike 

model. Section 4 explains the theory of implied volatility and model implied 

volatility. Section 5 displays results on implied volatilities by changing different 

model parameters and giving intuitive explanations in terms of the moments of the 

spot price distribution. Section 6 examines the different option prices generated from 

the four different models examined in Chapter 4. Section 7 explains the use of Asian 

options, the problems faced in their pricing and conducts a sensitivity analysis based 

on the spike model. Finally, Section 8 concludes the chapter. 
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5.2 Use of Options in Power Markets 

In power markets, individual options on the spot are rarely used. The market relies 

more on structured products such as Caps, Floors or Collars. Caps provide price 

protection for the buyer above a predetermined level, which is called the cap price, 

for a predetermined period of time. For example, within a period IT, 
IT 21 9 : -- T 9'-9 R ý-- T 

the owner of a Cap has each day (hour or any other time interval) the right to exercise 

a European call option with strike price, K. A Floor on the other hand, guarantees the 

minimum price that will be paid or received at a predetermined level, called thefloor 

price. In other words a Floor is structured such that the holder has the right at each 

time interval Tj within the dates T, to T2, to exercise a European Put option with strike 

price K. A Collar is a combination of a long position in a Cap and a short position in a 
Floor. All three structured products are settled for a predetermined quantity or 

volume. 

As an example, consider an electricity utility, which needs additional power at times 

of higher demand e. g. in February when the probability of extreme price movements 
is high. Since the utility does not know exactly when the load will be high, it may 

need a structured product to fit its need and hedge the risks. One possibility for the 

utility is to buy a portfolio of call options, which gives the right but not the obligation, 
to buy electricity every day (or even hour) within the delivery period, with a capacity 

of IOOMW at a fixed cap price of 100 NOK/MWh. On the other hand the customer 
demanding protection from high electricity prices might be unwilling to incur the 

significant costs of a cap. If the customer is willing to sacrifice some possible gain 
from low prices to pay for the protection, the simple solution is to buy a collar and 
thus use the premium on the short floor to pay for the cap protection. 

Since the cap is a portfolio of call options for a predetennined strike price and dates 

=T its valuation is thus the sum of the price of those call options: (TI ý-- rl 9'*"9 rn 21 9 

n 

V,, 
ý, =Z Call (t, 7-,, P, K EE*[e -r(?, -t) max(Pr -KgO)] 

J. .I, 
)= 

j"I j 
(5.1) 
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,,,, 
K) is the call price at time t with maturity at Tj , exercise price K where Call (t,, r,, P 

and interest rate r, in the risk-neutral world. Similarly, a floor is a portfolio of 

European put options Put (t, -r,, P,,, K) with strike prices K equal to the floor level 

and maturity dates equal to the settlement datesrj of the floor. 

Put (t, 7-,, P,., K E* [c-"(T'-') 
max (K 

- P, , 0)] 
ij 

(5.2) 
ji 

Moreover many utilities have introduced interruptible or curtailment service contracts 

which aim to supply electricity at reduced cost by taking advantage of customer's 
flexibility to manage their load, and thus allow the suppliers to provide electricity to 

those costumers who are willing to pay the high prices in times of scarcity. Gcndra 

(1994) introduces the concept of Callable Forwards in which the costumer takes a 
long position in a forward contract and a short position in a call option. Thus the 

supplier benefits by earning the possibility of calling off the supply in case the price 

of electricity spikes at expiry. Of course this is done by providing a discount on the 
forward, which the customer holds, by paying him the price of the option. The strike 

price of the option, K, is agreed to be equal to the shortage cost a potential user faces 

in case of a load-curtailment. Furthermore, electricity call and put options are the 

most effective tools available to merchant power plants and power marketers for 

hedging price risk because electricity generation capacities can be essentially viewed 

as call options on electricity, particularly when generation costs are fixed. 
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5.3 The Perfect unrealistic Black & Scholes World 

5.3.1 The Black and Scholes Models 

In their seminal paper Black and Scholcs (1973) (BS) assumed that the process of 

tradable asset, P, follows a Geometric Brownian Motion with constant Volatility and 

thus they derived a closcd-form solution for European Option Prices under the risk 

neutral measure: 

call P. N (d. ) - Ke-"'N (d, ) (5.3) 

put Ke-"N (-d, ) - P. N (-d, ) (5.4) 

d, 
ln(P. IK)+(r+o, '12)T 

where 
dý 

In (P. / K) + (r - a'l 2) T=d, 
- aV-T 

av-T 

Note that the first term in (5.3), PON(dj), denotes the expected value of the discounted 

spot price at maturity T, in case it is above the discounted strike price K, in the risk- 

neutral world (Hull 2003). The same of course stands for the second term in (5.4), 

PoN(-dj), but this time it is for the case the discounted spot price at maturity is below 

the strike price. N(dj) and N(-dj) are also called the deltas and give an indication of 
how much of the underlying is needed, in order to form a portfolio of the underlying 

and the option, which is immune to small movements from the spot. On the other 
hand, the terms N(d2) and N(-d2), denote the risk-neutral probability that the options 
are exercised at maturity. Another important point worth mentioning, is that as the 

present spot price P0 tends to infinity, the ratio In(PoIK) tends to infinity, and thus 
X(di) and N(d2) equal to one and the call option has a value of Po-&-"TK, where as the 

put becomes zero. The volatility parameter has a similar effect, only this time as 
cr--+oo, then N(di)--+] and N(d2)--+O, thus the value of the call approaches the current 
value of the spot, and the value of the put tends to the discounted value of the exercise 
price. Thus we can see that the volatility parameter plays a vital role in the BS 

equation. However it is an unknown parameter, which sometimes can be extracted 
from market data on options whenever available and liquidity is satisfactory, and if 
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not, we need to calibrate it from the time series of the sPot, as it is the case in the 

electricity market. 

The next obvious step of course is to discuss whether the BS model is appropriate for 

option pricing in the electricity market. In equations (5.3) and (5.4), the volatility is 

assumed to be constant across Strike prices (K) and Maturities. There are two main 
disadvantages when using the Geometric Brownian Motion to model Electricity 

prices, which are mainly caused by the non-storable nature of the commodity. First, 

electricity prices as discussed in the previous chapters mean revert to a seasonal 

equilibrium level, and second is their spiky behaviour. In what follows we will 

explain the consequences in Option pricing when mean reversion and spikes are used 

to describe the stochastic behaviour of the underlying, instead of the GBM. 

5.3.2 Option Pricing under Seasonality and Mean Reversion 

As we know electricity prices are mean-reverting to an equilibrium value. 
Furthermore it has been shown in the market that forward prices become less and less 

volatile the further their time to maturity is, which is due to mean reversion. Thus the 

Volatility Term Structure is decreasing with time to maturity, a phenomenon known 

as the Samuelson effect (1965), since for non-storable commodities such as the 

electricity any new information in the market will have a more prominent effect on 
derivative prices that are closer to maturity. This fact can be captured correctly by the 

seasonal mean-reverting model where the spot price is modelled as follows: 

P, =f (t) + exp(X, ) 

dX, =(k#-X, 
))dt+axdW; 

where c-=. 6-Axlký (5.5) 

and thus the call and put prices are derived in Appendix 5.9.1: 

call=e-"[F(0, T, X. )N(d, )-DK N(d, )] (5.6) 

put = e` [DK N(-d. ) -F (0, T, X. ) N(-d, )] (5.7) 
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d1= 

where 
I(I-e -2kjF 

I 

2k. 

e-'J4T d� = d, 
xý 2k, 

(5.8) 

where DK=(K-f(T)) denotes the deseasonalised strike price. The reason we use the 

deseasonalised strike price follows from the fact that the seasonality component is the 

deterministic part of the spot and can thus be subtracted directly from the strike 

price 31 
. Thus in a model where there is seasonality the moneyness of the option is 

directly affected not only by the strike price but also from seasonality. Option pricing 
formulas (5.6) and (5.7) are very similar to the BS only this time instead of the spot 

price, we have the discounted deseasonalised forward price F(OTXo) and a standard 
deviation that converges faster to a constant value with k, and T as noted by the 

standard deviation equation rather than increasing continuously with 
2kj 

time to maturity as it is assumed in the BS formula, where we have a, FT-. In this 

way if we calculate the price of an option using equation (5.6), and then use the BS 

equation (5.3) and find the value of a such that the BS option price matches that given 
by equation (5.6), we will see that the implied volatility parameter, er, will be 

decreasing with time to maturity, as it will be shown in later sections. 

5.3.3 Option Priciniz tinder the &2ike Model 

As discussed earlier electricity prices are spiking and thus reach levels that are not 
consistent with a Normal Distribution. That has a direct impact on Option Prices, 

especially for OTM call options which now have higher probability to end in the 

money than what the BS Model might predict. This is what causes the implied 

volatility from market prices in the BS model not to be constant across strike prices 
but to have a smile or smirk shape as it will be shown in the next section. 

31 See Appendix 5.9.1 for proof. 

rr 
F(0, T, X. ) 2 

In e- 
)+(rT+f'-(I-e-4T) 

DK 4k. 
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To calculate the value of the European Option in the risk-neutral world as in (5.3) and 

(5.4), one has to know the risk neutral distribution. In the BS, the risk neutral density 

is lognormal, and the expectation of the normalised option payoff can easily be 

calculated. In more sophisticated models, such as the mean-reverting jump diffusion 

model of Clewlow and Strickland (1999), there is no closed-forin solution for the risk- 

neutral density. One can use the Transform Analysis, by Duffie et al (2000) and 
implement the Fourier inversion theorem where numerical integration of the 

imaginary part of complex function is performed. This kind of solution is semi-closed 

since numerical integration has to be performed to calculate the density function. Note 

however that even in the BS world, as in any other model that has closed-form. 

solutions for option prices, the calculation of the risk-neutral density function also 
involves numerical integration of the area under the Normal Distribution, which can 

nevertheless be easily calculated using software packages and statistical tables. Now 

recall the spike model discussed in Chapter 4: 

P, =f (t) + exp(X, + Y, ) 

dX, = 
(ký (s 

- X, ) -Ax 
) dt + u, dW; 

(5.9) 
dY, = -k, Ydt + J(juji, erii )dq (11) 

To give an explanation on how one can use the transform analysis, to derive semi- 

closed form solutions for European option prices, as it is done by Duffle et al (2000), 

let us start by defining G,, b(y; ) as the price of a security paying e" when at maturity 
bXT :5y, where XT is a vector of the state variables that describe the price process 

and in our example X, = [X,,, Y Also note that the price of a European call is 

given as follows: 

Call= E* [e-(P, 
-K)+ / -1; 

] 
= E* [&-"T (e"x" -DK)+ / . 1; ] 

= E* [&-'e I. X; ri 
IIXTzbXDK)I. 

Fo]-DK E*[e-'*T'I'XT2: 
ln(DK) 

/ 
'FO] 

(5.10) 

=G,. -,, 
(-In(DK); X,, T, X)-DK Go,, 

_,, 
(-In(DK); XT, TX) 
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where X captures both the distribution of the vector prices X as well as the effects of 

discounting and determines the transform function in the DPS (2000), P and 0' 

denote 2x] transpose vectors of ones and zeros respectively. What equation (5.10) 

implies is that the call option payoff is In-The-Money in case the deseasonalised spot 

prices XT+YT>ln(DK) or alternatively -X, -Yr<-In(DK). Also denotev = [v, v] which is 

the variable defining the Fourier Transform, Duffic et al (2000) proved that: 

I Im [V)ll (I ý- i-v, X, 0, T) e-ita(DK)v] 
ln(DK); X, T, X) (F) - 

7r 
fv 

--=! dv 

= 
e-rT F(O, T, Xo) I, lm['P- x (I'- i-v, X, 0, T) e-"n(DK)' Lv 

2 7r v 

Gý�. 
ox(ot) , lm[01(-ji-v, X, 0, T) eý-iln(DK)v] 

-�(-In(DK); 
X, T, x)=--- f- ----dv 2 Ir v (5.12) 

lm[ox(-ivX, 0, T)e-"n(DK)v 
---dv 2 7r v 

Where V)I(u, X, O, T)is the transform function derived in the previous chapter, 

i= %r-_I and Im[. ] is the imaginary part of a complex number. Note that the intuition 

behind the functions Gl-. 
-I, 

(7n(-DK); X, T, Z) and Go-, 
-I, 

(In(-DK); X, T, Z) is exactly 

the same as in the BS model for PoN(dj) and X(d2). Thus GI -,. I . (7n(-DK); X, T,, X) is 

the expected value of the discounted deaseasonalised spot price, e-xp(X+Y), at 

maturity T, in case it is above the discounted deseasonalised strike price DK, in the 

risk-neutral world. Similarly, Go., 
-,, 

(7n(-DK); X, T, Z) is the risk-neutral probability 

that the option will be ITM at maturity. 

The numerical integration technique used is the Adaptive Simpson Quadrature. The 

main advantage of the adaptive Simpson Quadrature rule for numerical integration is 

that it is very accurate and fast, as it divides the area of interest in the integration into 

smaller areas (or intervals), and uses more points in the areas where they are needed, 

and less in the areas that are not needed, since the number of intervals needed does 

not depend on the behaviour of the integrated function everywere, but on the points 
were the function behaves worst. 
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5.4 Option Pricin-c and Moments of the Distribution 

In this section we will discuss the impact of the model choice and of its parameters, 

on the implied volatility smile produced from the BS formula. It turns out that in this 

context the moments of the risk-neutral distribution play an important role. We will 
therefore often proceed in two steps, in that we first analyse the impact of the 

parameters and the model choice on the moments of the risk-neutral distribution, i. e. 
variance, skewness and kurtosis, and then consider the impact of these moments on 
the smile. Note that the term "smile" refers to the shape of the implied volatilities, 

with respect to the moneyness of the option, where ITM and OTM implied volatilities 

are higher than ATM. 

5.4.1 The effect of Moments on Black & Scholes Implied Volatilities 

We start by considering the impact of an increase in the variance, while the mean 
remains constant in the BS model. As a result, the probability mass is shifted from 

returns close to the ccntre of the distribution to returns further in the tails, in other 
words the distribution curve becomes wider. Intuitively, this implies in terms of 

options pricing that for all options along the strike price axis the probability of 

positive payoff increases, which leads to an upward shift of the overall level of the 

smile curve. 

Turning now to the skewness, this determines the relation between the prices of OTM 

puts and OTM calls. Assuming that the mean and the variance of the spot price under 
the risk neutral measure remain constant, consider a decrease in skewness from 

normality-, the probability mass is then shifted from high prices to very low priceS32. 
The prices of OTM calls, which pay off for high spot prices, thus decrease, and the 

prices of OTM puts, which have a payoff for low spot prices, increase, since there is a 
greater area under the curve at those points. For a negative skewness, we therefore 
expect the implied volatility (IV) of OTM puts to be larger than the IV of OTM calls, 
since the probability of the underlying price reaching low prices is higher than that 

32 In this section we assume constant interest rates, alternatively the interest rate risk could be hedged using the bond market. 
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implied by the BS model, hence we should expect to see a downward sloping smile as 

shown by Branger (2004)33. 

Turning now into the kurtosis, in statistical terms it depends on the fourth moment of 

the distribution, and measures the fatness of the tails. If the kurtosis increases, there is 

more probability mass in the tails of the distribution, so very low and very high spot 

prices both have a higher probability of occurring when compared to the normal 
distribution. In option pricing terms, the kurtosis is the main driver of the curvature 

of the smile. Similarly to the other cases, we assume that the mean, the variance and 

the skewness of the distribution are given. Then, increasing the kurtosis directly 

implies higher probability of extreme prices, and thus higher prices for OTM puts and 
OTM calls. In order to hedge against these extreme events, one can form a static 

portfolio of long positions comprising a continuum of calls with strike prices from 

zero to infinity, as shown by Caff and Madan (2001). 

As stated earlier, since the electricity market is non-storable, the sources of risks in 

the market are more than the number of traded securities, thus our hedging 

possibilities are very limited and the market is incomplete. Of course one can try and 
use contingent claims on the same underlying, and thus complete the market. In the 

spike model, we need one instrument to hedge the diffusive normal risk generated by 

the normal state variable X, plus a number of other derivatives which has to be equal 
to the number of possible jumps sizes generated from the spike variable Y. The first is 

possible since we can use the Forward market. However for Y, the jump sizes are 
drawn out from a continuous distribution and thus we need a continuum of claims to 

complete the market. In Appendix 5.9.4, we illustrate how a hedging portfolio may be 

constructed in the electricity market and the problem of incompleteness when the 

underlying process involves jumps. From the practical point of view, this is not 
feasible since the forward options market in Nord Pool is not liquid, especially across 
all strikes as shown by Bjalmarsson (2003). In addition as noted by Eydeland et al 
(2003), the liquidity is particularly very low for OTM options in the electricity 

33 Note that the term 'downward sloping smile' does not imply a monotonicity of the implied volatility function in a rigorous mathematical sense. 
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markets, thus restricting the possibility of trading the volatility skew. This is a 

surprising finding given the high volatility of the market. 

5.4.2 The eyect ofmoments of the Spike Model 

As shown in the earlier sections, any jump-diffbsion model can generate a skewed 

risk-neutral distribution with excess kurtosis. Lets first recall the theoretical variance 

of daily returns (for dt = 11365), derived in Chapter 4, using the characteristic 
ftinction of the dcseasonaliscd spot process (as in Das, 2001) using the spike model of 

equation (5.9): 

(I -e 
-2k,, &# ) (I 

-e 
-2k2AI 

Variance =a -+ I (A + ai x 2k, r) 2k 2 

The first part of the variance is generated by the normal diff-usive variable X, and the 

second from the spike variable Y, we call the latter part the jumpiness, and it is this 

part that has the crucial impact on the smile. Also as shown in Chapter 4, the 

theoretical skewness and kurtosis of the returns implied from the model are: 

1 
(j_e-3k2Aj)( 3 

Skewness = 
3k , 

Aj 3pa., 
(5.14) 

Variance 3/2 

I (I - e'*"') (M, '+ 3u. ' ,+ 6o, ýjtj') 
Kurtosis = 

4k I 
Variance' 

+3 (5.15) 

where the Variance is given in equation (5.13). 

In the previous chapter we discussed that, as the mean of the jump size, P,, is the only 
one that can take negative values, the sign of the skewness of the distribution is 
determined solely by that parameter. On the other hand we also showed that 
increasing the speed of mean reversion especially for jumps, k2, the value of the 

moments decays. Furthermore, since p, is the main determinant of the skewness, the 

jump size volatility, a, and frequency, 1, also play another vital role in determining the 
size of the skewness (not the sign) and kurtosis of the distribution. Now it remains to 
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show what their roles are in option pricing and whether they can actually give 
derivative traders any intuition with regards to pricing and trading options. 

5.5 Theorv and Numerical examination of model Implied Volatilities 

5.5.1 Model IWIied Volatili 

The following analysis is based on model's implied volatilities from the BS closed- 
form solution since it is the fundamental tool for option pricing and market 

participants may use it for pricing and hcdging. For example most of the time the 

traders use the BS model to back out the implied volatilities using prices from the 

market. The inconsistency of the BS model is the assumption that the volatility is 

constant across strike prices and time to maturity. Using a more sophisticated model, 

such as jump diffusion, may yield implied volatilities which are consistent with those 

implied from the market. However in the current setting, an empirical analysis is not 
feasible since the options market in the Nord Pool exchange is illiquid and most 

contracts are traded OTC. Nevertheless the current analysis will give valuable insight 

behind the different models proposed, the shape of volatility we should anticipate to 

fit in the market using these specific models, and whether these can price all the risks 

an option trader faces in the electricity market. Branger (2004) has conducted a 

similar analysis to ours using Merton's jump diffusion model and Heston's stochastic 

volatility model, to price options in the stock market. However, to the best of our 
knowledge, this study has not been implemented before in the power market. 

Therefore, despite the shortcomings, the market still relies on BS, so we will be using 
BS as a benchmark to extract model implied volatilities. However before we start the 

analysis let us first explain what the term model implied volatilities means. This is the 

anticipated volatility of prices, such that the BS option price in (53) and (5.4) 

matches the option price given by the spike model (or any other model not assuming a 
GBM process). More specifically, under the log-normality condition, an option price 
is a value function of the current spot price P, strike K, the current time I in which the 

option is evaluated, exercise time T, interest rate r, and finally, the volatility 
parameter a. 
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V os = K, t, T, r, o) (5.16) C; - 
fBs (po, 

The parameter a reflects the model's consensus on the anticipated random behaviour 

of prices on the interval It, T], i. e. from the current date t to the options maturity date 

T. Now for any given option price from the model V", such as the MR, the 
option 

coffesponding implied volatility alP"d is defined as the value pammeter a, such that: 

v model f bwplied 

Oplaw gs 
(PO, K, t, T, r, a (5.17) 

Applying standard techniques, such as Newton's method, to solve equation (5.17), we 

obtain the implied volatility 

a 
implied 

= a(I, T, X, P., r, V, "td) 

5.5.2 Numerical examination ofmodel implied Volatilities 

The numerical examples use a base case where we have chosen the parameters such 

that we see a pronounced smile for option prices with times to maturity of 0.5,1 and 2 

months, and such that the jumpiness of the daily spot return is equal to 50%. This way 

we can have a clearer view on the implied volatilities, and thus understand the major 

contribution of each parameter. Thus for the base case scenario, the parameters 

chosen are shown in Table 5.1. 

In this section we do not want to compare the option prices across different seasons of 
the year, since we are interested on the implied volatilities, which are affected by the 

parameters of the stochastic processes, i. e. Xand Y. As we see from equation (5.6) and 
(5.7), the deterministic factor of seasonalityf(T) affects directly the moneyness of the 

option. Thus for the moment we assume that there is no deterministic seasonality, f(t). 
However, as shown by the closed-form solutions of the moments for the spike model 
in Chapter 4, the jump parameters 1. p, and a, are the main drivers that affect the 

distribution of the underlying such as volatility, skewness and kurtosis. The impact of 
these factors is thus examined in the following section. 
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Table 5.1: Parameter Values used in the spike model for anaNsis on European 
call options Implied Volatilities 

The table shows the parameters' value of the spike model in equation (5.9), used for the estimation of European call prices in the 
base case scenario. 

Model 

Parameters 

Parameters 

values 

k, 
X0 -, -r 

) 5.137 

ax 0.5 

k, 3 

YO 0 

1 5.5 

Pi 0.1 

aj 0.283 

k2 290 

r 5% 
Note: See equation (5.9) for the definition of the variables 

Therefore, in this section we analyse the impact that each factor has on Implied 

Volatilities by considering each factor separately, with the following order. First we 

examine the effect of mean reversion on implied volatilities, by examining the MR 

model. Then we turn into the spike model, by first looking at the impact of time to 

maturity on the implied volatility smile using the base case scenario. Next, we look at 

the impact of the mean jump size, p, on the volatility skew. Following that, we 

explore the comparative effect of the jump intensity, 1, against the jump volatility cr.,, 

and explore which parameters affects more significantly the curvature of the volatility 

smile. 
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5.5.2.1 Volatility skew in Mean Reversion 

Before we start exploring the implied volatilities of the spike model, lets first have an 
insight on how the implied volatilities of a pure mean-reverting model, such as in 

equation (5.5), look like when the diffusive volatility, ax is 100%, all jump parameters 

set to zero and the remaining parameters are as in Table 5.1. In this analysis we 

consider short-term to maturity European options (15 days), and three different 

equilibrium levels of X; The first case is when the risk neutral equilibrium level is 

equal to the current spot price i. e. exp 
(e 

PO; the second is the case where the 

equilibrium level is below the current spot price, and finally in the third case the 

equilibrium level is above the spot price 34 
. 

Figure 5.1 and Figure 5.2 present the implied volatilities of the MR model for call and 

put options, respectively, where moneyness is defined as the ratio K/P. Thus looking 

at both figures from lcft to right, we are moving from ITM to OTM call options, and 
the opposite is true for put options (i. e. from OTM to ITM). Starting with the call 

option, we can note that even a pure mean-reverting model displays some skewness. 
This is due to the mean reversion of prices, since if prices are mean-revcrting they do 

not deviate substantially from their mean. This implies that the volatility must be 

decreasing when moving from ITM to OTM call options. In the Base and High cases 

where the risk-neutral mean is equal and above the current spot price, mean reversion 
is good for ITM call options, since it pulls prices towards the mean and thus prices 
will not be able to fall to very low levels, as there is a force pulling the prices above 
the strike most of the time. However the opposite is true for OTM call options; the 

mean reversion coefficient does not allow prices to deviate from their mean 
substantially and this has the implication that, if the mean is below the strike price, the 

probability of the option ending ITM is reduced. This results in the skew evident in 

the graph. Turning next to the Low case, where the equilibrium level is below the 

current spot price, we see an increasing volatility as strike prices increase. This 

suggests that prices are now pulled towards lower levels due to mean reversion, and 
thus ITM calls are cheaper than what the BS model would have predicted. However 
34 The second case corresponds to the risk-neutral equilibrium level in the regime switching spike model when the water level in 
the reservoirs is above its seasonal mean, and thus the risk-neutral equilibrium level is 4.91. Conversely, the third case 
corresponds to the case when the water level in the reservoirs is below its seasonal mean, and thus the risk-neutral equilibrium level in the regime switching spike model is 5.51. 
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OTM options are not really affected by this since they have already a low probability 

of ending ITM due to the speed of mean reversion as the previous results showed. 
Similar results are observed in the case of put options, which are shown in Figure 5.2, 

where the implied model volatilities display exactly the opposite image from that of 

call options. Thus the speed of mean reversion and the equilibrium level play a 

critical part on the implied volatility skew. 

Figure 5.1: Implied volatility of mean-revertinp- model for European Cal 
Options 

The figure shows the implied Nolatilitics, for Furopean Call Options, of the MR model across different strike prices (Moncyness), 
using different equilibrium levels. The Base case corresponds to the cases when the risk neutral equilibrium level ofX is equal to 
the current value of X, the Low and High equilibrium cases correspond to cases when the risk neutral equilibrium level is below 
and above the current value of X. 
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Figure 5-2: Implied volatility of mean-revertinp- model for European Put Options 

The figure shows the implied Nolatilifies, for European Put Options, ofthe MR model across different strike prices (Moncyncss). 
using different equilibrium leýels. The Base case corresponds to the cases %Nhen the risk neutral equilibrium level ofX is equal to 
the current value of X, the Low and High equilibrium cases correspond to cases when the risk neutral equilibrium level is below 
and above the current value of X. 
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5.5.2.2 Volatility smile and Time to Maturity 

Figure 5.3 compares the impact of time to maturity in the spike model. First thing to 

note is the fact that as the time to maturity increases, implied volatilities become 

lower, which is consistent with the Samuelson Hypothesis and depends on the speed 

of mean reversion, kI. This occurs because the BS model implies that the variance of 

the spot prices should increase with time to maturity, where as the variance equation 

in (5.13) implies that the variability of the spot prices in the future converges to a 

constant value. Another way to explain this is to say that the volatility of the forward 

prices decreases with time to maturity. This is also an intuitive result for the 

contribution of the spikes in the model. We know that the speed of mean reversion in 

the spikes is much higher than that in the normal factor X. Thus the contribution to the 

volatility coming from the spikes is significantly lower than that of the non-nal 

process, the longer the maturity of the option. On the other hand, for short dated 

options (i. e. 15 days to maturity) the impact of jumps is more pronounced. From this 

point and onwards the graphs refer to call options, since similar conclusions can be 

made for both put and call options as we saw in the previous analysis. 
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Figure 5.3: Base case scenario of implied volatility skew from the spike model 
with time to maturity of 15 davs, I and 2 months for European Call Options. 

The figure shows the implied ý, olatilities, for European Call Options, of the Spike model across different strike prices 
(Moneyness). using different maturities (15 days, I and 2 months). and using the Base Case parameters. 

1000% 

90%0 

80% 

70% 

60% 

50% 

40% 

30% 1 
75% 80% 85% 90% 95% 100% 105% 110% 115% 120% 125% 

Moneyness % (K/P) 

15 Days --e- 1 -Month --a. - 2-Month 

in a jump diffusion model such as Merton (1976), with positive mean jump size we 

would expect OTM call options to have higher implied volatilities than ATM and 

ITM options. However this is not generally the case when mean reversion is included 

in the model. The speed of mean reversion does not allow prices to deviate from the 

equilibrium level of 170.20 NOK/MWh 35 
. Thus the probability of OTM calls ending 

up ITM is significantly reduced the stronger the speed of mean reversion, compared to 

the GBM model. On the other hand, prices cannot go to very low levels as well due to 

mean reversion again, thus ITM call options have a higher probability of ending way 

ITM than what the GBM might allow. Thus in a classical mean reversion model we 

should see implied volatilities, which decrease in an exponential fashion with strike 

prices, thus producing a negative skew as shown earlier. 

Focusing now on the skewness and kurtosis, it is evident from Figure 5.3 that there is 

a pronounced smile for short-terrn options, however as the time to maturity increases 

the smile flattens out particularly for OTM options 36 
. This pattern of large differences 

in the smile for different times to maturity and very steep smile for short times to 

"Since the risk-neutral equilibrium level of X is 5.137, thus exp(5.137)-170.20. 
" See Branger (2004) for evidence on how the smile flattens for long maturity options, when using Merton (1976) model. 
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maturity is consistent with a jump diffusion model. The intuitive reason for the 

significant impact of time to maturity in the spike model can be found by looking at 

the skewness and kurtosis of the risk neutral distribution in equations (5.14) and 

(5.15). Both moments decrease with time to maturity and speed of mean reversion, 

and ultimately the moments go to zero for long enough expiration dates (3 for 

kurtosis). However as shown by Rebonato (2004), to still have a pronounced smile for 

long dated options, it is better to use a stochastic volatility model as in Heston (1993). 

Consequently, in the ensuing analysis we are going to focus mainly on the very short- 

term (0.5 months) options, as the smile is more pronounced at shorter maturities and 

can give us clearer results for interpretation and discussion. 

5.5.2.3 Volatility smile and mean Jump Size 

As explained earlier the sign of skewness depends on the sign of the expected jumps 

E [Jdq(l)l in log-returns, a fact that is depicted in Figure 5.4. If ", is negative, the 

volatility smile seems to be upward slopping when moving from ITM to ATM call 

options and then becomes relatively flat. The effect seems to be very similar to that 

produced by the case of low equilibrium level in Figure 5.1. However in the current 

scenario option prices are not affected by the fact that the mean reversion pulls spot 

prices to lower equilibrium values but rather by the fact that there is a higher 

probability, than that predicted from a normal distribution, for prices to reach extreme 
low levels. It is worth noting that the pattern evidenced here is the opposite of what 

would have been predicted using Merton's (1976) model. To illustrate this, consider 

the effect the equilibrium level has on call option prices. The speed of mean reversion 

pulls prices towards the equilibrium level which, in the base case considered here, is 

higher than the exercise price for ITM call options and lower than the exercise price 
for OTM call options. Thus prices cannot deviate from their mean substantially and 
that benefits mainly ITM call options, since OTM options have less probability of 
being exercised. Now if we allow for extreme negative shocks, OTM options are not 

so much affected since mean reversion has already reduced their probability of being 

exercised and there is enough certainty that they will end OTM. For ITM options on 
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the other hand, options from the point where they benefited from mean reversion and 

there was high probability that they would end ITM, the negative jumps reduce 

substantially this likelihood, and thus there is a higher probability that they will end 

OTM. 

Therefore in the case of negative jumps, the probability mass is shifted to much lower 

spot prices, thus reducing the probability of the call option ending ITM. Of course 

when the expected jump size is positive, we see a more pronounced smile. Here the 

speed of mean reversion creates a pronounced skewness for ITM call options, whose 

value increases with the positive jumps. In addition, positive jumps also allow more 

extreme values to be reached, thus giving a greater probability of OTM options to end 

ITM than what BS might predict, making the smile more pronounced. Comparing the 

two curves, we can note that the implied volatilities from positive expected jump sizes 

are higher due to the greater likelihood of high spot prices, which increases 

probability of the call options ending ITM. 

Figure 5.4: Implied volatility Skew for 15-DaV Call Options with respect to the 
sip-n of mean eump sizeju, 

The figure shows the implied volatilities. for European Call Options with 15 days to maturity, of the Spike model across diffelcin 
strike prices (Moneyness), using positive and negative mean jump sizes, pj, and the remaining parameters being the same as III 
the Bases Case. 
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5.5.2.4 Volatility smile curvature; Jump Intensity versus Jump size volatility 

Our last point is to analyse the impact of jumpiness, which is the contribution of the 

jump component in the total variance as shown in equation (5.13). A jump diffusion 

model can be interpreted as a mixture of a pure jump process without any diffusive 

component, as in the spike variable Y, and a diffusive process such as a GBM or a 

mean reversion. The issue is then to examine the impact of jumpiness on the smile, 

and whether this is affected differently by changing each of the constituent 

components of jumpiness, namely aj and 1. The two extreme cases are when the 

jumpiness is zero and the implied volatilities for OTM options becomes flat, and 

when the jumpiness is one, and the smile has the maximum curvature. Figure 5.5 and 

Figure 5.6 display the implied model volatilities where the jumpiness, as a ratio of the 

total volatility given by equation (5.13), is increased to levels of 10%, 50%, 75% and 

90%, by increasing the jump size volatility, cr.,, for options that are 0.5 and 2 months 

to maturity. In both cases we see that the smile becomes more pronounced as we 

increase jumpiness and the implied volatilities of course are higher, since the overall 

volatility increases (due the increases in jumpiness). The same can be observed in 

Fiaure 5.7 and Fiaure 5.8 when instead we increase the jump intensity, 1, to increase 

the jumpiness. In all cases again the smile becomes significantly less pronounced as 

the time to maturity increases. 
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Fip-ure 5.5: Implied Volatility Skew for 15-Day European Call Options for 
different levels of eumpiness due to changes in Jump size volatifiltv a 

The figure sho,, -., s the implied %olati lit ies. for F uropean Cal I Options NNith 15 days to maturity, of the Spike model across different 
strike prices (Moneyness), by changing the contribution ot'jumpiness to the total variance, with respect to ai and all other 
parameters staying the same as in the Base Case. 
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Fip-ure 5.6: Implied Volatilitv Skew for 2-Months Eurot)ean Call Ot)tions for 
different levels of *u piness due to chanp-es in Jump size volatilitv a, 

The figure shows the implied Nolatilities. for Luropcan Call Options Nvith 2 months to maturity, of the Spike niodel across 
different strike prices (Moneyness), by changing the contribution of jumpiness to the total variance. with respect to a., and all 
other parameters staying the same as in the Base Case. 
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Figure 5.7: Implied Volatility Skew for 15-Day European Call Options for 
different levels of *umpiness due to chanaes in Jump intensitv I 

The figure shoN%s the implied %olatilitics. for European Cal I Options with 15 days to maturity, of the Spike model across different 

strike prices (Moncýncss), by changing the contribution of jumpiness to the total variance, with respect to I and all other 
parameters staying the same as in the Base Case. 

150% 

130% 

110% 

90% 

70% 

50% 

30% 
75 % 80% 85% 90% 95% 100% 105% 110% 115% 120% 125% 

Moneyness %(KIP) 

1-10% ý50% -75% -o--90% 

Figure 5.8: Implied VolatilitV Skew for 2-Month European Call Options for 

The figure shows the implied volatilities, for Furopean Call Options with 2 month.,, to luat 
different strike prices (Moneyness), by changing the contribution of jumpiness to the total 
parameters staying the same as in the Base Case. 
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In this example we also note, that when the increase in the contribution of the 
jumpiness is due to increases in jump size volatility, the smile appears to be more 

pronounced than when it is due to the increases in jump arrivals. This fact is also 

evident from Table 5.2, where we report the percentage change in the parameters in 

order to achieve a desired level of jumpiness. We see that as the total contribution of 

the jumpiness increases the percentage change in intensity becomes very large, i. e. 

800% for 90% jumpiness, where as for the jump size'Volatility the percentage change 

is 216%. It seems therefore that the jump size volatility contribution is greater in 

affecting the jumpiness and thus the kurtosis. 

Table 5.2: Percentage change in ZI or I in order to achieve the desired lumpiness 
This table shows the required percentage change in the jump size volatility, vi, or the jump intensity, I compared to the Base Case 
(50% jumpiness) in order to reach the desired level ofjumpiness. 

Jumpiness 10% 25% 50% 75% 90% 
ax 

-99.59% -50-00% 0% 80.28% 216% 
1 

1 -88.89% 1 -66.67% 1 0% 200% 1 800% 

A more appropriate method for assessing whether the smile curvature is affected more 
from the jump size volatility or intensity is to employ the following three scenarios; 
one is the base case using the same parameters as in Table 5.1 where the jumpiness in 

equation (5.13) accounts for 50% of the total variance; in the second case, we 

consider doubling the jump intensity and thus lowering the jump size volatility in 

order to keep the jumpiness at 50% and in the third case we double the jump size 

volatility and lower the jump intensity thus keeping again the jumpiness at 50%. The 

results are presented in Figgre 5.9. 
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Figure 5.9: Implied volatility Skew for 15-Days European Call Options with 
respect to Jump Intensity I and Jump Volatility q/ 

The figure shows the implied Nolati I it ics generated from the spike model. when doubling ei I her the jump size volati I ity or the 
jump intensity, but always keeping (he IcNel ot'jurnpincss at 50", ý. 
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We can see that by doubling the jump intensity 1, the overall level of the implied 

volatilities increases and there is still a pronounced smile, but the slope of the implied 

volatility curves (mainly for OTM call options) is lower than that when doubling (T., 

since for ITM call options the implied volatilities for the double intensity is at higher 

levels, and as we get closer to OTM the implied volatilities from doubling a, 

converge to those of doubling 1. This implies that for an increase in the jump size 

volatility, implied volatilities of OTM options increase more than the implied 

volatilities of ATM and the volatility curve is steeper than when increasing the jump 

intensity. This is also consistent with the analysis shown in Figure 5.5 to Figure 5.8, 

which show a more pronounced smile when the jumpiness level is changed with 

respect to the jump size volatility. Thus by keeping the spot returns variance constant, 
if the jump volatility is reduced and this is offset by an increase in the jump intensity, 

then the excess kurtosis of the distribution is reduced, making the smile flatter. On the 

other hand if an increase in the jump size volatility goes together with a decrease ill 

the jump arrivals, the smile becomes more pronounced due to the increase in the 

kurtosis. Thus from this result we can see how important it is for a model to capture 
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the low intensity high volatility jumps, as it is done using the filtering method of 

estimation, rather than the opposite as the Maximum Likelihood methods do. In all 

cases ITM volatilities are higher again due to mean reversion. Of course we would 

expect similar results for put options; in this case, the shape of the volatility smile is 

exactly the opposite from that of call, but the intuition remains the same. 

5.6 Difference in Pricina European Option when usinje the Spike, Revaime 
Switchinz Spike, Three Factor Spike and Mean-revertinje Models 

In this section we are going to provide a brief description on how to price European 

Calls using the different models proposed in this thesis and also compare the results 

generated from each model. In the previous section we showed how to price European 

Options using the spike model and the mean-reverting model with seasonality. In this 

section we will analyse the difference in European Option Prcing, when using the 

different proposed models of Chapter 4. 

In the Regime-Switching Spike model, the equilibrium levels switch between two 

different regimes; Regime w is when water reservoir levels are above their seasonal 

average and the equilibrium price is low, and Regime d is when water reservoir levels 

are below their seasonal mean in which case we have to rely on more expensive fuel 

generators and thus the equilibrium level is higher. The pricing of European Options 

under the regime-switching spike model has the same intuition as that of the pricing 

of forwards. That is we first calculate two values for the option; one using the 

equilibrium level in Regime d when the water reservoir levels are low, Calld, and 

another using the equilibrium value when we are in Regime w, Call, The formula for 

calculating each of these two separate option values is exactly the same as the one we 

used for the spike model in equation (5.10). Thus under the regime switching model 
the value of the option is the weighted average of the two separate options prices 

using a different equilibrium level, where the weights denote the probability of being 

in their respective states at that specific time in the future when the option expires. 
Thus, a call option for example is given by- 

call = pcalý + pcall, 
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On the other hand when using the Three-Factor Spike model, the pricing formula is 

exactly the same as (5.11) to (5.12), however this time X= [X, Y, 6], P and 0' denote 

RI transpose vectors of ones and zeros respectively and v= [v, v, v] and we used the 

derived transformed function from the previous chapter the same way we did for the 

spike model. 

Returning to the option pricing analysis Fi ggre 5.10 shows the values of European call 

options using the spike model of equation (5.10), for options starting in February with 

a time to maturity of up to 2 years across different strike prices. Seasonality is 

induced both by the deterministic variable f(T) as well as by the jump parameters 

using the same ones calibrated in the previous chapter. From the graph it is very clear 

that seasonality affects directly the option price. For instance, call option prices peak 

at 0.92 and 1.92 years to maturity, which correspond to the months of January when 

electricity demand is at its highest. On the other hand, call option values have some 

sharp drops at maturities of 0.25 and 1.42 years, which correspond to non-working 

days. Excluding seasonality, we see that the price of the option generally increases 

with time to maturity, however seasonality includes some cyclical cffccts as well as 

some non-smoothing patterns due to the change of the jump parameters between 

different seasons or due to the fact that sometimes the option price expires during a 
37 holiday or a weekend 

37 In such cases we saw in the previous chapter that spot prices fall significantly, due to lower demand, and we incorporated this 
in our model using dummy variables. 
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Fip-ure 5.10: European Call Option Price for the Spike Model AcrossTime to 
maturity and Moneyness (including seasonality in both constant and 

parameters) 
[he figure shoAs Ilic price,, ot European Call Opt ions gcncialcd ti, iný II ic pike modc I in equal it in 10). at: ioss ditIcicni lc%c I% 
of montyness (K P) and tinic to maturity. 
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Figure 5.11 shows the call option prices across different times to maturity using tile 

four different models, for both winter jump parameters (13) and jump parameters for 

the other seasons (A), respectively. In this analysis we do not consider tile 

deten-ninistic seasonal variableft7), in order to have a clearer picture of' the cifect of 

time to maturity oil options prices, and the current spot price is assumed to be equal to 

the strike price and the risk neutral equilibrium level, i. e. the option is ATM. We call 

see that the Option prices between panels (A) and (11) are similar. This means that 

even though theJunip parameters are higher during winter than tile rest of* tile seasons, 

these low freqLlCllCy larger price movements do not affect substantially the option 

prices. This is due to the fact that the probability ol'a. 1unip occurring lit a specific (late 

is low, and thus in order for the jumps to play a significant role their frequencies have 

to be much higher, or their speed ofincan reversion has to be lower, so that. junips can 

stay at high levels for longer periods. ]'his is going to be analysed in greater depth at 

the next section where we discuss about Asian options, as well as tile next chapter 

where we look at the extra swing premium. 
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Comparing the properties of the two short-run models, namely the spike and the 

mean-reverting model, the latter produces higher prices for short-term options (i. e. 
T<0.25 years) than the spike model in both cases. So, despite the fact that there may 
be a high probability of spikes, as it is the case in winter, the high degree of mean 

reversion of spikes coupled with, the higher diffusive volatility (167%) in the mean- 

reverting model produces higher prices in the short run. As time to maturity increases, 

both models converge to a constant price and then start dropping slowly. The mean- 

reverting model though seems to decline earlier. The reason why this might be 

happening is due to the fact that as the time to maturity increases, there is a greater 

risk produced by the increments of the Brownian motion (dTO, which has a volatility 

equal to the square root of time. However, mean reversion does not allow prices to 

deviate significantly from their equilibrium level and thus we arrive at a stage where 

the deviation of the spot prices from their mean remains the same. From that point 

onwards though, the discounting effect of the interest rate plays a more critical role 

thus option prices start falling. Therefore, the reason for the mean-reverting model 
declining at a sooner time than the spike model is that the speed of mean reversion in 

the MR model (8.03) is much greater than that of the diffusive component in the spike 

model (2.98). 
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Fi2ure 5.11: European Call Option Prices For Different models, across time to 
maturity with Spike parameters for Spring, Summer, Autumn (A) 

and Winter (B) 
The figures show the option prices generated from the four different models across time to maturity using equations (5.6), (5.10) 
and (5.19), for spike parameters during Spring, Summer. Autumn (A) and Winter (B) respectively. 
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On the other hand looking at the regime-switching model, we see a very intuitive 

result. When we start from Regime d where the water reservoirs are below their 

seasonal level, as time to maturity increases option prices start increasing, up to 

maturities of half a year. From that point onwards, option prices clearly start 

declining. This is happening because from that point onwards, the probability of 

ending at Regime w (thus having more water) increases. Since the equilibrium level of 

Regime w is lower than that of Regime d, and correspondingly call option prices in 

Regime w, Call, are cheaper than Calld, the total option price starts falling. The point 

were the option prices under the Regime Switching Spike model start falling when the 

initial regime is d, also reflects the expected regime duration which is 250 days as 

shown in Chpater 4. On the other hand when we start from Regime w, option prices 

always increase as the risk of entering a state of low level of water in the reservoirs 
increases with time, and thus we have that increasing slope. We can also note that 

irrespective from which regime we start, when using the regime switching spike 

model, option prices converge to the same value as time to maturity increases. 

Finally, when using the Three-Factor spike model option prices increase with time to 

maturity, as the trend increases the further the maturity of the option, a characteristic 

which is totally different from all other models. This is due to the fact that in the short 

run option prices are primarily affected by the short-term factors X and Y. However as 

time to maturity increases the contribution of the long-term factor, c, is much higher. 

The long-term factor follows a stochastic process very similar to a GBM, with a 

positive trend, which directly implies higher spot prices from the trend and greater 

variation, the further the time to maturity. Hence option prices always increase, as the 

long-run trend seems to outweigh the discounting effects in spot prices. This might be 

a disadvantage of the Three-factor model, when compared to the Regime Switching 

spike model. In the model, the long-run state variable assumes always a positive trend 

no matter if the reservoirs are full or not, as it takes into account long term risk factors 

that are more permanent, such as load growth, regulation risk, possibility of vertical 
disintegration, threat of increased competition and generation plants closing down. 

However this variable does not accurately reflect the risk of the level of water in the 

reservoirs, since water levels change from year to year depending on the rainfall, thus 
inducing some degree of mean reversion or regime switching from year to year, rather 
than a constant change. As discussed in the previous chapter, the reservoir risk in the 
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Three-Factor spike model seems to be captured by the short-tenn variable X, which is 

not very intuitive as reservoir risk is a type of risk that should affect mainly mid- to 

long- run behaviour. 

Finally, Figure 5.12 shows the call option prices from the Three-Factor spike model, 

across different correlation parameters, p,.,,: between X and E, and different maturities. 

We can see that option prices increase as the correlation coefficient increases, 

reflecting the fact that the volatility of the sum of two random variables increases 

directly with correlation, as follows: 

Va r[X, cl = Va r[XI + Va r[c] +2p,,,.. Fva- r[x -]va r[E] 

Figure 5.12: European Call Option Prices produced by the Three-Factor model, 
across different correlation coefficients and time to maturitV. 

'I he figure shows how European Call option prices are affected in the Tree-Factor spike model for different values of the 
correlation coefficient px,. 
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5.7 Asian Options 

Asian options are options whose final payoff is based in some way on the average 

level of the electricity price during some or all of the life of the option. The payoff 

from an average price call is max(P,,,, - K, 0), where Pave is the average value of the 

underlying asset calculated over a predetermined averaging period 

T. =T IT, 
...... 2138. In the same manner the payoff of an average price put Asian 

Option is max(K-P,,,,, 0). Thus the value of call and put average price Asian Options 

are respectively: 

p" 

(5.20) 
Asian Call= E' e-'(T2-#)max -K0 

n 

(T2 -t 
A sian Put = E* e` m ax K- 

n 
L- ýo - 

Asian contracts are settled in cash at the end of each settlement period against the 

arithmetic average of the system price in Elspot during the settlement period. In Nord 

Pool, Asian options on block (four weeks) futures contract with settlement periods 

corresponding to the delivery period of the reference futures contract were available. 

However, trading on these contracts was ceased in 2001 due to low liquidity. Since 

then Asian options are only traded in the OTC market. 

As an example of why Asian options are very helpful in the electricity markets, 

consider again the case of a utility company which supplies power to residential 

customers. The company is concerned about the cost of electricity in the spot market 
during, say, the month of February which is a high demand period. One alternative is 

for the company to use a forward contract to fix the price of electricity. However, the 

utility believes that there is a good chance that, if there are no major supply 
disruptions in the system or some days the weather is not that cold as February is the 

last month of winter, the spot prices will be much lower than currently suggested by 

3' There arc also average stfike options, where the stfike price is the average of the spot price during the delivery period, and at 
expiry it is settled against the spot price, PT. However as these are not traded in Nord Pool, they are not considered in this thesis. 
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the forward market. Consequently, the company wants to benefit from the lower 

prices, but at the same time wants a measure of protection in case prices increase, 

contrary to expectations. One solution might be to buy Caps, however the cost 
involved is very high due to the number of call options involved, as the company 

needs to buy one caplet for each day of the delivery month. A more cost effective 

solution is to buy a call option on the average spot price in February, struck at the 

current level of the forward price. In this way, when prices fall as expected, the utility 

enjoys the benefits of cheap delivery. The main advantages of holding Asian call 

options are the following: First, if prices increase the utility will have to buy in the 

expensive market, but its higher cost will be offset by the payoff from the option it 

bought for protection. Second, it will provide a very good hedge against the overall 

risk in that certain month, for example in case the water reservoir levels for that 

month are extremely low and demand is high. Third, Asian options are also very 
helpful for the writers of the options, since market manipulation in the short-run or 
high volatility in any particular date will not affect the average significantly. 
Moreover, Asian Options are cheaper than regular European options, since the 

volatility of the average is lower than the volatility of the actual underlying. However, 

as it will be shown latter, Asian option do not provide perfect hedge against spikes. 

5.7.1 Pricing Asian Options 

The put-call parity gives the relationship between the prices of European put and call 

options. As shown by Vehvildinen (2001), by considering Asian options as European 

options on the average spot price, one can also derive a similar put-call parity relation 
for Asian Options. Assume that there is an electricity forward contract with current 
forward price F,.,., (such as a block contract), for which the delivery period is the 

same as the averaging period of the Asian option i. e. from r, to r,,. Next, consider two 

portfolios: 
1. Portfolio A: a long position in an Asian call option with strike price K and a 

cash amount of e-"(", -') (K - ). 

2. Portfolio B: a long position in an Asian put option with strikc pricc K and an 
electricity forward contract with forward price 
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At the end of the delivery period of the options, the call option in Portfolio A has a 

payoff of max(P,,, - K, 0), where P,,,, is the average spot price over the delivery 

period, and the cash amount is worth (K-F,,,,.,. ). In Portfolio B, the put option has a 

payoff of max(K - P,,, , 0) and the electricity forward payoff since it is a block 

contract is (P,,,, - F,,,.,. ). Thus at the end of the delivery period, both portfolios have 

the same total payoff of max(P,,,, - F, 
ý.,., 

K- Thus, the no arbitrage 

assumption states that the present values of the portfolios must be equal, and since 

there is no cost in entering a forward contract: 

e-"("'-') (K 
- F,,,,., )= Asian Put - Asian Call 

However it is not possible to create hedging portfolios for Asian options with 

electricity forwards, despite the connection of the payoffs. Trading with an electricity 

forward contract ceases before the averaging period of the corresponding Asian 

option but the payoff of the Asian option depends on the events of the delivery period. 

Thus after the delivery period has started, dynamic adjustment of the hedging 

portfolio is not possible. 

As stated in the introduction of the chapter, the pricing of Asian options does not exist 
in closed-form, if a model follows a lognormal or any other log-distribution. This is 

because the distribution of the arithmetic average of a set of e. g. lognormal 

distributions does not have any analytically tractable properties. On the other hand the 

geometric average of a set of e. g. lognormal distributed variables is also lognormal. 

Thus closed-form solutions exist for the geometric average, e. g. Kcmna and Vorst 

(1990), Turnbull and Wakeman (199 1) and Curran (1992). However in the electricity 

markets Asian options depend on the arithmetic average. Thus we have to rely on 

numerical methods, such as Monte Carlo. 

Monte Carlo methods are very popular in empirical finance, since they are in general 
easy to implement and allow the treatment of problems with high dimensionality. In 

particular, when there are multiple stochastic factors, numerical methods like finite- 
differences or binomial techniques become impractical while Monte Carlo is still 
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appropriate. Moreover due to the structure of the payoff of the Asian options, which is 

path dependent, the Monte Carlo method becomes more practical as it describes the 

price path generated for every simulation. 

Since the convergence of Monte Carlo is fairly slow, other methods may be preferred 

as long as the underlying stochastic process is simple and the number of risk factors is 

small. However, in the case of energy derivatives appropriate stochastic processes for 

the underlying, e. g. the electricity price, are in general considerably complicated 

since they have to account for seasonality, mean reversion, spikes etc. Therefore, 

calibration of a model for the energy prices to real market data usually requires at 

least two stochastic factors, frequently in conjunction with a jump diffusion process. 

Consequently Monte Carlo methods may be the best choice if the stochastic processes 

under consideration are expected to be close to reality, particularly when pricing path 

dependent derivatives such as Asian Options. The use of Monte Carlo to price Asian 

options is described next. 

5.7.1.1 Pricing Options using Monte Carlo Simulation methods 

Before discussing the discretization of the Stochastic processes for the electricity 

price recall our general Spike Model for the electricity spot price (P, ) in the risk 

neutral world (as in equation (5.9)): 

P, =f (t) + exp(X, + Y, ) 

dv , it =(ký(c-X, )-AX)dt+uxdW; 
(5.22) 

dY, =-kYdt+J(, u�, u�)dq(I, ) 

f(t) is the deterministic seasonal component of the model, and as such it does not 
have an error from discretization or random sampling since it involves no stochastic 
terms. On the other hand Xt and Yt, are the stochastic components of the model, which 
explain the behaviour of the short-term prices under the regular conditions and when 
spikes occur. Both stochastic factors follow a mean reversion to an equilibrium level, 
however Xt is affected by shocks generated by a Normal distribution, where as the 

spike factor Yt, is affected by shocks occurring at discrete points in time with 
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probability generated by a Poisson distribution, assumed to be independent from dw;; 

in other words, the spike process is independent of the Normal short term process X1, 

and whenever spikes occur, their amplitude is generated from a Normal distribution, 

with mean and volatility which vary depending on the season of the year. 

In order to demonstrate the discretisation. process, we consider first the case where the 

Spot price depends only on X1, that is to say that P, = e". First of all the stochastic 

differential equation for Xt is explicitly solvable and has the following solution in 

terms of stochastic integral (It6's integral): 

Xt -e 
-kjAl X+ , --ýx (I-e -kjA, + axe -kjAt 

At 

e 
kis d Ws* (5.23) k, 

I 

Where At is the disctetisation step used; for example, if the Average needs to be taken 

over the days of a certain month, At can be I day. Using the above equation it can be 

shown that X1, follows a Normal Distribution with Mean and Variance, as shown in 

the derivation of the moments in Chapter 4: 

E [X, ]= e-klät X, 
-, 

+ c- 'Z x (1 -e'klät) kl 

er ar 
e-2 

kj A 

2kI 

(5.24) 

(5.25) 

In this equation again we can note that the expected value of X, is a weighted average 
between the previous period's value of Xt and the risk neural equilibrium level 

C-L weighted according to e-"', which also acts as a discounting factor of k, 
)' 

previous period's value to the current. In addition, as the discretisation step 
approaches infinity (At-+oo), the mean converges to the risk neutral equilibrium level, 

2 Ll 

k, 
) 

and the variance converges to 
2k 
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In order to perform the simulation it is necessary to get the discrete-time equation for 

the process of X1. Dixit and Pindyck (1994) show that the correct discrete-time format 

for the continuous-time process of mean reversion is the stationary first-order 

autoregressive process, AR(l). So the sample path simulation equation for X, is 

performed by using the exac? 9 (i. e. valid for large At) discrete-time expression: 

-e 
-2 A, At )N 

(0,1) (5.26) k, Al 
+ C-i-x (I-e -k, At 

+a e xi-I 
k, 2k I 

where N(0,1) is a standard normally distributed variable. Note that the equation above 

can be viewed as the sum of the expected value equation with a random term 

generated from a standard Normal distribution times the standard deviation scaling 

the Brownian Motion. Equation (5.26) gives the discrcte-time equation for an 

Arithmetic Ornstein-Uhlenbeck process and permits an exact discretisation in the 

sense that its accuracy doesn't decrease at all if a larger timc-step (At) is used. 

Because the error from the discretisation is eliminated using the above exact 

discretisation equation, the only error that remains in the simulation is the error from 

the random numbers. On the other hand, alternative discrctisation procedures such as 

the first-order Euler's approximation introduce discretisation errors into the simulation 

and have higher computational cost because they require small At. 

In the same manner lets now focus on the spike part of the model and in this section 

lets assume that the spot price is a function of Yj only, i. e. P, = e" . Jumps are 

represented by the term i(p_,,, qj' , )dq(i, ) in equation (5.22), which most of the time is 

zero and when they occur their arrival rate is Ii, and size J which is Normally 

distributed with mean u,, and variance a',,. Therefore: 

jdq(i, ) =o with probability 1- Ii dt 

jdq(i, ) =i with probability Ii dt 

19 Where by "exact", we refer to the solution of the Stochastic Differential Equation ofX,, in order to give us accurate Simulations 
no matter how big the time-step used. 
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The introduction of the jump component in the model adds a significant new feature. 

The jump term consists of two random processes. First of all the jump size can be 

easily simulated using a Normal distribution as follows: 

pj, + a.,, N(0,1) (5.27) 

On the other hand the timing of a jump is distributed as a Poison process and as such 

dqy, ) =o most of the time and takes the value of I when a randomly timed jump 

occurs. Following Clewlow and Strickland (2000), we can simulate the timing of the 

jump by a random sample u generated from a uniform (0, I) and then checking the 

condition that (u < IAI); if the condition is satisfied then it takes the value of I and, 

thus a jump occurs; otherwise it is zero. This procedure on average generates jumps 

randomly at the correct average frequency. The spot process thus now, assuming still 

that it depends solely on YI, becomes: 

=e, =cxp(e7k""Y +(p +ajN(0,1))L,,,, ) (5.28)40 

However the discretisation error in this case is not the same as for a normally 

distributed random variable, since jumps do not occur continuously in time. Although 

the discretisation for the mean-reverting part of the equation of X, is exact (valid for 

very large At), the presence of jumps together with their mean reversion is 

problematic when using large values of At, thus there is no exact way of discretising 

the equation for simulation purposes. Intuitively if we have on average I jump per 

day, and we take a time step of 7 days, the simulation would fail the criterion of the 

"exact discre 
' 
tisation", as it accounts for 1 jump for every 7 days. In particular, if the 

time interval At is sujjlciently small, the probability of two jumps occurring at the 

same time step, pt)2' is much lower than QAt). In addition, the speed of mean 

reversion for the spike factor is less than a day, hence a finer discretisation step may 
be required to capture the fast mean reversion of spikes. 

To illustrate this, we performed various simulations for pricing European Options 

using At=lday, and we found out that when the spot price was dependent only on X1, 

using the exact discretisation. method without jumps, the Monte Carlo price was the 

40 Note that e ", A'Y, 
_, 

is the exact solution of Y, if we have no random terms such as the compound Poisson process, as it was 
the case for X 
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same as the one produced in the closed-form solution. However, when the spike factor 

was included, convergence with the semi-closed form solution of equation (5.10), 

occurred when the time steps used were smaller than the speed of mean reversion. As 

a result the discretisation process requires finer time steps than one day, and as such 
for the simulation of Y we used hourly price time-steps (i. e. 4t=11(365*24)). For 

European Options, the results were consistent with the semi-closed form solution 

results with an average error of 0.4%. The prices generated from the Monte Carlo 

algorithm, thus have the following form: 

4,11 +ae 

2kjAI 

X, =e 
-k, At Xj_j + (I -eN (0,1) 

k, 

F2 

k 

Y, = e-k"'Y, _, + (pj + a, N(0,1))(u < IAt) (5.29) 
Pt = ex'+Y'+f(') 

where fbrXt, Jt=lday (i. e. 11365) and for Yl,. dt=l hour (i. e. 11(365 * 24)) 

In order to price an Asian Option with Monte Carlo, for each sample Path i, we first 

take the average of the spot prices generated during that specific sample path for the 

averaging period specified in the contract, AV. Then at maturity T, we take the pay-off 
of the derivative for each specific sample path, and thus find their average: 

IM 
AVI=- P 

n j., 

Asian Put= e-r(T'-#) max (A V, - K, 0) (5.30) 
In i=l 

Asian Call e -r(T. -t) max (K -A V1,0) 
In 

where P is the spot price generated form the Monte Carlo algorithm in equation rij 
(5.29), at time rj for sample path i, n is the number of days in the delivery period, and 
m is the number of sample paths generated by the Monte Carlo algorithm. 
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5.7.2 Asian 0 tions Sensitivity Analysis Results T 

In the current setting we are looking at a sensitivity analysis of an Asian call option 

using our spike model and varying its parameters. The parameter values for the base 

case scenario can be found in Table 5.3, where the jump parameters used here are not 
seasonal, but the total average from the data. The reason why we do not consider the 

seasonal parameters and seasonality f(t) is that we do not want our results to be 

specific to any particular season, but rather we want to see how the different 

parameters from the stochastic factors affect the prices of Asian Options and in 

particular the impact of volatility factors during the averaging period. The Asian 

Option contract priced here is similar to that used to be traded in Nord Pool, i. e. the 
delivery date is 4 weeks. At the current setting we are pricing the Asian option one 
day before the averaging period starts. 

Table 5.3: Parameter Values used in the spike model for the analvsis 
on Asian call options 

The table shows the value of the parameters of the spike model in equation (5.9), used for the Monte Carlo estimation of Asian 
call prices in the base case scenario. 

Model 

Parameters 

Parameters 

values 

x o =K k, 
5.137 

Ux 1.03 

k, 2.98 

YO 0 

1 5.57 

Pi 0.26 

ci 0.35 
k2 287.61 

r 5% 

Time to maturity 

Averagingperiod 

4 weeks 
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We implement the described method of Monte Carlo Simulation by using the 

"antithetic" variables, technique. The antithetic variate approach uses pairs of 

negatively correlated random numbers that in return tend to produce pairs of 

negatively correlated simulation results. For example, if we have in one draw from a 

normal distribution a number z, then for another trial we use ---. Similarly for a 

uniform distribution, if in one draw the number is u, then for another trial we use 1-u. 

This technique has been shown to produce results which are significantly more 

precise than the ones produced by the ordinary random sampling, since the results 

from each pair are averaged therefore making them less variable (since the correlation 

is perfectly negative) and thus reducing significantly the standard error of the results 

(see Boyle, Broadie and Glasserman 1997). Figure 5.13 presents the Asian option 

values for different numbers of trials, using the base case parameters. From the graph, 

it can be seen that convergence in prices occurs at approximately after 50,000 

simulations. From that point onwards, the marginal change is decreasing significantly. 

in our analysis we used 200,000 simulation paths in order to be precise even though 

we had convergence for lower number of simulations most of the time. The reason is 

that after some tests we realized that changing some parameters, especially the jump 

parameters and volatility, the rate of convergence was lower. For reasons of' 

consistency, in each sensitivity analysis we used the same random numbers generated 

from the non-nal distributions for X and the jump size and the uniform distribution Im 

the jump arrivals. 

Fieure 5.13: Monte Carlo Converp-ence for Asian Options 
The fiý,, ure shows hox% Asian Cali Options priccs converý! e, as \Ne increasc thc nunibct ot %Ionic Carl() sinnila(ioli naths. 
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Thus, next we conduct a sensitivity analysis on Asian option prices, with respect to 

the parameters in the spike model, Le kj, k2, c (risk-neutral equilibrium level), O'X, O'J' 

pj and 1. In every case, we change two of the parameters and keep the remaining 

constant as in Table 5.3.. In all cases we consider an ATM Asian option, meaning that 

the strike price K=exp(Xo+Yo)=l70.20 NOK/MWh. 

Figure 5.14 shows the sensitivity analysis for different values of k, and C-Lr ; that 
k, 

) 

is we keep all other parameters constant, and we start varying the parameter of the 

speed of mean reversion of X and the risk-neutral equilibrium price. For the 

equilibrium level, it has to be noted that option prices have been estimated for 

equilibrium levels that are lower, equal and higher than the current spot price. The 

results are very intuitive indeed. What we actually see is that at low risk-ncutral 

equilibrium levels, option prices decrease the higher the speed of mean reversion. 
This is because as the speed of mean reversion increases, shocks in the spot price die 

out much faster, and thus the prices mean revert to the lower equilibrium level, thus 
decreasing the average level of the spot even more and making the option less 

probable to end ITM. On the other hand, when the equilibrium level is higher, the 

value of the Asian option increases with the speed of mean reversion, since the prices 

mean revert to the high equilibrium level faster, thus the average increases and the 

option is more probable of ending ITM. Now in the case of Put Asian options we 

should expect exactly the opposite due to the structure of the pay-off. Hence the value 

of a put option is always increasing for high speeds of mean reversion and low 

equilibrium levels as the holder of the option benefits from lower spot price, and 
decreases the higher the speed of mean reversion and the higher the equilibrium price. 
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Fii! ure 5.14: Asian Call Ot)tion Prices with rest)ect to the sDeed of mean 

reversion k, and the risk-neutral equilibrium level of X, 
k, 

The graph displays a sensitivity analysis, %%licre the prices of Asian Call Options are estimated using the Monte Carlo Simulation 
explained in the chapter, by changing the parameters of the speed of Mean Reversion, kj, and the Risk Neutral Equilibrium Level 
to which the Diffusive component reverts to. 
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in order to see the impact of some of the jump components and on Asian option 

prices, Figure 5.15 shows the sensitivity with respect to the expected jump size return 

and jump arrivals. As expected, option prices increase in both the jump size and the 

arrival. However this occurs in a non-linear fashion. The contribution of the size 

increases at higher intensity levels. This is because if the jump intensity is low, the 

jump size does not play such a significant role, since its probability of occurrence is 

low, and thus the limited numbers of spikes that occur in the market are averaged out 

due to the specification of the Asian option contract. However, as the jump intensity 

increases jumps start to play a much more important role in the average price and, as 

their size increases, the total average of the spot price increases thus giving a higher 

probability of the option ending ITM. Another interesting fact is that with negative 

jump sizes, increasing the jump intensity the Asian call options decrease slightly, 

whereas with positive, it increases the price. However it seems that the absolute 

change in the Asian option price is small when the jumps become more negative, 

compared to the cases when the jumps become more positive. Similarly for Asian put 
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options, we should see that option prices increase the larger the jump intensity, and 

the more negative the mean jump size, since the option holder now benefits more 

from the higher probability of negative jump sizes. 

Figure 5.15: Asian Call Option Prices with respect to mean * ump size, yj and 
6 ump intensity, 

The graph shows a sensitivity analysis, where the prices of Asian Call Options are estimated using the Monte Carlo Simulation 
explained in the chapter, and each time changing the parameters of the mean of the jump sizes, p., and the Jump intensity, / of the 
spike variable Y. 
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Regarding the jump size volatility and the spike mean reversion, in Figrure 5.16 we see 

that Asian call options prices are inversely related to the spike mean reversion, but 

increase with the jump size volatility. This result is very interesting, as it shows the 

significance of the speed of jump mean reversion. The difference is large for mean 

reversion levels of approximately 50 (half-life of 5 days) and less. This is due to the 

fact that at low levels of mean reversion, if a jump occurs in the market, the spot price 

will stay at extreme price levels for a long period of time. Therefore this has a 

significant impact on the four-week average spot price, thus giving very high 

probabilities for the Asian option to end ITM. It is at those low levels of spike speed 

of mean reversion where the jump size volatility plays a very critical role, since if we 
increase the jump volatility, the jump sizes become much larger and prices stay at 
high levels for a long period of time thus increasing the value of the Asian call 
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options. However as the speed of mean reversion increases, the marginal difference 

by increasing the jump size volatility is becoming less significant, thus the value of 

the Asian call option changes much less. This is because any extreme event that may 

occur, will affect the price levels for about a day, and thus the 28-day average of the 

spot is not significantly affected. For Asian Put options we should also expect the 

same impact since again the holder will benefit from big variations on the price that 

will last longer, given of course that the mean jump size is negative this time. 

Fieure 5.16: Asian Call ODtion Prices with reSDect to SDike mean reversion. k? 
and eump size volatility, aýj 

The graph displays a sensiti\ it y an aI ysis. Micre the prices of As ian Ca II Opt ions are estimated using Ih c Mon(e Carlo Simu I ation 
explained in the chapter, by changing the volatility of the jump sizes, ey., , and also its speed of nican reversion, k-, of the Spike 
Variable Y. 
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Figure 5.17 shows the sensitivity of the Asian call option prices with respect to both 

jump intensity and the diffusive volatility. In this graph we see that both the jump 
intensity and the diffusive volatility increase the option value. The reasons for the 
jump intensity were explained earlier. For the diffusive volatility, the higher it is, the 

more extreme a shock in the market is, and since diffusive shocks are continuous and 
generated from a Brownian motion, the greater the scaling the more probable higher 

prices are and thus the greater the average spot price. However the effect would be 
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less steep than that observed in the case of a European Option due to the impact of the 

averaging period. 

Figure 5.17: Asian Call Options Prices with respect to iump intensity, I and 
diffusive volatility, er 

The graph displays a scnsiti), itN analysis, Ný here the prices of Asian Call Options are estimated using the Monte Carlo Simulation 

explained in the chapter, by changing the parameters of the volatility. eTx,, of diffusive vafiableX, and also the jump intensity. /. of 
the spike variable Y. 
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Table 5.4 compares European Call versus Asian Call option prices for different jump 
intensity parameters and diffusive volatility. The main point of this table is to show 

that for the same parameters, Asian option prices are almost half of the value of 

European call prices. This is because the actual spot price is much more volatile than 

the average spot price. This implies that the value of caps is much higher than the 

value of Asian options. Thus Asian options still provide protection, at a cheaper price. 
The problem however comes when short-lived extreme price movements occur, 

which, as shown earlier, are averaged out in the Asian options. On the other hand, it' 

one has a portfolio of call options on different dates, he is protected from those 

extreme events, albeit at a much higher price. 
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Table 5.4: European Versus Asian Call Option Prices (in NOK/MWh) for 
different Jump Intensity, 1. and Diffusive Volatility Parameters, 

Diffusive Volatility ax 

Jump 
Intensity, 1 

0.3 0.5 0.7 0.9 
Asian 2.93 4.91 7.02 9.29 1 European 5.42 9.19 13.22 17.53 
Asian 3.69 5.64 7.73 9.96 

6 European 6.29 10.01 14.02 18.32 
Asian 4.59 6.49 8.53 10.77 

12 European 7.34 11.01 14.98 19.27 

Finally, given the above sensitivity analysis, we can also make some conclusions for 

an Asian Option that is for example, 
3/4of the way in the averaging period (e. g. in the 

current case 21 days). This is interesting because, during the averaging period delta 

hedging may be complicated since the forward contracts cease before the averaging 

period, therefore we need to know the likelihood of changes in moncyness, which 
directly implies which factors need to change in order for the option to end ITM or 
OTM during the averaging period left. 

if the Option is either deep ITM or OTM, conditional on the average up to now, in 

order for the moneyness to change state significantly, the following parameters will 

play a significant role. First of all the jump intensity has to increase significantly, so 

that there is a high probability of a spike. Next, the absolute value of the mean has to 

increase and together the volatility. However the above factors will not have any 

significant effect if the spikes do not last. Thus we believe the most important factor 

that can change the moneyness of the option is the speed of mean reversion of the 

spike. If the speed of mean reversion is low, any jump that will occur in the market, 

will affect the average significantly more. Alternatively we need a change in the 

equilibrium level, but in order for that to affect the moncyness of the option, the 

change has to be significant and also the speed of mean reversion of the normal factor 

has to be very fast, a fact that is not evident in the Nord Pool market. 
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5.8 Conclusions 

in this chapter we started by explaining the importance of Caps, Floors and Asian 

options for hedging price risk in the electricity markets. Even though Caps and Floors 

can give protection for every day, the premium may be too large, thus an alternative 

cheaper approach would be to use Asian options and get protection from the overall 

level of price in a given delivery period, rather than just a single day event. 

Next we derived closcd-fonn solutions under the mean-reverting and the spike 

models. The benefits of the mean-reverting model rely on the Samuelson hypothesis, 

which is consistent for any non-storable asset, and thus provides decreasing volatility 

term structure. The option pricing formula is very similar to the Black & Scholcs 

(1973), but instead the underlying seems to be the forward price, as it is the 

expectation of the spot. However when introducing jump processes, only scmi-closed 
form solutions are available. Using the transform analysis by Duff te ct al (2001), the 

semi-closed form solutions for the spike model are derived, and we provide an 
intuitive explanation on each of the terms of the pricing equation. Numerical 

integration in the semi-closed form solution can be easily achieved using advanced 

methods such as the Adaptive Simpson Quadrature. 

To get a further insight on the spike model, we use it to calculate options prices and 

then we use the prices as an input in the BS model to back out the implied volatilities. 
A similar analysis is also implemented for the mean-reverting model. We find that 

even an Omstein-Uhlenbeck process displays volatility skews but always for ITM 

options, which is a result of mean reversion. However the presence of jumps displays 

volatility skews for OTM options depending on the sign of the mean jump size. We 

also show that mean reversion reduces the volatility smile as time to maturity 
increases. Furthermore, the jump size volatility and jump intensity mainly affect tile 
kurtosis and thus the curvature of the smile. Moreover, we also provide evidence that 
for a desired jumpiness level, the jump size volatility affects the volatility smile more 
than the jump intensity. 

Next we explored the option prices generated by the four proposed models in the 

previous chapters. The mean-reverting model seems to converge to an option price 
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very fast as time to maturity increases, and from a point onwards, the discounting 

effect of the interest rate starts playing a more important role. On the other hand, the 

regime switching spike model gives the following results; if we are in a state where 

there is enough water in the reservoirs, we see that call option prices increase with 

time to maturity consistently. In this case, the premium paid is derived by the risk that 

we may end up in a state where the reservoir level is low. The opposite effect happens 

when we start from a state when the reservoir levels are low, and thus we have a 

downward sloping option price. The same analysis was performed using the Three- 

Factor model, however in this case the long-run factor, increases the longer the time 

to maturity. Also increasing the correlation between the two normal state variables 

increases the volatility and thus the option price. 

Finally we performed a sensitivity analysis using the spike model on the Asian call 

options. Since no closed-forin solution is available and also the model displays jumps, 

the most appropriate method is the Monte Carlo simulation. The sensitivity analysis 

showed that Asian call option prices increase with jump intensity and jump size, as 

the averaging becomes more affected by the intensity. However the effect of the speed 

of mean reversion has a dual effect depending on the equilibrium level. On the other 

hand, the spike mean reversion plays a vital role especially at low levels, as it may 

give very high Asian option prices. 

Having examined these issues, the next chapter is devoted on Swing Options, which 

are a very useful structured product in the energy markets particularly for hedging 

both volumetric and price risk at any time of convenience of the option holder. One of 

the main difference from the products examined in the current chapter, is that swing 

options allow for early exercise, therefore it will be very interesting to examine tile 

factors driving their early exercise features. We will show how the pricing is 

performed both theoretically and practically, conduct a sensitivity analysis mainly for 

the extra swing premium i. e. what is the extra price we have to pay to use this 

particular product rather than a more simple one such as Caps and Floors, to tile 

different parameters, define the boundary conditions, as well as exploring the effect of 

penalties on the options. 

199 



5.9 Appendbc: 
5.9.1 Derivation of OQ2tion pricing fionnula using the Seasonal Mean-Reverinjz Model 

Recall the electricity model when we have only mean reversion in the risk-neutral 

world: 

pf (t) + exp(X, ) 

dX, =(kl(c-X, 
))dt+uxdW; wherec=c-Ax/k. 

Thus the Option price is now equal to the expected pay-off in risk-neutrality: 

Call = E' [e-rT (P, - K)+ / Yý I 

- (I 
-rT ,T+ 

e-I. 
T + aX 

IT-s 

e E* 
[(exp (X, 

e- 
feW., )- (K -f (T)))+ 

Now we use the following facts: 

1. The seasonal component is deterministic and thus we can think of a new 
deseasonalised strike price equal to: DK=(K-f(T)) 

2. The deseasonalised forward price of electricity under the model is a 
forward price on the deseasonalised spot, thus depending only on X: 

- exp X e-4F + 41 
- eý-4T) + ýfx (1 

-. ý-24r ) F(0, T, X. )= 
0 4ký 

3. Due to the quadratic variation of a Brownian Motion, 

2k, 

2 

4. o, 
f Cl"--`dW*-N 0,0'1(1-e-'ý') has the same distribution as 2k, 

I(I-e -2kIT ) 

OIX v y, where y-N(O, 1) 

Thus the option pricing formula for the call now becomes: 

F(0, T, X, )e DK e- dy (5.32) 
ýr 27 

So we need to find the value from which the integration should start: 
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2 
2kT 

x 1_, -2kT y 

F(0, T, X�)e 
-J4k, 2kl 

> DK 

Y> 

In DK '+ o', ' (1 
- e-"l") 

ýF 
(0, T, X�)'., 4ký 

ux 
- -2kIT 

2ký 

=d 

(5.33) 

So what we are actually saying here is that if PT>K, we are integrating d, where as if 

PT<K, we are integrating zero. Hence, equation (5.32) now becomes 

04 
2 

j_c-2k, T), 
Xý= 2ki 4N 2ki v -Y2 2 Call= e" fF (0, T, X. ) e 

4k, 

ey V2 
7r 

(5.34) 

Y, -rT 2 
e DKe r-ýdy 

Fd 

. 
42 

7r 
b 

Now take each term of the integration (a and b) separately. First for a, start by 

completing the square: 

, 

«X 

ý( 
_. -2kIT 

-7 

2 

2kl 
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in the same way for b: 

Y, I 
DKe- I --, ----d -d) d V27r y=DK N( 

F (0, T, X. ) !X -"r ) (5.36) In -- (1-e 
DK 

j 

4k, 

u 
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- e-'*") 
'r ý 2k, 

Hence using (5.35) and (5.36), and substituting in equation (5.34), we can recover the 

value of a call option: 

call =e-[F(O, T, X, )N(d, )-DK N(d)] (5.37) 

5.9.2 Put Call PariU in ElectriciU Market 

Now we can also use the put-call parity relation to retrieve the value of a Put option, 
however since electricity is non-storable, our portfolios have to be hedged with 
futures. Consider that you have European call and put options on the underlying 

electricity, with the same strike price, K, and expiry date T. Form two separate 

portfolios: 

Aa European call option and a cash amount of Kiý`T invested in the risk-free rate 
B: a European put option, a long position in a futures contract with the same expiry 
date and an amount of cash equal to the discounted price you locked for the futures 

position i. e. F(OTPo)e -rT invested in the risk free rate 

We can clearly see that the value of both portfolios at expiry will be equal to 

max(F(T, T, Po), K)=max(PT, K), assuming that the futures converge with the spot at 

their expiration to diminish any arbitrage opportunities. Since the value of both 

portfolios is equal we have the following relationship: 

Call + Ke-"" = Put +F (0, T, P�) e-"' 

e` [F (0, T, X. ) N(d. ) - DK N(d, ) + K] = put + (AT) +F (0, T, Xj) (5.38) 

put = e-' [DK N(-d, ) -F (0, T, X. ) N(-dý)1 

202 



5.9.3 Proof of the formula for the security price G. 
. bW 

For 0 <, r < oo and a fixed y (=- R, 

1 e"YVI-'(a - ivb, X, 0, T) - Jhyvf-' (a + ivb, X, 0, T) 
-iz- 

f, 
iv -Ldv 

1 f, f e-v(z-y) - ev(Y-z) 
27r JR iv 

-dGa, b 
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where Fubini is applicable because 
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given that X is well defined at (a, T). Next we note that; for T>O, 
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is bounded simultaneously in z and T, for each fixed y. By the bounded convergence 

theorem, 
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i3ecause Vz(a-ivb, X, O, T) is the complex conjugate of Vz(a+ivb, X, O, T) we 
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5.9.4 Option RCplication in the electricitE market 

in this section, we are describing how a hedging portfolio may be constructed in the 

electricity market, to replicate a derivative contract. Since electricity is not storable 

and thus cannot be used for the usual delta hedging strategies, the obvious 

replacement would be a forward. Lets assume that the spot price evolves as in the 

spike model. For this example let's assume that we have no seasonality in order to get 

a clear picture, and the jump distribution is assumed to be free, i. e. we are not 

restricting the distribution of the jump size, J, to be Normal. The spot price under the 

spike model is described as follows: 

p= exp(X, + Y, ) 

dX, = k. (c - X, ) dt + ax dWx 

dY, = -k, Y, dt + Jdq (1) 

As it may be seen, we have two sources of risk: one arising from the wiener process 

of the normal difftisive variable, X and the second arising from the jump variable dq. 

Suppose now that we need to hedge a derivative on the electricity price, for example a 

call, C In order to do so, we create a portfolio consisting of one call, to be replicated 
by a units of a forward, F(tT)=Fl, fi units of a bond B, used to finance the portfolio, 

and 7 units of a second ("hedging") option, V. Thus the value of the portfolio at time t 
is as follows: 

rI, = C, + aF, +, BB, + yV, 

The main aim of the portfolio is to make it riskless and thus have a deterministic 

value. If we do so, we may chose an amount of the discount bond and our investment 

today should have zero cost, and thus zero growth. Before describing the evolution of 

our portfolio rl, we need to show the dynamics of the derivatives. Under the risk 

neutrality measure, the dynamics of C are as follows: 
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CF2 
dC = 

ac 
+k. (c-X) ac 

- k2Y 
ac 

+X 
a2C 

dt 
( 

at ax aY 2 aX2 

) 

+ (C (Y + J) - C(Y)) dq - IE (C (Y + J) - C(Y)) dt 

UX 
ac 

WX 
ax 

the first dt terms, and the last terms dWx, are the usual ones described by Ito's 

Lemma. However the middle terms arise from the extended Ito's Lemma. 
(C(Y + J) - C(Y))dq is the change in the derivative's price if a jump occurs, which 

is discontinuous. However, the extra term 1E (C (Y + J) - C(Y)) dt, is subtracted, in 

order to compensate for the jump process in the derivative's price, and thus make it a 

martingale. V follows the same kind of process as C. On the other hand, the forward 

price has a zero cost of entering, and thus the first dt terms should not cxist, as thcrc 

should be no return when entering a forward contract. Thus the forward price cvolvcs 

as follows: 

±F, 
=e 

-k1(T-t) adfý, + (e'-k, (T-1) 

- I)dq - 1E (e 1) dt 
F, 

Thus the portfolio evolves as follows: 
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+ ((C(Y + J) - C(Y)) +y (V (Y + J) - V(Y)) + aF, (c"" 1)) dq 
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In order to make the portfolio immune from changes in the Wicncr process, the 

amount of forwards, a, needed in the portfolio must equal to: 

Oc av 
a=-dX 

+y dX 
F, e-k(T-1) 
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By analogy with the stochastic-diffusion treatment, one would be tempted to choose 

the amount of the second derivative, y, in such a way that all dq terms should be 

identically equal to zero: 

ac 

Y=-Tx(e 

je-k2(T-t) 
. 1) e-ký ") (C (Y + J) - C(Y)) 

617 (ek' (T-1) 

-I e-ki 
(T-t) (v(Y+i V(Y)) 

ax 

In the above expression, the hedging amount of option V, depends on J, which is the 

jump size over the next time interval if a jump occurs. However, we have a problem 

since J is a random variable and can take any value generated from its distribution. If 

we knew the magnitude and sign of the jump, J, before it happened it would be 

possible to choose a value of 7, such that the change in the value of the option V, due 

to the jump could perfectly compensate for the jump component in tile option C. 

However from the same expression, it is clear that no single value Of 7 can ensure that 

for any possible realizations of the random variable J, the amount 7 Of tile option V 

would be just right to ensure that the change in the value of the rest of the portfolio 
due to the jump would be exactly compensated by the change in V, also due to tile 
jump. Therefore after this simple illustrative discussion, we may conclude that perfect 

replication is impossible when the dynamics of the underlying involve jumps. 
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6. SWING OPTIONS AND THE EXTRA SWING PREMIUM 

6.1 Introduction 

In order to hedge themselves against extreme price fluctuations of certain 

commodities, many consumers enter into forward contracts, which give them the right 

and the obligation to purchase a fixed amount of the commodity for a predetermined 

price. On the other hand, as we saw in Chapter 5, market participants may also use 

Caps, Floors or Asian options in order to hedge against price movements. Our results 

show that the cost of Caps and Floors is very high since their price is the sum of 

European Call or Put options for each day over the hedging period. We thus proposed 

the use of Asian options which are particularly useful for hedging against the average 

price over the desired period, although this strategy may not be effective for hedging 

risk over a specific day, especially when it comes to hedging against spikes that occur 

on a given day. 

Moreover, the above proposed strategies for risk reduction may not be sufficient for 

some market participants, since they may not know their exact future need of the 

commodity, in terms of quantity. This is particularly the case for commodities that 

cannot be stored or for which storage is very expensive, in which case inventories 

cannot be used to carry forward the underlying asset. As a result, so-called Swing 

contracts have been developed in order to give their holder flexibility with respect to 
the amount to be purchased in the future. These contracts are mainly used in cncrgY 

markets since energy is difficult (or expensive) to store and exhibits cxtrcme price 
fluctuations. This is especially the case in electricity, although Swing contracts appear 
also in coal (as in Jaskow 1985 and 1987) and gas markets (Clcwlow and Strickland 
2000). The main characteristic properties of Swing contracts, such as the multiple 
early exercise features, are the same for all underlying commodities. Only the choice 
of suitable a stochastic process depends strongly on the type of underlying asset. In 

the following we concentrate mainly on Swing options on electricity. 
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The popularity of these instruments is due to the fact that a large number of banks and 
financial institutions are active participants in the commodity markets and the 

electricity markets, in particular. Many market participants do not own the physical 

assets (i. e. generators) to make delivery of electricity a viable option and hcnce must 
focus on financial hedging if they are to participate in the market. Thus, if a bank 

wishes to enter into a transaction with a client in which the client would like to buy a 
financial (cash settled) swing contract to hedge the cost of their electricity supply, the 
bank needs to have in place a hedging strategy in case it cannot find another party to 

take the opposite position and thus benefit from the bid-ask spread. 

However, as noted in previous chapters, hedging contingent claims in electricity is 

more difficult compared to other markets. Delta hedging in electricity markets can be 

performed using forward contracts, but that only hedges the diffusive risk coming 
from the Brownian motion. On the hand, it is impossible to hcdgc the jump risk 

completely, while illiquidity in the options market does not allow Gamma or Vega 

hedging. Since hedging is therefore difficult to implement, the sellers of these 

contracts should require a premium that is consistent with the risks of the market that 

cannot be hedged and takes into consideration the optionality features provided by 

this structured product. In addition, market participants would like to know the 
behaviour of the contract for different parameters in the model and also compare it to 

a benchmark or another financial product with which they arc more familiar and is 

easier to price. Such contracts are strips of European options, which as it will be 

discussed later, provide the lower bounds for the price of swing options. 

Ilcncc, in this chapter we focus on the pricing of swing contracts using the different 

reduced form models described in Chapter 4 and explore their scnsitivitics by 

comparing them against strips of European Option. To our knowledge, only Eydeland 

and Wolyniec (2003) have given an example on the dependence of the incremental 

premium relative to strips of European options with respect to convenience yield and 

volatility, however no detailed work has been done on the sensitivity analysis of 

swing options contracts, and their incremental premium relative to regular European 

Option strips with respect to other factors such as jumps and mean reversion. 111is 

analysis is both interesting and also complements the analysis that was conductcd in 

the previous chapter. Therefore in this chapter we arc going to investigate, the 
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additional premium one has to pay in order to have the optionality of the times to 

exercise relative to European options. This analysis will give an insight and a more in 

depth understanding of what actually drives the incremental premium and how it is 

affected by the model's parameters. Thus, as discussed earlier, market practitioners 

can have a benchmark and get a better insight on the premia exchanged for the trading 

of such complicated structured products. In addition, since we arc dealing with short- 

term contracts, we examine the swing option prices produced by the different short- 

term models proposed in this thesis, namely the spike and the mean-revcrting, for 

different seasons in the year and give the lower and upper bounds in terms of 

American and strips of European Options. 

Our findings are very intuitive and in summary we find that the incremental swing 

option premium is positively affected by increases in jump size volatility, jump mean 

and jump intensity. Furthermore, we see that in terms of spike mean reversion there is 

a cut-off point after which increasing the speed of mean reversion decreases the 

incremental premium which nevertheless always remains positive. Interestingly, we 
find that the incremental swing option premium decreases as diffusive volatility 
increases, as there are more spot exercise possibilities and thus the swing option 
becomes similar to a strip of European Options. Finally, another interesting point is 

the fact that the additional swing premium becomes larger the smaller the equilibrium 
level and the higher speed of mean reversion. 

The remainder of this chapter is organiscd as follows. Section 2 describes the 

characteristics of a typical swing option. Section 3 presents the literature review on 

swing options. Section 4 provides an in-depth description of general swing contracts 

and shows how they can be priced using stochastic optimal control. Section 5 rcvicws 

the Least-Squares algorithm and describes its implementation for swing option 

pricing. Section 6 provides the results of the analysis for the incremental swing option 

premium, under the different models and examines the impact of increasing the swing 
rights and penalties. Finally section 7 concludes the analysis. 
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6.2 Description ofSwinje-Contracts 

A typical swing contract will contain an agreement to take delivery of a fixed volume 

of a commodity for a fixed price over a fixed period of time. The swing element is an 

option to take delivery of a further volume of the commodity on certain dates in the 

future. The maximum and minimum volumes available at each date are specificd, and 

the purchaser will be given a number of exercise rights to exercise at his discretion on 

any of a number of dates chosen in the future. The basis of calculation of the strike 

price is agreed in advance, as is a penalty to be charged to the purchaser if he does not 

consume the minimum quantity or does not exercise a minimum number of rights that 

is agreed at the outset of the contract. The minimum volume may be expressed in 

percentage or units of the underlying commodity as a take or pay amount, and the 

penalty may also be set in percentage of the final swing date strike price. 

Swing contracts are very flexible with regards to the contract specifications, and the 

structure of this product is such that it can have favourabic terms for both power 

producers and suppliers. For example, their American style feature that allow for early 

exercise makes them a very effective tool to hedge against extreme short-lived price 

movements such as spikes. On the other hand, by prescribing the maximum number 

of up- and down-swings as well as the penalty function, swing contracts reduce the 

short-term uncertainty in power demand experienced by the generators. 

In this chapter we consider a swing option with 4 swing rights, maturing in 14 days. 

The first swing opportunity starts a day after the contract is agreed and the last 14 

days later. The option provides the holder with daily swing rights- i. e. only one option 

can be exercised at a particular day- where the notification should occur within a short 

time interval after the announcement of the following day's power price by Nord 

pool4l . The incremental amount will then be delivered on the following day. It will be 

assumed that the holder of the option has another forward contract with the obligation 
to take one unit of power per day, where the price is fixed to the forward price for the 

same delivery period as that of the swing option. For simplicity, the unit will be set to 
I MWh 42 

. Therefore, the swing contract will give the holder the right to double the 

41 Since Nord Pool is a day ahead market as explained in Chapter 4. 
42As the problem scalcs %rith the amount, every amount can be used here. 
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amount four times during the options life within the two weeks of interest where the 

price is the same as in the forward contract. 

The reason for specifying such a contract with small time steps between the swing 

opportunities, rather than having larger time steps, e. g. monthly, is due to the fact that 

in electricity hedgers are mainly concerned about daily variations in prices and 

volumes caused primarily by the spikes. In other markets, such as natural gas or coal, 

swing opportunities have time steps of a month (like the ones examined by Jaillet et al 
2004) and hedgers are mainly concerned about mid- to longer-term variations in 

prices. Of course a similar contract can also be traded in electricity, since they are 

tailor made, but discussion with market practitioners in Nord Pool showed that they 

are mainly interested in shorter time contracts, as they provide a better fit to their 

requirement in the market. Nevertheless, the qualitative properties of the results 

would have been the same if we had chosen larger time steps. 
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6.3 Literature Review on Swina Contracts 

There is a wealth of literature in swing option pricing. As is the case for path- 
dependent derivatives with American optionality inherent to them, the main methods 

of pricing are divided into trees/mesh methods and Monte Carlo integration. 

Starting from the mesh methods, Lari-Lavassani ct al (2001) consider a general swing 

contract in the gas market, entitling the owner to a number of up (purchase gas) and 
down (sell gas) swings that can be exercised on certain discrete dates. A penalty is 

levied to the owner of the contract, if he does not make net purchases within a 

specified volume over the life of the contract. The pricing of the contract is done 

using a discrete binomial forest method and considers both one and two factor 

models. They then use the one factor model to estimate the hedge parameters. They 

further suggest that the swing contract can be considered as a combination of 
Bcn-nudan put and call options, corrcsponding to the number of up and down swing 

rights. They further prove convergence betwccn the discrete binomial forcst model 

and a partial differential equation model based on Black and Scholcs (1973) which is 

used to value the swing contract as a series of European options. 

Jaillet et al (2004) introduce a trinomial forest pricing method for swing options; 

using a one-factor lognormal mean-reverting forward curve model, the trees are 

constructed along the lines of Hull and White (1994) and also incorporate seasonality 
in the underlying process. They find that the swing option is exercised in a "bang- 
bang" strategy-, that is to say that whenever the expected spot price deviates from its 

equilibrium level, the option is exercised, but this is mainly the case when no 
penalties are imposed. 

The price behaviour of swing contracts is also investigated by Clewlow, Strickland 

and Kaminiski (2001). They propose that a swing contract behaves as a string of 
European options or vanilla swap under certain circumstances. More specifically, they 
find that when a contract is close enough to maturity and the penalty is sufficiently 
high then the maximum local volume should be purchased at every possible swing 
date in order to avoid a penalty if the global minimum has not been reached by 
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43 
expiration, hence the contract is similar to a vanilla swap . Similarly, when the 

contract is sufficiently in the money, or the penalty is sufficiently low, the contract is 

similar to a strip of vanilla options. They also note that there exists a critical spot 

price, which changes over time, above which the swing contract holder will exercise 

if further volume needs to be purchased to avoid a penalty. This critical spot price 

may be below the strike price if the penalty is sufficiently punitive. The analysis is 

performed for a swing contract where the number of swing rights is equal to the 

number of possible swing dates and the pricing is performed using a trinomial forest 

as in Jaillet et al (2004). 

Turning now to the Monte Carlo methods, in recent years stochastic mesh-methods 

and regression-bascd methods have been developed for the pricing of American 

options. These methods are suitable for problems with higher dimensions (such as 

having more than two state variables) and can handle stochastic parameters as well as 

jumps. In particular the method by Longstaff and Schwartz (2001) estimates the 

optimal exercise boundary problem by performing a set of least squares regressions 

on the continuation value, and thus early exercise takes place when the intrinsic value 

is higher than the estimated value function. The method's application to swing options 

has been performed by D6rr (2003) to value swing options using a simple mean- 

reverting model for electricity prices. He then monitors the expected payoffs of Swing 

options for different (sub-optimal) exercise strategies and compares with the Lcast 

Squares optimal exercise strategy. 

Ibanez and Zapatero (2004) propose a Monte Carlo simulation method for pricing 
Bermudan options based on the computation of the optimal exercise frontier. The 

optimal exercise frontier for each exercise date is the price of the underlying or the 

locus of points at which the exercise (intrinsic) value equals the non-exercise (live) 

value. Ibanez (2004) extends Ibanez and Zapatero (2004) Monte Carlo algorithm to 

price swing options. He calculates an optimal exercise frontier for each possible 

number of remaining swing rights. A recursive algorithm is used to calculate each 

point on the optimal frontier at each swing date, which uses a forward tree to calculate 
the intrinsic value. He then simulates paths of the forward curve (using again a one- 
4' By local minimum or maximum, we referrer to the minimum or maximum volume that can be purchased at each swing date. 
By global minimum or maximum we refer to the total maximum or minimum volume that can be purchased during the whole 
lifetime of the swing option. In their paper, Clewlow et at (2001) impose a penalty only for a global minimum. 
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factor mean-revcrting or log-normal model) and decides at each swing date whether to 

exercise or not. Exercise occurs if the spot price is above the optimal frontier at the 

swing date. Exercise occurs at each date dependent upon the optimal frontier because 

the expected path of the forward would not provide greater financial profit from 

exercise at later swing dates. The simulation is repeated a number of times and the 

mean of the sum of the discounted payoffs in each path, gives the contract's value. 
The forward path increments are the time steps between swing dates in this model, in 

contrast to the many time steps in the model of Lari-Lavassani et al (200 1), and in line 

with Jaillet et al (2004) and Clewlow et al (200 1). 

Finally Keppo (2004) considers the cases of one-swing right per contract and full 

swings (where the number of swing rights matches the number of swing dates), but 

not the case where the number of swing rights is smaller than the possible swing 
dates. He assumes a complete market for the electricity, which is not a robust 

assumption, and no arbitrage so that there is a selection of European options and 
forwards with the same strike prices as the swing contract to replicate swing 

strategies. He suggests that the one-swing contract can be replicated using an option 

purchased for the maturity at which the swing contract holder is expected to exercise 

their right. Keppo (2004) recognises that in his one-swing case the hedging strategy 

will be dynamic, depending on which date is expected to be the optimal exercise date. 

He provides a lower bound for the swing option valuation by considering the value of 

the option/forward needed to purchase the minimum required amount. Thus his 

strategies rely on a bang-bang exercise fashion. 

Following the discussion on the literature review, we can see that no analysis has been 

done to see how the presence of jumps in the market affects the swing option 

premium. However if someone uses a jump diffusion model, hedging becomes almost 
impossible especially when the jump size distribution is continuous and thus a 
continuum set of other derivatives is required to hedge the jump risk, as discussed in 

the previous chapter. We also note that due to the American-type features of swing 
options, no closed form solutions are available thus one has to rely on numerical 
methods. Finite difference schemes and trees, as discussed in the previous chapter, are 
well suited for low dimensional problems and standard dynamics, which do not 
incorporate jumps. In case when the state variables of the underlying asset of the 
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derivative contract are more than two, finite difference schemes and trees become 

impractical as the number of branches explodes. As proposed in the literature, to 

overcome this problem Monte Carlo techniques are the best alternative (see e. g. 
Ibanez and Zapatero 2004). The two methods used in the literature are the ones based 

on either estimating the value function based on the Least Squares Monte Carlo 

method by Longstaff and Schwartz (2001) or by the estimation of the optimal exercise 
frontier proposed by Ibanez and Zapatero (2004). As reported by Ibanez and Zapatero 

(2004), both methods provide low-biased estimators, however the advantage of Ibanez 

and Zapatero (2004) is that it provides the holder of the option with an optimal 

exercise rule. On the other hand as reported on their paper, their method is much more 

computationally intensive. Since the main focus of this paper is on the sensitivities of 

swing options to changes in the parameters that affect their value and we thus need 

the most accurate and efficient algorithm (since sensitivities involves hundreds of 

prices to be estimated), we will use the LSM method by Longstaff and Schwartz 

(2001). Moreover, as shown by D6rr (2003), one can also identify the exercise 
boundary when using the LSM algorithm. Finally another contribution to the literature 

is the exploration of the incremental swing premium sensitivity with respect to strips 

of European options, which can serve as a benchmark to market participants and 

provides further intuition on how much they have to pay for the extra optionality. 

215 



6.4 Swinja Options Pric 
64.1 Description 

In this section, we will explain more in depth the characteristics of swing option 

contracts, along the lines of Jaillet et al (2004). Swing options usually are base-load 

forward contracts with embedded optionality. A base-load contract is the obligation to 

deliver or take a certain (daily) amount of the underlying (e. g. MWh) commodity for a 

predetermined price (e. g. NOK/MWh). The swing part of the contract allows for 

flexibility to change the delivery amount that is agreed in the base-load forward 

contract, during its lifetime. There is a great variety of swing options traded in the 

energy markets, however they all share some common characteristics. 

In the current setting let 0 denote the time when the contract is written, T, and T2 the 
first and the last day of the exercise period of the swing contract that in general 

coincides with the first and the last day of the delivery period in the forward contract, 
N is the maximum number of rights the holder is allowed to exercise, and 
IT, :5 -r, ....... r. :5 Tj are the discrete sets of dates at which the exercise of one right out 

of the N is allowed for each rj, where N :5n. Note that if N exercise rights were 
allowed on a given date, then the contract would be equivalent to N Bermudan 

options. Generally if a right is exercised on a given date, there is also a refraction time 
AtR, which is the time lay before the next exercise can take place, and in most cases 

equals to (rj,, -, r). 44 

The swing contract may provide the holder with the right to decide whether to, for 

example, take a positive incremental amount v+(r) on top of the volume specifled in 

the base-load contract and thus receive an increased amount of the underlying 
commodity, or a negative incremental amount and thus deliver a volume of V(r) of 
the underlying commodity, on a specific exercise date Tj, on which a swing 
opportunity is allowed. Hence for a specific exercise date Tj, the exercise decision can 
be summarised by the following variable: 

44 The notation largely follows Jaillet et al (2004). 
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I if the swing holder exercises 
X*(-r, )=- for more volume on date r, 

,0 otherwise 
I if the swing holder exercises 

X- (7-j) for less volume on date -rj 

,0 otherwise 

Since by logic, a simultaneous exercise for additional or less volume does not make 

sense and no more than N exercises rights are allowed, the following constraints are 

associated with the contract: 

foralll: gi: gn 
(6.2) 

., 
(X» (-rj) + X- (-rj»: g N 

i. j 

In addition we define the total number of times the holder is allowed to consume extra 

volume by N+, and the total number of times he is allowed to decrease the base-load 

volume by Ar, therefore N+ might be different from JV. Thus, we have: 

0: 5 (Tj)): 5 N' and 0: 5 (x- (T, )): 5 N- for all 1: 5 j: 5 n (6.3) 
I-j i-j 

Moreover, there are also constraints on the swing volume. As stated in Jaillet et al 

(2004) there are in general two main kinds of volume specifications in swing 

contracts that are categorised according to the duration of the exercise decision. One 

category is given by local effects, where the exercise of a right modifies the delivery 

volume only on the date of exercise and thus the delivery reverts to the level specified 
in the base-load contract thereafter. In these kind of contracts, the incremental 

volumes v+(r) and V(r) are bounded from above (by v. +. and v, -n. ) and below (by 

V. in and Vmin) due to physical constraints in the market (e. g. there is a maximum 

MWh that a transmission cable in a grid can carry), thus for each exercise date 7-, 9 
1: ý j: ý 
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XI-V-. <V-(7-j):! gX; V. -. 
j min 

+ +V. Xi in V+ 
(7 

1 Xj 
ax 

+V. 
(6.4) 

Therefore if the volume agreed in the bases-load contract is represented by Vb,,.,, i,. d, 

then the total daily volume delivered to the holder of a swing option is bounded from 

above and below as follows: 

++ (6.5) Vbase-load - Vmax :5 Vbase-load - Vm-in :5 Vbase-load :5 Vbase-load + Vmin :5 Vbase-load + Vmax 

The second type of specification volume is given by the global effect, since in this 

category the exercise right influences all future volumes and thus the volume remains 

at the new level until the next swing right is exercised. Thus the overall "swing" 

volume until the last exercise date, r,, is given b y45 : 

ff V =1(X+(TJ)V+(TJ)-x-(TJ)v-(7j» (6.6) 
ra J-1 

In the current analysis we will use the first category, i. e. the local effects. The price of 

the underlying for which the holder of the option can perform up- (take extra volume) 

and down-swings (deliver volume), so to speak the strike price K, may depend on 

time, meaning that strike prices can be a function of forward prices and do not 

necessarily have to be the same for both up and down swings. Instead, the strikes can 

contain for instance bid-ask spreads. For simplicity in the current setting we assume 

that they are both equal. 

Another common restriction in swing contracts is the agreement of a penalty payment 

taken during v (V), that is due when the total cumulative quantity V=V,. +nV 

the contract's term is below a minimum value V or above a maximum value V ..... . 
respectively. Note that the total volume delivered to the holder during the whole 
delivery period, is the sum of the total base-load volume delivered from the forward 

contract and the total "swing" volume. Most of the time the penalty is paid at the 

maturity of the contract T2. There are several ways to define the penalty amount as a 
function of the quantity taken. For example (as in Jaillet et al 2004), the penalty can 
be constructed to be a constant amount C NOK, if the lower limit is more than the 

45 "Swing7 volume refers to die total excess volume that is consumed due to the optionality of the contract. 
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total consumption V, and a per unit penalty of P, if the total consumption is above 2 

the volume allowed: 

c if V<V. i. 
W(V)=, 0 if V-<V<V. (6.7) 

I(V 
-Q 

PTý if V. <v 

In another situation the upper and lower limits may be dictated by technical 

constraints which cannot be violated. Thus we have: 

00 if V<V. i., 
V(V)=- 0 if V-<V<V. (6.8) 

loo 
if V.. <V 

The penalty functions that will be used in this chapter belong to the first category. 

64.2 U 
-0 pper and Lower Bounds of Swing 
__ptions 

As shown by Jaillet et at (2004) when there are no penalties the following boundary 

conditions exist for swing options: 

1. A swing option with one exercise right (N=I) is equivalent to a Bermudan 

option with the same strike price, K, and exercise dates, 

IT, :! ý rig ****9 'rn :! ý T21 given the fact that a Bermudan option can be 

exercised (like swing options) at discrete points in time. 

2. A swing Option with one up- (N"=]) and one down-swing (N'=]) 

opportunity is equivalent to the sum of one Bermudan put and one 
Bermudan call with the same strike price, K, and exercise dates, 
ITI: 5 rlp****prn -, 

5 T21 
* 

3. A swing option with exercise rights equal to the exercise opportunities (i. e. 
N=n) is the same as a strip of European Options, with maturities equal to 
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the dates of the swing opportunities. Therefore if we have N=n and only 

up-swings (down-swings) are allowed, this is equivalent to Caps (Floors). 

4. For a swing option with N' upswing rights and Ar downswing rights, the 

upper bound equals to the sum of Ar' Bermudan call options and JV 

Bermudan put options. Because the Bermudan options can be exercised 

altogether at once when the optimal exercise condition is satisfied, 

contrary to the corresponding swing option which allows only to exercise a 

single swing per exercise opportunity, the value of the Bermudan option 

bundle is always greater than or at least equal to the swing option's value. 

5. For a swing option with N+ up-swing rights and N' down-swing rights, the 

lower bound equals to the sum of the N+ most expensive European calls 

and the Y most expensive European puts among the strip of European 

options covering all exercise opportunities. This is based on a set of the 

best exercise dates seen at the valuation time. Thus, the exercise dates are 

already chosen at the valuation time. On the other hand, the swing options 

allow the holder to postpone the exercise decision to another swing 

opportunity. Consequently, the value of the European option collection is 

always less than or at most equal to the value of the swing option. 

6. When there are not any penalties for overall consumption, the highest or 

the lowest level allowed by the local constraints should be taken or 
delivered when a swing opportunity is exercised on a given date. 

6 4.3 Intuitive Valuation of Swing Options 

In this section we provide a valuation example of a swing option with the following 

terms: First of all let's assume the amount of commodity that can be delivered at an 

exercised swing date is constant. That is to say that, v+(r)=- v+ and V (r)-= V, thus the 

total "swing" volume allowed is given by V,.. = v+ N' - v- N-. Let also u(r) and d(r), 

denote the number of up- and down-swings performed up to an exercise date Tj, 
including the exercise decision taken at rj. Thus u (r. ):! ý N+ and d (r. ) :ý N', but also 
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u(-r., -, 
): 5 u(-r, ) and d(-r,, ): 5 d(-r, ). Moreover we assume that the exercise price is 

constant, K, and is the same for both up- and down-swings. 

The value of the swing option for the underlying price P,., at the swing opportunity 

date rj, with u(r) up-swings and d(r), down-swings exercised, is denoted 
(, rj), d(r, ) by ,ýV,., 
' 

. Having in mind that it is only allowed to exercise a single swing right 

at every opportunity. 

Now, when the holder exercises an up-swing, which is only possible if the maximum 

number of up-swings has not been reached so far, he receives the incremental volume 
'f v or a price of K and thus adds v' (P, - K) to his Profit&Loss. Moreover, the holder 

r, 
has to account for the fact that the swing contract is left with one up-swing right less 

for the ftiture, i. e. the value now becomes The same, of course 

applies to down-swings. 

Given the above notation, and assuming that the holder tries to maximise the option 

value, we can say that the valuation of a swing option becomes a stochastic optimal 

control problem, since the aim of the holder is to find a suitable maximisation 

strategy. It is very similar to the valuation of American and Bermudan options but 

with more dimensions. If neither the maximum number of up-swings nor the number 

of down-swings has been reached, i. e. u (7-. ) < N'and d (Q < N", the value of the 

option will be: 

K-P, (6.9) swtg 7, j 

Thus the value of the swing option is the maximum out of three strategies: The first 

strategy is to exercise an up-swing, receive a profit of v' (P', - K) and thus remain 

with one upswing less from what we had after the previous exercise decision was 
taken at rj-,. The second strategy is to exercise a downswing, receive a profit of 
V (K-P,, ) and thus remain with one down-swing less from what we had after the 
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previous exercise decision was taken at rj. 1. And the final strategy is to perform no 

exercise at all and remain with the same rights we had after the exercise decision at 

ri-I - 

On the other hand if the maximum number of up-swings, N+, has been reached, the 

value of the swing becomes: 

N+. d(rj) VN+, d(rj-, )+l VN+, d(rj-, ) 

=max swing r, +v-(K-Pr ), 
swing 'r. (6.10) 

swing 
Vj 

whereas if the maximum number of down-swings, Ar, has been reached, the value of 

the swing becomes: 

swing 
V, 71 "- = max 

( 
swing 

Vro, (1-, 
-, 

)+I, N- 
+ V+ 

(P,. 

,- 
K) 

j swing 
VIM, 

) 

(6.11) 

The above equations (6.9) - (6.11) are valid only if j<n, i. e. before the last swing 

opportunity when there is still time to exercise more rights. At the last exercise 

opportunity penalty payments are due if any of the restrictions are violated. That is to 

say that if the penalty is a function of the total volume consumed, e. g. 

=O(u(r. )v"-d(7-. )v-), then the value of the swing option at the last 

exercise opportunity date is as follows: 

V'('-w("») -nux(ii'(P,. -K)-e- 
)+1, d(r_1), V- 

SWIN Ir. 
-0ý"ld"'» 

N+, d(r. ) 

=max( v-(K-P )-0 N+, d(-r. 
-, 

)+I, 
_ON+, 

d(r. 
-I) 

swing 
Vl. '. ' 

VY(T. ), )r = max v* (P,. 
- K) -ing 7. 

However we have to note that the above solution is based on the perspective of profit 

maximisation, and thus assuming that there exists a liquid spot market from which the 
holder of the structured product can buy the underlying or sell it, when feasible. Of 

course there exist cases when the holder is obligated to exercise a right, not because it 

maximises his balance sheet but for demand needs, whenever the spot market is not 
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liquid at all. For example if the contract specifies delivery at a specific location, which 

itself is not liquid market, it might not be possible to sell the unneeded volume to a 

liquid grid. Moreover, when the demand increases substantially and the spot market is 

illiquid at the current location, the utility might exercise a swing right even though it 

might not be the best strategy. However whenever the exercise strategy is driven 

solely by the commodity demand the customer faces, we are no longer dealing with 

an option anymore, but with a load-serving contract. In its basic form a load-serving 

contract involves serving a load at a given location under the assumption that the 

supplier controls the physical dispatch rights of the load, ensuring that the amount of 

load to serve is not directly determined by the exercise policy of the demand owner. 

In this way we are making sure that we are serving the actual physical load and not 

the net load after the owner of the load has exhausted cheaper sources of delivery. 

Thus for example the owner of the load in some circumstances might be obligated to 

call on delivery of power when the true demand is low and the price is very high. The 

load-serving contracts are not considered here. For more on this look at Eydeland and 

Wolyniec (2003). 
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6.5 Least Square Monte Carlo for Swinw Options 

6 5.1 Monte Carlo Simulation for American Ontions valuation 

As discussed in the previous chapter, Monte-Carlo methods are very popular in 

practical finance, since they are - in general - easy to implement and allow the 

treatment of problems with high dimensionality. In particular, when there are multiple 

stochastic factors, or the process involves jumps, numerical methods like finite- 

differences or binomial techniques become impractical while Monte Carlo is still 

appropriate. 

In the case of electricity derivatives, appropriate stochastic processes for the 

underlying are in general considerably complicated, since they have to account for 

seasonality, mean reversion, spikes etc. Calibration of a model for the energy price to 

real market data usually requires at least two stochastic factors, frequently in 

conjunction with jump diffusion. Therefore Monte-Carlo methods may be the best 

choice. 

However, the treatment of early exercise features is a great challenge for Monte- 

Carlo methods. For American and Bermudan options several approaches to this 

problem have been discussed in the literature section. As we explained among the 

most popular methods is the one by Ibanez and Zapatero, (2004), which focuses on the 

computation of the optimal exercise frontier, which is the locus of points where the 

exercise value matches the continuation value. Another direction in the literature, 

focuses directly on the conditional expectation function involved in the iterations of 
dynamic programming and used least squares regression to estimate the conditional 

expectations. These conditional expectations, i. e. the continuation values under the 

assumption that the option is not exercised at a particular opportunity (iteration step) 
are estimated by least squares regression. One example is the Least Squares Monte 
Carlo (LSM) method, an algorithm proposed by Longstaff and Schwartz (2001), 

which seems to have become more and more popular among practitioners. In the 

current setting we will explain how to use the LSM algorithm to value Swing Options, 

as it was presented by D6ff (2003); the alternative algorithm introduced by Ibanez 
(2004) provides the same degrees of low-biasness in the pricing but at the same time 
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is more complex to develop and much more computationally intensive as discussed in 

the section of the literature review, therefore it will take much longer to estimate the 

hundreds of swing option prices that need to be estimated for our analysis. 

The basic idea of the Longstaff and Schwartz algorithm, described in detail in 

Clement et al (2002), is to use least squares regression on a finite set of functions as a 

proxy for conditional expectation estimates. In a first step, the time axis has to be 

discretized, i. e. if the American option is alive within the time horizon [TI, T2] early 

exercise is only allowed at discrete times IT, ='r, ...... r,, = T2). The American option is 

thus approximated by a Bermudan option. 

For a particular exercise date rk, early exercise is performed if the payoff from 

immediate exercise exceeds the continuation value, i. e. the value of the (remaining) 

option if it is not exercised at Tk. This continuation value can be expressed as the 

conditional expectation of the option payoff with respect to the risk neutral pricing 

measure. The expectation is taken conditional on the information set F, which is 

available atTk. Representing the continuation value by F(co; Td we can write: 

F(w; 7-, ) = E* e-"(TJ-fk)C 
(w, 

7-j; 7-� T, ) I. F,. 
) 

Z 
j-k+I 

where r is the continuous risk-free rate of interest and C(CO, rj; 'rk, T2) denotes the 

remaining cash flows, conditional on the option not being exercised at or prior to time 

rk and the holder following the optimal exercise strategy for all remaining 

opportunities rj between Tk+j and r, =T2. Note that for each path CO there may be at 

most one j with C(co, rj; rk, T2) > 0, since the Bermudan option has only one exercise 

right, otherwise there is no exercise and C(co 'rj; rk, T2) = 0. 

Starting at r, =T2 we calculate the pay-off at expiry and then work backwards through 

time. The early exercise decision at timer,, -, 
is made by comparing F(oj;, r, -d with the 

immediate payoff Pqy(ý. 
_,,. 

), 
e. g. in the case of a call option 

Pay )= max (P,. 
_... 

- K, 0) 
, where is the value of the underlying at time 
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r,, -, in path co. While Pqy(]ý_.,. ) is known, the functional form of F(co; -r,, -I) is 

unknown, but can be represented as a linear combination of a countable set of 'r. 
-, - 

measurable basis functions. A basis is a set of vectors in a linear combination of 

which can represent every vector in a given vector space, and such that no element of 

the set can be represented as a linear combination of the others. A basisjunction is an 

clement of the basis for a fuction space, meaning that each function in the function 

space can be represented as a linear combination of the basis functions. Using this 

definition, Longstaff and Schwartz (2001) show that the continuation value can be 

represented by a set of basis functions B, as: 

F (w; 7-,, -, 
) a. (7-,, 

-, 
) B. (P,. 

_, 
) 

Z-0 
(6.15) 

Where B, (P,. 
_, 

) are the basis functions and a, (-r. -, 
)are the corresponding 

coefficients. Since we consider a Markov process for the state variable P, only current 

realizations of it can be included in the basis ftinctions B, For practical purposes F(CO; 

r,, -I) has to be approximated by using the first L< oo basis functions, and denote this 

approximation by F, (w; 7-. -, 
). For example, Longstaff and Scwartz (2001) use the 

first three polynomials i. e. P'- , P1 , P' IPI as basis functions. 
rn I rX I rn-I ril-I 

At this stage the crucial step is to estimate F, (w; 7-, ) by regressing the discounted 

values of C(w, rj, r, -,, Týd, i. e. the cash flows, which occur at 'r,, onto the basis 
functions. Since the early exercise decision is only relevant for those paths where the 

option is in the money at r,, -l the regression is restricted to these paths. In this way we 
limit the region over which the continuation value must be estimated and thus far 
fewer basis functions are needed to obtain an accurate approximation of the 

continuation value. The fitted values from this regression FL(W; 7-. -. 
), are an 

(unbiased) estimator of F, (w;, r. -, 
) as shown by Longstaff and Schwartz (200 1). Now 

the exercise decision is made by comparing Pqy(ý. ) with FL and thus 

determining whether early exercise is optimal for an In-the-Money path co at T, -I. 
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Once the exercise decision has been identified, the option cash-flow paths C(co, rj; 

rn-2, T2), can then be approximated. The recursion proceeds by rolling back to time 

Tn-2, and repeating the procedure until the exercise decisions at each exercise time 

along each path have been determined. The American option then is priced by starting 

at time zero moving forward at each path w until the first stopping time occurs and 
discounting back the cash flow to time zero. At the end the result obtained by Least- 

Squares Monte Carlo, VL,,,,, is the average over the discounted cash-flows from each 

path (note that there is at most one cash flow per path) 

v Lsm Cm (w, ) 
M 1.1 

(6.16) 

where C,,,, (w, ) denotes the discounted cash flows, which result from following the 

LSM strategy described above. 

Since the LSM method represents one particular strategy the "real" option value V 

(which represents the optimal strategy) must be greater than or equal to V,,,, - The 

,,. 
to V, i. e. the proposition that for any c>0 there exists an L< oo, convergence of V 

is such that 

limPr[IV-V,,,,, l >, E] 

for which the proof is provided by Longstaff and Schwartz (200 1). 

6 5.2 Extension ofLSM for Swing Options 

For the valuation of Swing options the basic concepts of Least-Squarcs Montc Carlo 

can be directly adopted, as it is shown by D6rr (2003). Since we now have more than 

one exercise right, however, we have to deal with an additional "dimension", i. e. the 

number of exercises left. As discussed at the beginning of the chapter, in this chapter 

we are considering swing options with 4 up-swing rights and 14 opportunity dates. 

The reason why we choose up-swings, is due to the fact that we are examining the 

case of a utility company that wants to hedge against adverse price movements that 

would affect its highly volatile costs. At the end of the section, we also look at down- 

swings and compare the different models proposed in this thesis. Thus in this section 
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we will describe the methodology for pricing these swing options using Monte Carlo 

simulation. 

We consider a Swing option with exercise opportunities at times r] to T14, i. e. with 14 

exercise opportunities. There are 4 up-swings, and the strike price at each opportunity 

is K. Sampling m paths yields the mx 14-spot price matrix P. The main difficulties 

arising from the presence of more than one exercise rights are the following: 

" The benefit from immediate exercise is not only the payoff, but the payoff 

plus the value of the remaining Swing option, which has one up-swing less 

than the original one as stated earlier; 

" When early exercise is performed at rj, rearranging the cash flows at later 

opportunities requires the cash flow matrix of the Swing option with one up- 

swing less than the original one. 
The generalized cash flow matrix of our algorithm must therefore have three 

dimensions: 

1. Number of paths (m) 

2. Number of time-steps (exercise opportunities= 14) 

3. Number of exercise rights (upswings) left 

We thus consider the following steps in the implementation of the LSM algorithm for 

swing options: 

STEP 1: 
We denote the cash flow matrix for u upswings left as C". In our example, there arc 

thus four mx 14 matrices C', C2, C3 and C4. At the initial step, we can calculate at the 

expiration date cash flows, and up to 14-(u-1) time steps before for each one of the 

matrices C", since only one exercise right is allowed at each time step. For example if 

we have 4- upswing left and there are 4 exercise rights remaining, and we are at time 

r1j, we may exercise one right at each time-step i. e. TIIJ12, T13 and T14 without having 

to look at the continuation value. Thus the contract becomes equivalent to a portfolio 

of 4 European call options with expiry dates r1j, r12, r13 and TU respectively. Thus after 

228 



the initial step in the procedure, the cash flow matrices for each C" look like the 

following: 

0, % %%... Pay(P,. �) 
Pay(P, 

2�) 
PaY(P13,1) PaY(P14,1)'ý 

%%%... Pay(PI,. 2) 
PaY(P12,2) Pay(p13.2) PaY(P 

c4 14,2) 

%%... Pay(P�., ) PaY(P12. M) PaY(P13. M) PaY(P14. M» 

pf 0000 /0 /0 /0 /0 PaY(P12,, ) Pay(P13, 
I) 

Pay(P, 
4,, 

) 

000 Pay(p Pa 0 Pay(P, 
2,2) 13,2) 

y(p 
C3 

/0 /0 /0 /0 
14,2) 

0000 /0 /0 /0 /0 PaY(P12, M) Pay (p, 3, M) 
Pay(P. 

4,, 
)) 

00000 /0 /0 /0 /0 /0 PtV(P13, 
I) 

PaY (p, 
4.1 

0000 
C2 

/0 Pa P 0000 /0 PaY(P, 
3,2) Y( 14,2) 

%%%% Pay(P, 
3., 

) PaY(P, 
4. M)) 

00000 /0 /0 /0 /0 /0 0/0 Pay (P, 
4,, 

cl= 
%%%%%% Pay(P. 

4,2) 

%%%%% Pay(P, 
4., 

)) 

where Pay(P,., )=max(P,,., -K, O) is the pay-off of an up-swing at the simulated 

path i and time step rj. The % means that the cash flows are undefined at the 

corresponding stage. 

For e we can combine the last four time steps in the initial step of the algorithm 

since it is obvious that early exercise takes place at T11 whenever the payoff at this 
time step is positive. Note that this is the fourth time step from the last. Similarly, 

when three up-swings are left immediate early exercise is performed at T12 and thus 

we can combine the last three time steps for C3. The matrix C2 corresponds to two up- 
swings left and C' corresponds to the cash flow matrix in the original Longstaff and 
Schwartz (2001) algorithm for Bermudan options. Thus at this stage all pay-offs have 

a known functional form and are equivalent to European call options, where as at 
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STEP 2: 
We now start stepping backwards in time. Let C, " denote the column vector j of 

matrix C, i. e. all cash flows at period rj. Thus C,, denotes the cash flows at TU Of 

Matrix C'. On the handCl4contains the elements of C. 
4 that belong to the paths that 

are In-The-Money at r13 discounted back to r13. For r, 3 we calculate the continuation 

values for one upswing left by least squares regression of the cash flow vector C: 4, 

onto the basis functions. As suggested by Longstaff and Schwartz (2001) the LSM 

method is very robust against the choice of basis functions, so the choice of a 

constant, P P' and P as basis functions should be appropriate. By considering I*j ri ri 
only paths that are In-the-Money, we limit the region over which the conditional 

expectation must be estimated, and far fewer basis functions are needed to obtain an 
accurate approximation to the conditional expectation function as shown in Longstaff 

and Schwartz (2001). The continuation value Cont. Ji) for a specific path i at time- 

step 13 with one up-swing left, is then estimated using the estimates of the 

coefficients of the basis function a, (7-. rom the regession, as follows: 
-, 

) f] 

AAA 

2 
+az( rJ3,1 Con ao 

(7, +a, (T, 
3)p T, 3)P +a3 

(7,3) P 43 (') 
13) r)3,1 r313.1 

Thus early exercise takes place for each element, i, that satisfies the following 

condition at TB: 

Pay, 3., > Cont, 
3 

(') 

Having determined where early exercise is optimal for the Bermudan option at r13, by 

satisfying condition (6.19), the cash flows for column 13 at matrix C, are now 
determined and the matrix may look like as follows: 
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'% % % % % Pay,,,, 0 
% % % % % Pay,,,, 0 
% % % % % Pay,,,, 0 

cl 
% % % % % 0 Pay, 4,4 (6.20) 
% % % % % Pay,,,, 0 
% % % % % Pay,,,, 0 
% % % % % Pay,,., 0 
% % % ... % % 0 PaY14,8 

Thus, as we can see from (6.20), we assume that early exercise occurs at T13 for paths 
I to 3 and 5 to 7 in this example. Note however, that for paths 1,3,5 and 7 the option 

was In-the-Money at T14, however since we assumed that for these paths, the 

continuation value atr, 3 is lower than the immediate exercise, the cash flow (P-K) is 

placed at T13, and the corresponding rows at column 14 have been replaced with zero, 

since this swing option is like a Bermudan and hence allows for one exercise right. 
At this stage, matrices 2 to 4 remain unchanged. 

STEP 3: 
Moving now to T12, we need to estimate the continuation value for the second matrix, 

Cow, ', (i. e. the value of a swing option with 2 exercise rights atr]2, by not exercising 

early at 7*12). since early exercise possibilities might exist. First of all we add up the 

cash flows for C2 forT14 and T13, i. e. we add up columns 14 and 13 of C2. This vector 

sum is denoted as C, 23+, 
4, 

but in this vector we omit all paths where Pay, 2,1 is zero and 

A2 

the remaining are discounted back to T12, and thus we get 
C13+14. The continuation 

A2 

vector Cont, 2 is then obtained by linear regression ofC13+14 on the basis function, 

which comprise a constant, P' 'p2 and P. Thus the early exercise condition 7*12.1 "12,1 1'12j 

now reads as follows 

Pay, 2,, + Cont, 12 (') ýý'Co n t,, (i) (6.21) 

This means that we also have to estimate Cow,, before early exercise is performed 
for C2. In other words condition (6.21) implies that early exercise should be 

performed at those paths were the pay-off is positive and the value from immediate 
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exercise and one swing right remaining (equivalent to a Bermudan Option), is greater 

than not exercising and staying with two exercise rights. For those paths where 

condition (6.21) is satisfied, early exercise takes place. This means that for each 

corresponding path i, C,, (i) is set equal to the payoff Pay(Pi, 12) and the cash flows 

C22 th th 
ý3(i)and Cji) (i. e. the 13 and 14 column of C) are replaced by C., (i)and 

C, 'X) (i. e. the 13thand l4thcolumn of C' in (6.20)), respectively, reflecting the fact 

that we have I up-swing left after having exercised I right at r12. After that, early 

exercise for T12 is performed in C', i. e. at the previous iteration step. While C3 and C4 

still remains unchanged in this step the other cash flow matrices in our example might 
look like as follows: 

0 /0 0 /0 0 /0 O/o Pay,,,, PaYMI 0 

0 /0 0 /0 0 /0 0 /0 0 PaY13,2 0 

0 /0 0 /0 0 /0 0 /0 PaY12.3 POY13,3 0 

c2 
0 /0 0 /0 0 /0 0 /0 PaY12,4 0 PaY14,4 

0 /0 0 /0 0 /0 0 /0 Pay, 
2., 

PaY, 
3.5 

0 

0 /0 0 /0 0 /0 0 /0 0 PaY, 
3.6 

0 

0 /0 0 /0 0 /0 0 /0 PaY, 
2,7 

PaY, 
3,7 

0 

0 /0 0 /0 0 /0 0 /0 PaY12,9 0 PCýYKS, 

% % % 
*** 

% 0 Pay, 
3,1 

0' 

% % % % Pay, 
3� 

() 

% % % % Pay�� 0 0 

cl = 

% % % % Pay, 
2,4 

0 

% % % % 0 Pay, 
3� 

0 

% % % % Pay, 
3� 

0 

% % % % Pay, 
2� 

0 0 (6.22) 
ý% % % 

**' 
% Pay, 

2� 
0 0) 

For C2 early exercise at T12 was performed in paths 1,3,4,5,7 and 8. Note that in 

paths 3 and 7, and the cash flows at TM and'rJ4 had to be modified according to C, at 
the previous iteration step (STEP 2), as in (6.20). After performing the early exercise 
procedure for C2 at'r12, we can perform the early exercise for C', which is something 
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that follows from equation (6.2 1). Note that at T12 in C' early exercise occurs only in 

paths 3 4,7 and 8. 

STEP 4: 
In the same fashion early exercise tests have to be performed for C3 atr 11 and C4 at 

r1o. Thus at r1o early exercise takes place if the following conditions are satisfied for 

those paths where the immediate payoff is positive for C4, C3, & and C' respectively- 

t4 (i) Pay,,,, + Cont, ', (i) > Con 1. 
Pay,, 10 + Cont, ', (i) > Cont. ', 

o 
(i) 

(6.23) 
Pay,, 

10 + Cont' (i) > Cont2 (i) 10 10 

Pay,, 10 > Contl'o(i) 

Repeating the same procedure until ri, we end up with the final cash flow matrices C', 

C2, C3 and C4. From these matrices we obtain the value of the corresponding Swing 

options by taking the sums of the discounted cash flows in every row, since they 

correspond to the cash flows using the LSM strategy, and then taking the average of 

all the row sums of the discounted cash flows to find the expected value of the swing 

option. 

The pricing procedure described in this section is implemented in the next section to 

estimate the incremental premium required for swing options and identify how its 

value is driven by the different parameters that determine the stochastic behaviour of 
the electricity price. 
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6.6 Swinz Options A nalvsis and Results 

As discussed in the introductory section of the paper, we consider a contract with 14 

swing dates, at daily intervals, and four swing rights. The option provides the holder 

with daily swing rights, where the notification should occur within a short time 

interval after the announcement of the following day's power price by Nord Pool. The 

incremental amount will then be delivered on the following day, since the spot refers 

to the day-ahead market. The first swing opportunity will be the first day after the 

contract is negotiated and the last swing opportunity will be for two weeks later. It 

will be assumed that the holder of the option has another forward contract with the 

obligation to take one unit of power per day, where the price is fixed to the forward 

price. For simplicity, the underlying base unit will be set to I MWh. The swing 

contract will give the holder the right to double the amount of electricity received four 

times during the options life within the two weeks of interest at the forward price. 

Thus the contract specifications are shown in Table 6.1; in the current analysis no 

penalties are assumed, as they will be examined later in the section on the effect of 

penalties. 

Table 6.1: Parameter values of swing contract specification used In 

the sensitivity analysis 

Swing Contract eciflications 
Up-swing 

ammount (v) I MWh 
Down-swing 
ammount (V) 0 MWh 

Number of up- 
swings 
allowed (Ar") 4 
Number of 
down-swings 
allowed (Ar) 0 
Refraction 
perio t I day 
Exercise Price 170.20 
(K) NOK/MWh 

As discussed at the beginning of the chapter, our focus is on the incremental swing 

premium, which is defined as the difference in the price of the swing option against 
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the strip of the most valuable European options, which also determine the lower 

boundary of the swing option 46 
, 

in percentage terms of the value of the strips. The 

strip of European call options consists of the four most expensive (valuable) options 

during the same period of delivery as that of the swing option i. e. the most valuable 

options out of the 14 different ones each one having maturities TI, T2 ..... Q4 respectively. 

Particularly in this section we are looking at the sensitivity of the option with respect 

to the parameters of the stochastic processes, X and Y. Thus each time in the 

simulation we vary one or two selective parameters and keep the remaining constant, 

as in the previous chapter in the sensitivity analysis of Asian options. The base case 

parameters are shown in Table 6.2. 

Table 6.2: Parameter Values used in the spike model for the analysis of Swing 
Options 

The table shows the value of the parameters of the spike model, used for the Monte Carlo estimation of Swing Option prices in 

the base case scenario. 

Model 

Parameters 

Parameters 

values 

X, 
k, 

5.137 

ax 1.03 

k, 2.98 

YO 0 

1 5.57 

Pi 0.26 

ci 0.35 
rk2-- 287.61 

The strike price is 170.20 NOK/MWh, which is the equilibrium spot price 

(log e -L, = log (5.137)) in the risk neutral world for the models without 
k, 

) 

seasonality. As discussed in the previous chapter, we do not consider the seasonal 

parameters and seasonalityf(t) since we do not want our results to be specific to any 

particular season, but rather we want to see how the different parameters from the 
46 Note that when n=N, and there are no penalties, the swing option is equivalent to N European Options. 
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stochastic factors affect the extra percentage premium paid for the swing option 

compared to a strip of European options. 

We thus start the analysis with an ATM swing option, using the non-seasonal 

components of the spike model that is: Xo = 5.137, YO = 0. The LSM method 
described in the previous section is then implemented to find the value of the swing 

option. The Monte Carlo Simulations were run using 200,000 sample paths each time, 

and for each option price sensitivity simulation we used the same set of random 

variables, as described in the previous chapter. 

6 61 Determinants ofAdditional Swing Premium 

Consider first the sensitivity of the relative extra premium paid for the swing option 

with respect to the jump intensity I and mean jump size, uj. Figure 6.1 shows that the 

relative premium of the swing option value is increasing with the jump intensity, I and 

mean jump size, uj. The jump size effect is becoming much more pronounced at 
higher intensity levels. This is the opposite from what it has been shown for American 

calls when there is a GBM and their price is the same as European call options, as 

early exercise in this case is not the optimal strategy (Hull 2003). The reason is that 

when jumps are introduced in the model, as soon as a positive jump occurs the holder 

of the swing options has the advantage to exercise immediately rather than wait until 
the expiration date, when the jump may have died out due to mean reversion. 
Furthermore, jump events are rare and hence when the opportunity comes and the 

price reaches extreme price levels, immediate payoff will yield high profits, where as 
in the European options case the holder is restricted to exercise at maturity only. This 
is due to the fact that the probability of a jump occurring during a time interval is 
higher than the probability of the event happening at a specific point in time, as the 

cumulative probability is the sum of the independent probabilities of the jump 
happening at specific points in time. Using the same intuition we should also expect 
the extra swing premium for down-swing options to increase with intensity and as the 

mean jump size becomes more negative, since the holder of the option will benefit 
from the more probable downward movements, and has the advantage of exercising 
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early rather than wait and miss the opportunities like the holder of European Put 

options. 

Fip-ure 6.1: Incremental Swinp- Ot)tion Premium Relative to StriDs, with resDect 
to chanues in Mean Jumv Size, uj, and *ump intensity, 1. 

The graph displaýs a scnsttiýitý analysis on the rclati%c c\(ra s%%mg premium N%ith 1CSpCC1 tO EUI-OpCan call. for a S%%ing option 
with 4 up-swing rights and 14 exercise opportunities. The prices of Swing Options are estimated using the LSM method 
explained in this chapter. by changing the parameters of the Mean Jump size, pi, and Jump Intensity, 

% of Extra 
Swing Prernium 

12 

Jump Arrivals I 

Expected Jump Size pi 

a 0%-l 0% a 10%-20% ci 20%-30% a 30%-40% 

On the other hand Filzure 6.2 looks at the sensitivity of the relative extra premium 

paid for the swing option with respect to the speed of mean reversion of spikes, k' and 

the jump size volatility, aj. The surface reveals that the relative extra premium is 

always increasing with respect to the jump size volatility. This is due to the fact that 

the more volatile the jumps are, the more extreme an event will be during the time 

interval and thus when an extreme event occurs the swing option holder will take the 

opportunity immediately and exercise one of his swing rights. This is also accentuated 
by the fact that pi>0 hence increasing the likelihood of exercising up-swings. On the 

other hand the relation with the speed of mean reversion is parabolic. This is all 

interesting finding and can be intuitively explained as follows; first of all as we 

showed in the previous chapter, the higher the speed of mean reversion of a spike the 
lower the option price, because if a spike occurs the speed of mean reversion will pull 
the spike back to the equilibrium level very fast. This is an advantage for swing option 
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holders, because when the spike occurs they can exercise immediately where as the 

European option holders will not benefit from the spike if it occurs before the option's 

maturity. On the other hand if k2 is very high, spikes die out very fast therefore early 

exercise opportunities disappear quickly and the extra premium is reduced. In the 

current case, the level of spike mean reversion at which the swing option holder's 

advantage starts decreasing is approximately 100 (Half-life of 2.5 days). This is 

because since the speed of mean reversion of the spikes at this level is so fast, the 

Swing option holder does not have the time to gain any additional advantage when 

compared to the holder of the strips. However care has to be taken since the above 
does not imply that the swing contract is cheaper; it is still more expensive than the 

strips, but at high levels of k, it becomes relatively less expensive compared to the 

strips. 

Fieure 6.2: Incremental Swinp- Option Premium Relative to Strips, vqth respect 
to chan2es in Weed of mean-reversion of spikes, k2, and jump size volatilitv, (w. l. 

The graph displays a sensiti% ity analysis on the relatix c extra svving premium with respect to Furopean call. for a Swing option 
with 4 up-swing rights and 14 exercise opportunities. 'I lie prices of Swing Options are estimated using the LSM method 
explained in this chapter, by changing the parameters of the Spike speed of Mean Reversion, k,, and Jump size volatility, a/. 

40% 
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30% 
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.4 Jump Size 
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It is then interesting to see how this turning point, just discussed, actually changes 

with the number of swing opportunities? Figure 6.3 plots the surface for the extra 

swing premium with respect to different values of the spike speed of mean reversion 

and the number of up-swing rights. First of all from the graph we see that by 
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increasing the number of swing rights the incremental swing premium decreases. This 

is expected since, as we will also explore in more detail later, as the number of swing 

rights approaches the number of swing opportunity dates -rj, the option value 

approaches that of European strips. However, in the graph we see that the turning 

point where the relative extra swing premium starts decreasing, occurs at higher 

speeds of spike mean reversion as we decrease the number of swing rights for the 

same number of swing opportunities (14 days). This is also expected since if one has 

for example just one swing right (Bermudan option), by keeping all other parameter 

constant and increasing the spike speed of mean reversion, he will have a greater 

benefit in relative terms, than someone with more swing rights, as there will be more 

extreme events for him to exercise his unique right. Of course at this point, we should 

expect the same behaviour for down-swings if we had a negative mean jump size 

using the same intuition just described. 

Fiaure 6.3: Incremental Swin2 Option Premium Relative to strips, with respect 
to chanp-es in speed of mean-reversion of spikes, k2 and number of exercise rjgLts 

(up-swinas). 
The figure shows how the relative swing option premium varies with respect to the number of up-swing rights and the speed of 
spike mean reversion, for a swing option with 14 exercise opportunities whose value is estimated using the LSM method 
described in this chapter. 
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EigqEL. ýA shows the sensitivity of the relative extra premium with respect to the 
diffusive component's equilibrium level and its speed of mean reversion. In this case, 
the extra relative risk premium is increasing with the speed of mean reversion as the 

equilibrium level decreases. This is happening because, for an At-The-Money option 
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as the one presented here, when the equilibrium level is higher than the current spot 

price and the speed of mean reversion is low, the swing option holder will benefit by 

waiting further until the spot price mean-reverts to the high equilibrium level, thus 

getting closer to maturity. Hence, the swing option value approaches that of the strips, 

since the most valuable European options are the ones with the longest time to 

maturity. 

Figure 6.4: Incremental Swing Option Premium Relative to Strips, with respect 
to changes in diffusive speed of mean-reversion, kj, and risk-neutral mean 

eguilibrium level of X, ;,, ). 
k, i 

The graph displays a sensitivity analysis on the relative extra swing premium with respect to European call, for a Swing option 
with 4 up-swing rights and 14 exercise opportunities. The prices of Swing Options are estimated using the LSM method 
explained in this chapter, by changing the parameters of the speed of Mean Reversion, kj, and the Risk Neutral Equilibrium 
Level to which the Diffusive component reverts to. 
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In the case when the equilibrium level is lower than the spot price (and hence the 

strike price), European call option prices decrease, since the spot price will revert 

closer to the equilibrium level, thus there is a higher probability that the option will 

end OTM. On the other hand the swing option holder has the opportunity to exercise 

early, and may exercise his swing rights early so as to maximise his profits, rather 
than wait until further in time when the spot price gets closer to the low equilibrium 
level. This additional benefit of course increases as the speed of mean reversion 
increases. Also note that the extra premium in percentage terins is quit high 

(maximum value being close to 1000%), due to the very low values of the European 
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options, as explained in this paragraph. Fig2re 6.5 presents the incremental percentage 

premium with respect to changes in diffusive volatility and jump intensity, in order to 

study the effect of the diffusive and the jump volatilities in the total swing premium. 
Surprisingly, when increasing the diffusive volatility, the relative incremental swing 

premium decreases. This is due to the fact that the standard deviation of the 

increments of the Brownian motion dW is equal to -sfd--t which directly implies that 

there is a greater range of possible prices the further away we move into the future, 

and this range is scaled up proportionally by the diffusive volatility parameter, ax. 
Thus as time to maturity increases, the number of exercise opportunities increase as 

well, so it is not optimal to exercise early. Therefore, even though swing option values 
increase with the diffusive volatility, their prices converge to that of strips (since 

European Options prices increase with time to maturity), as it is now more optimal to 

exercise near to the maturity date. Of course, as before, increasing jump intensity 

increases the relative extra swing option premium. So the swing option seems to be 

much more expensive when compared to the strips, when diffusive volatility is low 

and jump probability is high. Similar results on diffusive volatility where found by 

Eydeland and Wolyniec (2003). 

The above analysis on difftisive volatility provides some very useful conclusions. For 

example, consider the case where instead of using a jump diffusion model we use a 
simple mean reversion model with seasonal volatility, since we believe that prices arc 
more volatile at high demand periods due to the structure of the stack curve and we do 

not want to get involved into complicated jump diffusion models 47 
. Consequently, the 

swing option premium would be very much similar to that of the strips and thus no 
significant extra premium would be demanded; in this case one might also think that 

strips would provide an almost perfect hedge for swing options. On the other hand, 

using the spike model with seasonal jump parameters yields swing premia, which are 
relatively higher than those for strips, since jumps make it optimal to exercise early. 

47 A similar model with seasonal volatility was proposed by Kokebakker and Ollmar (2001) although they model the forward 
dynamics. Nevertheless the intuition of the results remains the same. 
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Figure 6.5: Incremental Swing Option Premium Relative to Strips, with respect 
to chanp_es in diffusive volatility, (;,, and *ump intensity, 1. 

The graph displayS a scrisnn m anal ý, sis on the relati% c extra sx% ing premium with respect to European ca IL for a Swing option 
with 4 up-swing rights and 14 exercise opportunities. I he prices of Swing Options are estimated using the LSM method 
explained in this chapter, by changing the parameters of the diffusive volatility parameters, e7X, and Jump Intensity, 1. 
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6.6.2 Swing Option Prices under the two DifLerent Model 

In this section we are going to explore the different swing option prices given by the 

MR and spike model respectively. We are going to make comparisons across different 

seasons, and we will also provide the upper and lower bounds of the swing options, 

which were discussed in the pricing section. The parameters used for the models are 

the same as the ones estimated in Chapter 4, Table 4.1. 

Figure 6.6 and Figure 6.7 show how the value of the swing options increases with 

respect to the number of swing rights for the diffusive Mean Reverting model (MR) 

and Spike models, respectively. As expected, as the number of swing rights increases 

the value of the swing contract increases, however the marginal return in the value of 

the incremental swing premium is diminishing. This is due to the fact that as the 

number of swing rights increases, the extra benefit the swing holder receives is lower 

because at the same time interval there are limited exercise possibilities. Thus 

increasing the number of rights with the same possibilities for exercise in that interval 
increases the value but at a decreasing rate. A formal mathematical proof of this is 
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shown by Meinshausen and Humbly (2004) using Doob's optimal decomposition 

theorem. 

In each graph we also show the upper and lower boundaries of the swing options. The 

upper boundary is given by a portfolio of American 48 options, where the number of 

options in the portfolio is equal to the number of swing rights. The American options 

are estimated using the LSM algorithm of Longstaff and Schwartz (2001). Note that 

the value of the portfolio consisting of American options is increasing linearly as we 

increase the number of swing rights, (since it is additive) and thus it becomes much 

more expensive than the actual swing option. This is because the holder of an 

American call can exercise all his rights at the same time at once, whereas the swing 

option holder is only allowed to exercise one swing option at each exercise 

opportunity. On the other hand, for a swing option with N' up-swing rights, the lowest 

boundary is the N+ most expensive European call options among the strip of European 

calls covering all exercise opportunities. From the Figures it can be clearly seen that 

the value of the strips approaches the value of the swing option and is the same when 

the number of swings is equal to the number of exercise rights. As explained earlier, 

this mainly occurs because in this case there are no more early exercise opportunities 

and thus the swing option becomes equivalent to the sum of European options, which 

is cquivalcnt to a Cap with daily excrcisc possibilitics. 

One clear difference between the values for the swing options produced by the Mean- 

Reverting and the spike model is the fact that the swing option prices produced by the 

Mcan-reverting model are much closer to their lowest boundary than the prices 

produced by the spike model. This is due to the fact that in the spike model we have 

jumps which, as we saw from the previous sensitivity analysis, give incentive for 

early exercise. On the other hand the Mean-Revcrting model has a greater diffusive 

volatility, and the analysis in Figure 6. showed that this decreases the possibility of 

early exercise thus the value of the swing approaches the value of the strip of 
European options. 

48 Here the term American option is actually more accurate to be referred as Bermudan options, since the rights can be exercised 
at specific points in time (i. e. daily) rather than continuously. 
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Fip-ure 6.6: Swinp- (up-Swinin) Option Values (NOK/MWh) and their 

boundaries with respect to the number of swinp- ri2hts for the Mean Reverting 

(MR) Model 
The figure shows the \a lue ot'SýNing opt ions \kith respect to the number of up-swing rights, and its upper and lower boundaries, 
which consist of American and European options respectively, using the Mean-Reverting model described in Chapter 4 without 
taking into account deterministic seasonality, f(t). 
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Figure 6.7: Swing (up-Swings) Option Values (NOK/MWh) and their 
boundaries with respect to the number of swing rip-hts, for the General Spike 

Model 

'I he fig Lire slioN%s (he NaI ue ot Sx%ing opt tons wit h respect to the number of up-swi jig rights, and its tip per and I m\ci boundancs, 
which consist ot'Anicrican and Furopean options respectively, using the Spike model described in Chapter 4 without taking into 
account deterministic seasonal ity, fti), and seasonality in the jump parameters. 
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Next we make a comparison between the two basic modes (spike and MR) using 
detenninistic seasonality Výt)) and the seasonal parameters of our models (i. e. the 

seasonal jump intensity volatility and mean jump size). More specifically in Figure 

6.8 we see that during winter time (in this case we estimated swing option prices for 

the first 2 weeks of February), the Spike model produces more expensive swing 

option prices compared to the MR model. This is caused by the fact that during winter 

the probability of a spike is much higher with a greater mean and more volatile jump 

size, which totally out-weights the higher diffusive volatility of the MR model. Thus 

extreme events cause earlier exercise opportunities and much higher profits. The 

opposite of course occurs during the rest of the seasons 49 when the jump probability 

and jump sizes are relatively low, thus making the Spike model generating lower 

swing prices. This is because the diffusive volatility is much higher in the MR model 

than in the Spike model and thus the possibility of reaching high values outweighs in 

value the possibility of reaching much higher but less frequent extreme values in the 

spike model. 

Fip-ure 6.8: Swinp- (up-Swinp_s) Option Values (NOK/MWh) in Winter and 
Spring using the original Spike and MR model with seasonality and seasonal 

Parameters 
Fhe figure compares the \ alue of the Swing options \kith different number of up-swing rights, produced by the Spike and the 
Mean-Reverting Modeis, during winter and spring. 

'9 Note that the swing options presented in the graph correspond to the first two weeks of May, but the comparative results are 
the same for the other months, excluding the months corresponding to winter. 
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Regarding down-swing options, the methodology in the Monte Carlo method is 

exactly the same, only this time the pay-off at each exercise opportunity is the same as 

that of a put option, max(K-P, O). Figure 6.9 shows the swing option values, by 

varying the number of down-swings, for the two different models in winter and 

spring. Not surprisingly, the Mean-Reverting model always produces more expensive 

values than the spike model in both seasons. This occurs due to the fact that spikes 

have a positive mean jump size, and thus any jump that occurs would be upward 

biased limiting any possibility of the spot price ending below the strike price. Thus 

the more positive the jump size, the lower the value of this put like option. 

Figure 6.9: Swing (down-Swings) Option Values (NOK/MWh) in Winter and 
Spring using the original Spike and MR model with seasonality and seasonal 

Parameters 
The figure compares the value of the Swing options with different number of down-swing rights, produced by the Spike and the 
Mean-Reverting Models, during winter and spring. 
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6.6.3 Exercise StratM Using LS 

Finally as an illustration of the exercise strategy using the LSM algorithin, we 

consider again our swing option with 4 upswings rights. We present this strategy 
using actual data, for a spiky period such as February 2001. Thus, our swing option 
has 14 exercise date opportunities starting from February 1" 2001 and the final 

opportunity is on February 14 th 2001. The contract is supposed to be agreed on the 
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31" of January 2001, with an exercise price equal to the spot price on that date 

(207.84), so the option is ATM. Figure 6.10, shows the spot price and the exercise 

strategy yielded by the LSM algorithm. Both the MR and Spike models yield the 

same strategy. From the figures it can be clearly seen that only 3 rights are exercised 

out of a possible maximum of 4. This is mainly due to the fact that the seasonal 
function. f(t) starts to decrease at that period as February is the last month of the winter 

period and we slowly enter spring time. Thus spot prices decrease, making the option 

to have limited exercise possibilities. However, there are 3 particular dates when 

spikes occur which take place on exercise date opportunities, 2,5 and 6. These are the 

dates, which the LSM algorithm chooses to exercise the option. Thus this analysis 

gives indication that spikes and seasonality play a crucial part in the exercise strategy 

as well as the pricing of swing options, and should be taken into consideration when 

pricing and trading these instruments. 

Fi2ure 6.10: SDOt Price and Exercise Stratep-v for Swinj! oi)tion usinp_ the LSM 

alp-orithm, for the period of 1/2/2001 to 14/2/2001 
The figure shoýýs the spot prices (lett axis), and the optimal exercise strategy (right axis) produced by the LSM algorithm for 
pricing a swing option with 4 up-swing rights and 14 exercise possibilities between L'2/2001 and 14/2/2001. 
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664 The Effect ofPenalties 

When valuing swing options with penalties, the valuation problem using the Monte 

Carlo simulation is slightly different this time. This is caused by the fact that even- 

though, e. g. for up-swings early exercise might be possible only if the spot price is 

above the strike price, in the presence of penalties early exercise might be possible at 

lower prices than the exercise price, in order to avoid any penalties payable at the 

maturity date. Tbus, if we use the same example as before with 4 up-swings, with a 

penalty function, ON the pay-off for 4 swings left unexercised at maturity T2", -, 2 T141 is 

Pay(P) = mar (P-K-O', At earlier dates, however we have to consider all spot 

prices generated by the Monte Carlo simulation and thus the least squares is 

performed for all possible pay-offs, since it might be possible to exercise earlier and 

avoid possible penalties. Thus, let C" denote the cash flow matrix for u up-swings 

exercised, hence each time we have to step forward from u=O to u=4. Therefore, early 

exercise is performed when the following condition is satisfied for all spot price 

paths: 

(P,,, - K) + Cont, *' > Cont,, 

where Cont, " is the continuation value of a swing option with u+I swings exercised. 

In this case, the Least-Squares algorithm will take longer since it has to run more 

regressions and with larger samples, as more paths are taken into account. When 

penalties are agreed in the contract it may be optimal to exercise a right even when the 

pay-off is OTM, in order to avoid a penalty. Thus we no longer consider paths that are 

only ITM money but also paths that are ATM and OTM, since it may be optimal to 

exercise early in order to avoid penalty payments at maturity. 

In this section we consider swing options with two types of penalty functions which 
are very similar to the Take-or-Pay contracts in the gas market. Let Pen denote the 

penalty function as a percentage of either the spot or the exercise price. We then 

consider the following two scenarios: 
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Scenario (1): 0 (U) Pen (u' 
- u,. )K if u* > u,. 

0 otherwise 

Pen (u' 
- u, ) P,, i 

Scenario (2): 0 (u) 
f U,. 

0 otherwise 

where u+ is the maximum number of swing options that can be exercised until the 

maturity of the option, and u, ', 
is the number of exercise rights that have been 

expected during the life of the contraceo. Thus the penalty which is paid at maturity is 

proportional to the number of rights that have been exercised during the lifetime of 

the swing option. Note also that under the two alternative scenarios, the penalty is 

either a proportion of the strike price, K, or of the actual spot price at maturity, PT, . 
Since an exercise right allows the holder to receive an extra MWh volume of 

electricity, the maximum volume that the holder can buy from the swing optionality is 

r=4 and if all the rights are thus exercised given the constraint that the holder cannot 

exercise more than the maximum u+, the penalty is zero. Hence, in this case the 

Penalty function is linked with the number of rights, however it could also be linked 

to the delivered volume as discussed initially in the pricing section of the chapter. 

Note that for the pricing of swing options with variable daily incremental swing 

volumes (i. e. v'(r) and Vft)), the LSM algorithm is similar to the one proposed in 

section 6.5, since whenever it is optimal to exercise early, the holder should purchase 
(sell) the maximum incremental volume. However, in cases when penalties are 
imposed, the algorithm has to change, since this time the gencraliscd cash-flow matrix 

of our algorithm must have four dimensions instead of three, since the optimal 

exercise decision can be computed by searching over the range of possible purchase 
(sell) volumes (v. -. to v.. ) for the volume which maximises the sum of discounted 

expectation and the value of the current purchased (sold), as the discounted 

expectation depends on the current volume purchase (sell) decision, since this affects 
the volume remaining to be purchased (sold) in the future in order to avoid the penalty 

payment, as shown by Clewlow and Strickland (2000). 

so Note that each exercise right gives the owner the option to buy I MWh of electricity, as in the previous analysis. 
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Fip-ure 6.11: Swint! (UD-SWin2s) Ovtion Value with resvect to number of swin2s 
and penalty M of Exercise Price, K). 

The figure shows the value of swing option prices with respect to the number of up-swing rights and the penalty function as a 
proportion of the Strike price, under scenario (1). 

160 

140 

120 
100 

Swing Option 80 
Value (Nok/MWh) 

60 

40 

20 

0ý3 
__ 

W-O. 

6 
Penalty (% on 

Number of Swing Rights Strike) 

I _F_0-20 
0 20-40 0 40-60 0 60-80 M 80-100 M 100-120 = 120-140 0 140-160 j 

Figure 6.12: Swing (up-Swings) Option Value with respect to number of swinus 
and penalty (% of spot price at Maturity, PT) 

The figure shows the value of swing option prices with respect to the number of up-swing rights and the penalty function as a 
proportion of the spot price at maturity, under scenario (2). 
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The results under the two scenarios are shown in Figure 6.11 and Figure 6.12, 

respectively. As expected the swing option values (with varying number of swing 

rights) decrease as the percentage penalty function increases. However we see that 

this decrease, which is sharp for a penalty function level of up to 40%, seems to be 

constant for both functions after this level. Thus the swing option value does not seem 

to be affected after the 40% penalty level, and this might be explained by the fact that 

the holder might have been forced to exercise all rights in order to avoid the penalty 

payments. On the other hand when using scenario 2, we see that the swing option 
bchavcs similarly as in scenario 1. 

Table 6.3: Swine (4-UID-Swings) Options Premia with respect to the Penalty 
of Exercise Price), and Strip of Calls 

The table shows the values of a swing option with 4 up-swing rights and 14 exercise opportunities for varying penalties (as a 
percentage of the exercise price, 170.20 NOV_MWh). The last column shows the value of a portfolio of the 4 most valuable 
European call options within the same period. 

Penalty 
(% on 
Strike) 

Swing 
Option 
Value 

Strip of 
Calls 

0 65.40 58.92 
0.1 39.41 58.92 
0.2 27.16 58.92 
0.3 22.66 58.92 
0.4 22.14 58.92 
0.5 22.13 58.92 
0.6 22.13 58.92 
0.7 22.13 58.92 
0.8 22.13 58.92 
0.9 22.13 58.92 
1 22.13 1 58.92 

Furthermore, for the case of 4 swing rights, Table 6.3, shows the value of a swing 
option by varying the percentage penalty function, as well as the value of a strip of the 
4 most expensive calls, which as explained earlier, act as the low boundary condition 
in the case when there are no penalties. We can see now that due to the penalties, the 
swing option values can be lower than those of the strips which arc no longer the 
lower boundaries for swing option values. 
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6.7 Conclusions 

In this chapter of the thesis we examined swing options, which are a very effective 
hedging tool in the energy markets, in terms of price, demand and supply risk. We 

explained their pricing methodology using Monte Carlo Simulations which is an 

extended implementation of the Least-Squares algorithm by Longstaff and Schwartz 

(2001). In addition we also showed the lowest and highest boundary conditions of 

swing option values in terms of strips of European options and Bermudan option; 
however we also showed that these work, only if there are no penalties in the contract. 

Furthermore, we performed a sensitivity analysis on the extra premium for up-swing 

option relative to the premium paid for strips (i. e. the lowest boundary conditions), in 

order to identify the value drivers of the swing option premium. The analysis gave 

very intuitive results; increasing the jump intensity and jump sizes increases the extra 

swing option premia since the infrequent jumps when they occur give a very 

advantageous profit for early exercise, something that the holders of European options 

are not able to exploit. On the other hand, by increasing the speed of mean reversion 

of the jumps there seems to be an increase in the relative extra swing premium, but up 

to a level of approximately 100. From that level onwards, jumps die out at a much 
faster rate and hence early exercise seems to be not so much in the benefit of the 

swing option holder maybe because, be may not be able to act fast enough to exploit 

all the early exercise possibilities. In terms of the diffusive mean reversion and 

equilibrium level, the swing option holder has a comparative advantage the fastest the 

speed of mean reversion and the lowest the equilibrium level, since any deviation 

from the equilibrium level can be exploited immediately using the early exercise 
feature. Finally, the higher the diffusive volatility the lower the extra swing option 

premium, since higher diffusive volatility translates into more possible spot prices in 

the future and thus early exercise is not optimal. 

Furthermore, we examined the swing option values for both the Mean-Revcrting and 
the Spike model and, as expected, the higher possibility of extreme price movements 

over winter makes the spike model to yield more expensive up-swing option prices 
whereas the opposite is true for the rest of the seasons when the probability of a spike 
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is low and their expected jump size is even smaller. On the other hand, the Mean- 

Reverting model always yields higher swing option values, when down-swing are 

examined, since this time the upward spikes do not benefit the put structure of the 

option. Finally, we also studied how penalties affect the value of swing options and 

we found that they decrease very fast up to a certain level. Furthennore, when 

penalties are imposed European strips stop acting as the lower boundaries of swing 

options since the holder of the option may be forced to exercise un-economical rights 
in order to avoid the penalty payment at maturity. 
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7. CONCLUSION OF THE THESIS AND EXTENSIONS 

7.1 Summarv of the Findinjes 

The aim of the thesis is to investigate the most significant risks in the electricity spot 

market, and more specifically the Scandinavian market, and provide models that are 

able to capture them in a simplistic but accurate way for the purposes of derivatives 

pricing. 

Chapter I explains the economic fundamentals of the electricity market and the main 
drivers of the spot price. More specifically, electricity is defined as a commodity that 

cannot be stored and cannot be transported in large amounts across different areas due 

to transmission constrains. Furthermore, demand and supply have to be in equilibrium 

at all times and, given the fact that electricity is a necessity good, electricity demand 

is inelastic. Also, using the marginal cost of production of a generator, which is based 

on the fuel used to generate electricity, one can derive the convex shape of the supply 

stack and thus explain the inverse leverage effect in electricity spot prices. Moreover, 

the instantaneous balance of supply and demand in electricity makes the electricity 

spot prices to follow a seasonal path through out the year due to weather dependence. 

In case of outages of major generating plants or transmission constraints, spot prices 
jump to extreme price levels for a very short period of time, and then revert back to 

their equilibrium level as soon as the problem is fixed. We also explained that 

electricity prices follow a mean-reverting pattern to an equilibrium level, which is 

mainly determined by the cost of production and the level of demand. Using these 
fundamentals we explored the different pricing theories in the construction of tile 
forward prices in commodities. The two main theories rely on the Theory of storage 
introduced by Kaldor (1939) and Working (1933) and the Theory of risk premium. 
However, since electricity cannot be stored in an economic and feasible way yet, 

market participants cannot delta hedge the risks when trading in the derivatives 

market and thus they have to ask for a premium for every risk they face. Therefore the 
theory of risk premium seems the most appropriate in the electricity market. Under 

these circumstances, market participants can use forwards and futures which arc the 

most liquid derivatives, and thus delta hedge other contingent claims in the power 
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market. Following that, we arrive at the conclusion that the most appropriate model in 

the electricity market, is the one that is able to capture the most significant path and 

distributional characteristics of the spot market, and at the same find the best 

Equivalent Martingale Measure that is able to fit the forward curve at every 

observation date, and thus price the most significant risks in the market. 

In Chapter 2 we go through the literature review in terms of modelling and pricing 
derivatives in the electricity market. We divide the literature review into four parts; 

the first way of modelling is using the reduced fon-n models that describe the 

stochastic dynamics of the spot market in a parsimonious way using mean reversion, 

stochastic volatility and jumps. However there is limited literature in terms of 
describing the spot dynamics accurately and at the same time finding the best measure 

that is able to fit the forward market which can be used for hedging. Moreover, the 

spiky nature of the jumps is not captured by these models and the empirical evidence 

and applications to any market is limited. The second approach is the fundamental 

equilibrium approach where, supply and demand relations are modelled and the power 

process is determined via the solution of a certain optimisation problem. However 

these models are mainly used for policy making rather than derivatives pricing, since 

they fail to capture the price dynamics in a robust quantitative manner. The third way 

of modelling, is via the stochastic behaviour of the whole forward curve, however this 

way of modelling has not yet been successful since empirical evidence has shown that 

more than 10 factors are needed to capture 94% of the variation in the power forward 

term structure. Furthermore, since the forward contracts entail a delivery period, and 
due to the spiky nature of the jumps in the spot, forward prices do not jump. Finally 

we have the Hybrid models, where the stochastic behaviour of the fundamental 

drivers is modelled, and then using the fundamental equilibrium approach, the 
dynamics of the power prices are produced. These models seem to be the most 

appealing, since every source of risk is priced and hedged using the corresponding 
derivatives market. However they have a major drawback, as they rely on detailed 
data that are not even available to most market participants. Finally we explain our 

contribution to the literature and justify our approach in comparison with the other 

approaches. 
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In Chapter 3 we explain the different types of market structures that generally exist in 

electricity, and then gave a short summary of the Scandinavian electricity market and 

more specifically Nord Pool, in terms of its history and its organisational bodies. Then 

we provide empirical evidence of the stylised facts of electricity spot prices and the 

shape of the forward curve in the Nord Pool market. Our main findings are that 

electricity spot prices are highly volatile, and the major contribution to that are the 

short-lived spikes, caused mainly by outages or transmission failures. We also 

evidence a distinct pattern between different seasons and days of the year (working 

and non-working days) mainly driven by electricity demand that in turn is affected by 

human activity. This seasonal pattern is also taken into account when valuing 

derivatives on the underlying electricity price. Our analysis also shows the spot price 

in Scandinavia is mean-reverting, and that the equilibrium level is strongly dependent 

on the level of water in the reservoirs, due to the high share of hydro-gencration in the 

market. 

In Chapter 4 all of the above stylised facts are incorporated in reduced form models, 

that are tractable, easy to estimate, and can provide closed-form solution for 

derivative prices. First we introduce the spike model, which accounts for the different 

speeds of mean reversion between normal and spiky shocks in the market. Our 

proposed model improves significantly the fit between theoretical and observed 
forward prices as the spikes in the model are discounted at a very fast rate due to their 

high speed of mean reversion. Consequently, spikes in the spot market do not spill- 

over to the forward market, a finding that is consistent with the actual patterns 

observed in the market. Furthermore, our proposed model also accounts for 

seasonality in the risk premium, which reflects the increasing need to hcdge against 

spikes when their probability of occurrence is higher during the colder winter months. 
Moreover, we extend the spike model to a Regime Switching Spike model that 
incorporates two separate regimes to distinguish between periods of high and low 

water levels in the reservoirs, which translate to two different equilibrium levels in the 

spot prices. Another extension of the spike model is the Thrce-Factor spike model 

which allows the equilibrium level not to be dependent just on the level of water in 

the reservoirs but by a general factor which captures risk stemming from long-run 

changes in power supply and demand. The main disadvantage of the latter model is 

that all three stochastic variables are unobservable, and two of them have to be 
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estimated using the Kalman Filter, therefore we have to use long-maturity illiquid 

forward contracts. The performance of our proposed models is compared to that of 
other models proposed in the literature such as a simple mean-reverting (MR) and a 
mean-reverting jump diffusion model (MRJD). The models are tested in term of 
fitting the observed term structure, as well as in terms of capturing the trajectorial and 
distributional properties (where closed-form solutions are derived for each moment) 

of the spot prices. In particular both the Spike and Regime Switching Spike models 

provide more realistic simulated price paths and a better fit to the forward term 

structure than the MR and MRJD models. Overall, it seems that the proposed models' 
trade-off between complexity and simplicity is well behaved, as they account for the 

most significant risks in the highly volatile power market, in a parsimonious and 
intuitive way. 

Chapter 5 looks at the implications of the models proposed in Chapter 4, in terms of 

options pricing. Option pricing formulas are derived under each model; in particular 
we find that under the simple MR model the closed-form solution is very similar to 
that of Black and Scholes (1973) where the underlying is the discounted 
deseasonalised forward price and the volatility is replaced with that of the forward's. 

On the other hand, when introducing jumps in the model like in the spike model, only 
semi-closed form solutions can be derived. Finally, the pricing formulas showed that 
the moneyness of the option in the electricity market is affected by both the exercise 
price and the deterministic factor. The analysis on the model-implied volatilities 
showed that even a mean-reverting process displays volatility skews but mainly for 
ITM options. However the presence of jumps, displays volatility skews for OTM 

options depending on the sign of the mean jump size. We also show that mean 
reversion reduces the volatility smile as time to maturity increases. Furthen-norc, the 
jump size volatility and jump intensity are the main factors affecting the curvature of 
the volatility smile. Moreover, we provide evidence that for a desired jumpiness level, 
the jump size volatility affects the volatility smile more than the jump intensity. 
Comparing the different proposed models of Chapter 4 we see that the mean-revcrting 
model seems to converge to an option price very fast as time to maturity increases, 

and from a point onwards the discounting effect of the interest rate starts playing a 
more important role. We also explored the effect of the water uncertainty in the prices 
of European options; More specifically, if we arc in a state where there is enough 
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water in the reservoirs, we see that call option prices increase with time to maturity 

consistently and in this case, the premium paid is mainly driven by the increase of the 

probability that we may end up in a state where the reservoir level is low. The 

opposite effect happens when we start from a state where the reservoir levels are low, 

and thus we have a downward sloping option price term structure. The same analysis 

was performed using the three-factor spike model, however in this case the long-run 

factor, which displays a GBM behaviour for long maturity options, increases the 

longer the time to maturity. Finally we performed a sensitivity analysis, using the 

spike model, on Asian call options. Since no closed-form solution is available and 

also the model displays jumps, the most appropriate method is the Monte Carlo 

simulation. The sensitivity analysis shows that Asian call option prices increase with 

jump intensity and that the jump size starts playing a more significant role at high 

intensity levels since the jumps are no longer averaged out. The effect of the speed of 

mean reversion depends on the equilibrium level; if the risk neutral equilibrium level 

is above the spot, increasing the speed of mean reversion increases the value of the 

option, but if the risk-neutral equilibrium level is below the spot, increasing the speed 

of mean reversion decreases the value of the Asian option. On the other hand, the 

spike speed of mean reversion plays a vital role, as it may give unrealistic Asian 

option prices if its coefficient is too low due to the fact that any jump that may occur 

in the market will last for a long time and in turn affect the price of the Asian option 

as it is no longer averaged out. 

Finally in Chapter 6 of the thesis we examine swing options, which are effective 
hedging tools in the energy markets, in terms of price, demand and supply risks. We 

explained the pricing framework of swing options in terms of stochastic optimal 

control theory. Their pricing is implemented via the use of and an extended Least 

Squares Monte Carlo Simulations algorithm by Longstaff and Schwartz (2001) and 
D6rr (2003). We define the lowest and highest boundary conditions in terms of 
European strips and Bermudan option, which hold when there are no penalties in tile 

contract. Furthermore, we perform a sensitivity analysis on the incremental swing 

premium relative to European strips, for up-swing contracts. The analysis gave very 
intuitive results; first, increasing the jump intensity and jump sizes increase the 
incremental swing option premia since the infrequent jumps, when they occur, give a 
very advantageous profit for early exercise, something that the holder of European 
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options is not able to exploit. On the other hand, increasing the speed of mean 

reversion of the jumps seems to increase the incremental swing premium, but up to a 

certain level at which the opportunity of early exercise cannot be taken since the 

holder cannot act as fast as the spike may last. In terms of the diffusive mean 

reversion and the equilibrium level, the swing option holder has a comparative 

advantage over the holder of European strips as the speed of mean reversion increases 

and the equilibrium level decreases, since the swing option holder has the opportunity 

to exploit any opportunities that may arise from any deviations of the spot price from 

the low equilibrium level. Finally, the higher the diffusive volatility the lower the 

incremental swing premium, since any increase in the diffusive volatility translates to 

a greater range of spot prices in the future and thus early exercise is not optimal. Last, 

we examined the swing option values for both the mean-revcrting and the spike 

models; first, we find that for up-swing options the high possibility of big price 

movements over the winter in the spike model overweighs the bigger diffusive 

volatility in the mean-reverting model and thus the swing option price is higher; of 

course the opposite happens for the rest of the seasons since the probability of spikes 
is very small. On the other hand, the Mean-Rcverting model always gives higher 

down-swing option values, since this time the upward spikes do not benefit the put 

payoff structure of the option. 

7.2 Suzzestions For Further Research 

Through the development of the proposed models and the subsequent empirical 

analysis we have identified some satisfactory results. However there are a number of 

potential extensions which can to some degree complement the study and 
consequently shed some light on the issues not covered in this thesis. 

First of all, a more accurate representation of the spike model will be to include 

stochastic volatility in the normal factor along the lines of licston (1993). The 

inclusion of this factor will induce more complexity in the model in terms of finding 

closed-forin, solutions for derivatives pricing, running Monte Carlo simulations (due 

to the squared root process) as well as calibration, however it may improve the fit to 
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the forward term structure and may also capture the moments of the price distribution 

more accurately. 

Another extension is the test of the models to option prices, when the market becomes 

liquid, which will be very important for market participants. On the other hand, a 

more practical extension is to test different strategies for hedging derivatives and 

more particular for hedging swing options. As we showed in chapter 5, hedging of 

options becomes very difficult when a model contains jump since the hedging 

parameters depend on the size of the jump, however one can develop hedging 

strategies based on a variance minimisation approach as in Kennedy (2006). This will 

be very important for market participants and especially investment banks, when they 

sell derivatives in the power market and they need a hedging strategy in order to 

replicate the product sold. 

Last but not least, one may use the proposed models and apply them for the valuation 

of spread options, which are particularly important for the hedging of power plants 
that use fossil fuels for power generations (one example is the spark spread which can 
be used for the hedging of Gas fired plants). This is also important for market 

participants as they need to hedge for periods when the costs of running the generators 

are above the price of electricity, and thus they may end up without a profit for that 

period. 

261 



REFERENCES 

Alizadeh, A. H. and Nomikos, N. K. (2002): "Efficiency of Electricity Futures 
Prices: Evidence from the Nord Pool Exchange", Working Paper, Cass Business 
School. 

Alvarado, F. L., and Rajaraman, R.: "Understanding Price Volatility in Electricity 
Prices", Proceedings of the 33rd Hawaii International Conference on System 
Sciences - 2000. 
Andersen, K., (2000), "A Simple approach to the Pricing of Bermudan Swaptions 
in the Multi-Factor Libor Market Model", Journal of Computational Finance, 3, 
5-32. 

Audet, N., Heiskanen, P., Keppo, J. and Velivildinen, 1 (2003): I'Modefling of 
electricity forward curve dynamics", working Paper. 

Babbs, S. H. and Nowman, K. B. (1999), "Kalman filtering of generalized Vasicek 
term structure models", Journal of Financial and Quantitative Analysis, Vol. 34, 
115-130. 

Ball, C. A. and Torous W. N., 1983, "A simplified Jump Process for Common 
Stock Returns", Journal of Financial and Quantitative Analysis, Vol. 18(l), 53- 
65. 

Ball, C. A. and Torous W. N., 1985, "On Jumps in Common Stock Prices and their 
Impact on Call Option Pricing", Journal offinance, Vol. 40,155-173. 

Barlow, M. T., (2002): "A Diffusion Model for electricity Prices", Mathcnialical 
Finance, 12, No. 4,287-298 

Barlow, M., Yuri, G. and Lai, M., (2004): "Calibration of Multifactor Models in 
Electricity Markets", International Journal of Theoretical and Applied Finance, 
vol. 7,101-120. 

Barbieri, A., and Garman, M. B., (1996), "Putting a Price on Swings", Energy and 
Power Risk Management, 1 (6). 

Barone-Adesi, G. and Gigli, A. (2002), "Electricity Derivatives", Working paper 
Bastes, D. S., (1997), "The Skewness Premium: Option Pricing under Asymmetric 
Information", Advances in Futures and Options Research, 9,51-82. 

Benth, FE and Koekebakkcr, S., (2005), "Stochastic Modelling of Electricity 
Contracts", Working Paper. 

Benth, F. E., Kallsen, I and Meyer-Brandis, J., 2005, "A non-Gaussian Ornstein- 
Uhlenbeck process for electricity spot price modelling and derivatives pricing", 
Applied Mathematical Finance, forthcoming. 
Bessembinder, H. and Lemmon, M. L. (2002), "Equilibrium Pricing and Optimal 
Hedging in Electricity Forward Markets", Journal ofFinance 57,1347-82. 
Bhanot, K. (2000), "Behavior of Power Prices: Implications for the Valuation and 
Hedging of Financial", Journal ofRisk, 2,43-62. 

262 



Bjerksund, P., Rasmussen, H. and Stensland, G., (2000): "Valuation and risk 
management in the Nordic electricity market", Working paper, Institute of 
Finance and Management Science, Norwegian School of Economics and Business 
Administration. 

Black, F. and Scholes, M. (1973), "The Pricing of Options and Corporate 
Liabilities ", Journal ofPolitical Economy, 673-54. 

Bodily, S. and Del Buono, M. (2002): "Risk and reward at the speed of light: a 
new electricity price model", EPRM 

Borovkova, S., Permana, F. J., 2004, "Modelling electricity prices by the potential 
jump-diffusion", Proceedings of the Stochastic Finance 2004 Conference. 

Branger, N., (2004), "An Option Pricing Anatomy", Working Paper 

Brennan, M. (1991), "The Price of Convenience and the Valuation of Commodity 
Contingent Claims", in D. Lund and B. Oksendal (eds. ), Stochastic Models and 
Option Models, Elsevier Science Publishers. 

Burger, M., Klar, B., Muller, A., Schindlmayr, G., 2004, "A spot market model 
for pricing derivatives in electricity markets"', Quantitative Finance 4,109-122. 

Carr, P., and Madan, D., (2001), "Optimal Positioning in Derivatives Pricine', 
Quantitative Finance, 1,19-37 

Cartea, A. and Figueroa, M. G., 2005, "Pricing in electricity markets: A mean 
reverting jump diffusion model with seasonality", Applied Mathematical Finance, 
forthcoming. 

Chacko, G. and Das, S., (2002), "Pricing Interest Rate Derivatives: A General 
Approach", Review offinancial Studies, 15(l), 195-241. 

Clement, E., Lamberton, D., and Protter, P., (2002), "An Analysis of a Least 
Squares Regression method for American Option Pricing", Finance and 
Stochastics 6,449-472. 

Clewlow L., Strickland C., and Kaminski V. (2001): "Extending Mean Reversion 
Jump diffusion", EPRM 

Clewlow L., Strickland C., and Kaminski V. (2000): "Jumping the gaps", EPRM 

Clewlow, L. and Strickland C., (1999a): "A multifactor model for energy 
derivatives", Quantitative Finance Research Group, Working paper, University of 
Technology, (Sydney). 

Clewlow, L. and Strickland C., (1999b): "Valuing energy options in a one factor 
model fitted to forward prices", Quantitative Finance Research Group, Working 
paper, University of Technology (Sydney). 

Clewlow, L., and Strickland, C. (2000), Energy derivatives: Pricing and Risk 
Management, Lacima Publications. 

Clewlow, L., and Strickland, C. (2001), "Risk Analysis of Swing Contracts", 
Energy and Power Risk Management. 

Cortazar, G. and Schwartz E. S., (1994),: "The valuation of commodity contingent 
claims", The Journal ofDerivatives, 27-39. 

263 



Cortazar, G. and Schwartz, E. (2003),: "Implementing a stochastic model for oil 
futures prices", Energy Economics, vol. 25,215-238 

Cortazar, G., Naranjo, L., and Schwartz, E. (2003), "Term Strucutre Estimation in 
Lpow Frequency Transaction Markets: A Kalman Filter with Incomplete Panel 
Data", Working Paper. 

Cox, Ingersoll, and Ross (1985), "An intertemporal general equilibrium model of 
asset prices ", Econometrica, vol. 53,3 63 -3 84. 

Cox, J. C., Ingersoll, J. E. and Ross S. A., (1981): "The relation between forward 

prices and futures prices", Journal offinancial Economics 9,321- 346. 

Curran, M., (1992), "Beyond Average Intelligence", Riskm 5,10,60. 

Dai, Q. and Singleton, K. J. (2000), "Specification analysis of affine term structure 
models" Journal offinance, Vol. 55, N* 5,1943-1978. 

Das, S. D., (2002), "The Surprice Element: Jumps in Interest Rates", Journal of 
Econometrics, 106,27-65. 

De Jong, F. (2000), "Time-scries and cross-section information in affine term 
structure models" Journal of Business & Economics Statistics, Vol. 18, N11 3,300- 
314. 

De Jong, F. and Santa-Clara, P. (1999), "The dynamics of the forward interest rate 
curve: A formulation with state variables", Journal of Financial and Quantitative 
Analysis, Vol. 34,131-157. 

Deng, S. J., (2001), "Stochastic models of energy commodity prices and their 
applications: mean-revcrsion with jumps and spikes", UCEI, PWP-073. 

Deng, S. J., and Oren, S. S., (2006), 
, 
Electricity Derivatives and Risk 

Management", Energy, 31,940-953. 

Diebold, F. X. and Mariano, R. S (1995), "Comparing Predictive Accuracy", 
Journal ofBusiness & Economic Statistics, Vol. 13 Issue 3, p253-263. 

D6rr, U., (2003), "Valuation of Swing Options and Examination of Exercise 
Strategies by Monte Carlo Techniques", University of Oxford Thesis. 

Dixit, A. K. and Pyndyck, R. S. (1994) "Investment Under Uncertainty", Princeton 
University Press 
Du Y. (2003): "Exploring Option Pricing with mcan-rcvcrsion jump diffusion", 
EPRM 
Duffic D. (1999), "Volatility in Energy Prices", in Managing Energy Price Risk 
(second edition), RISK books, London. 
Duffic, D., Pan, J. and Singleton, K. (2000) "Transforrn analysis and asset 
pricing for affine jump-diffusions", Econometrica, vol. 68(6), 1343-1376. 
Elliott, R. J. and Sick, G. A., (2003), "Modelling Electricity Price Risk", Working 
Paper 

Escribano, A., Pefia J. 1. and Villaplana P., (2002) "Modeling electricity prices: 
international evidence", Universidad Carlos 111, working paper 02-27. 

264 



Ethier, S., and Kurtz, T., 1986, "Markov Processes, Characterization and 
Convergence", New York: John Willey & Sons 

Eydeland, A. and Geman H., (1998), "Pricing power derivatives", Risk, October, 
71-73. 

Eydeland, A., and Wolyniec, K. (2002), "Energy and Power Risk management: 
new developments in modelling, pricing and hedging7' (Wiley, Chicago). 

Geman, H. and Roncoroni, A., 2006, "Understanding the Fine Strucutre of 
Electricity Prices", Journal ofBusiness, Vol. 79, No. 3. 

Geman, H. and Vasicek, 0., 2001, "Forwards and Futures contracts on non- 
storable commodities: the case of electricity", Risk, August. 

Geman, H., 2005, "Commodities and commodity derivatives: Modelling and 
Pricing for Agricalturals, Metal and Energy" (Wiley Finance). 

Geman. H., Karoui N. E., and Rochet J. C. (1995): "Changes of Numeraire, 
changes of Probanility Measure, and Option Pricing, " Journal of Applied 
Probability trust, 32,443-458. 

Gendra, T. W., (1991), "Optional Forward Contracts for Electric Power Service 
Contracts", PhD Thesis, University of California, Berkley 

Gendra, T. W., (1992), "Markets and Pricing for Interruptible Electric Power 
Transactions", IEEE Trans Pwer Syst. 

Gibson, R. and Schwartz, E. S., (1990): "Stochastic Convenience Yield and the 
Pricining of Oil Contingent Claisa', Journal offinance, 3 0,95 8-976. 

Gibson, R., and Schwartz, E. (1990), "Stochastic Convenience Yield and the 
Pricing of Oil Contingent Claims", Journal offinance, 45 (July), 959-976. 

Glasserman, P., (2004), "Monte Carlo Methods in Financial Engineering 
(Stochastic Modelling and Applied Probability)", Springer. 

Glasserman, P., Boyle, M., and Broadic, M., (1997), "Monte Carlo Methods for 
Security Pricing", Journal ofEconomic Dynamics and Control, 21,1267-132 1. 

Glasserman, P., and Broadie, M., (1997), "Pricing American Style Securities 
Using Simulatiorf', Journal ofEconomic Dynamics and Control, 21,1323-1352. 

Glasserman, P., and Broadie, M., (1997), "Them Valuation of American Options 
on Multiple Assets", Mathematical Finance, 7,241-286. 

Greene, W. K., 1993, Econometric analysis, 2nd cd., (Prcntice-Ilall, NJ). 

Hamilton (1994), "Time Series", Princeton University Press. 

Harrison, J. M., and Krcps, D. M. (1979), "Martingales and arbitrage in multipcriod 
securities markets", Journal of Economic Theory, 20,381-408. 

Harvey, A. C, (1989), Forecasting Stuctural time series models and the Kalman 
Filter, (Cambridge University Press). 
Heath, D., Jarrow R. and Morton A., (1992): "Bond pricing and the term structure 
of interest rates: A new methodology for contingent claims valuation", 
Econometrica, 77-105. 

265 



Heston, S. (1993). "A Closed-Form Solution of Options with Stochastic Volatility 
with Applications to Bond and Currency Options", Review ofFinancial Studies, 6, 
327-343. 

Hjalmarsson, E., (2003), "Does the Black-Scholes Formula Work for Electricity 
Market? A Non-parametric Approaclf', Working Paper 

Huisman, R. And Jong, C., (2002), "Option Formulas for Mean-Reverting Power 
Prices with Spikes", Working Paper 

Huisman, R. And Manhicu, R., (2003), "Regime Jumps in Electricity Prices", 
Energy Economics, 25,425-434. 

Hull J. and White A., (1993), "One-factor interest-rate models and the valuation of 
interest-rate derivative securities", Journal of Financial and Quantitative 
Analysis, 28,235-254. 

Hull, J. and White, A., (1990), "Pricing interest-ratc derivative securities". Review 
offinancial Studies, 3,572- 592. 

Hull, J., "Options, Futures and other Derivatives", 4th cd., Prentice-Hall, 1999. 

Jaillet, P., Ronn, E., and Tompaidis, S., (2003), "Valuation of Commodity Based 
Swing Options", Management Science, 50,909-92 1. 

lbafiez, A., and Zapatero, F., (2004), "Valuation of Amcrucan Options through 
Computation of the Optimal Exercise Frontier", Journal of Financial and 
Quantitative Analysis, 39,253-275 

Jaskow, (1985), "Vertical Integration and Long-Tenn Contracts: The Case of 
Coal-Buming Electric Generating Plants", Journal of Law, economics and 
Organisation, 1,33-80. 

Jaskow, (1987), "Contract Duration and Relation-Specific Investments: Empirical 
Evidence form Coal Markets", American Economic Review, 77,168-185. 

Johnson, B., and Barz. G.: "$electing Stochastic Processes for Modelling 
Electricity Prices" in R. Jameson, ed., Energy Modelling and the Management of 
Uncertainty. London: Risk Publication, 1999. 

Kaminski, V., (1997), "The Challenge of pricing and risk managing electricity 
derivatives", Ch. 10 in: The US power market, 149-171, (Risk Publications, 
London). 

Kelleharhals B. Phillip (2002), "Pricing Electricity Forwards under Stochastic 
Volatility", Working Paper 

Kemna, A. G, Z and Vorst, A. C. F., (1990), "A Pricing Method for Options Based 
on Average Asset Values", Journal ofBanking and Finance, 14,113 -129. 
Kennedy, J. S., Forsyth, P. A., and Vctzal, K. R., (2006), "Dynamic Hedging 
under Jump Diffusion and Transaction Costs", Writing Paper, University of 
Waterloo. 

Keppo, J., (2004), "Pricing Electricity Swing Options", Journal of Derivatives, 
11,26-43. 

Knittel, C. R. and Roberts M., (2001) "An empirical examination of deregulated 
electricity prices", UCEI, PWP-087. 

266 



Lari Lavassani, A., Simchi, M., and Ware, A., (2000), "A Deiscrete Valuation of 
Swing Options", Canadian Applied Mathematics, 9,35-74. 

Lien, G., and Koekebakker, S., (2004) "Volatility and Price Jumps in Agricultural 
Futures Prices - Evidence from Wheat Options, " American Journal of Agricultural 
Economics, 86(4), 1018-1031 

Longstaff, F., and Schwartz, E., (2001), "Pricing American Options by 
Simulation: A Simple Least Square Approach", Review of Financial Studies, 14, 
113-147. 

Longstaff, F., and Wang, A., 2004, "Electricity Forward Prices: a high-frcqucncy 
empirical analysis", Journal offinance, vol. 59(4), 1877-1900 

Lucia, J. and Schwartz, E., (2001) "Electricity prices and power derivatives. 
Evidence from Nordic Power Exchange", Review of Derivatives Research, vol. 5 
(1), 5-50. 

Meinshausen, N. and Hambly. B. M., (2004), "Monte Carlo Methods for the 
Valuation of Multiple-Exercisc Options", Mathematical Finance, 14,557-583. 

Musiela, M., and Rutkowski, M., (1998), "Martingale Methods in Financial 
Modelling", Springer. 

Managing Energy Price Risk, (A Collection of different essays from academics 
and Market Practitioners), Risk Books (1999). 

Manoliu. M., and Tompaidis. S., (2002): "Energy futures prices: term structure 
models with Kalman Filter estimation", Applied Mathematical Finance, 9,21-43 

Merton R, (1976), "Option pricing when underlying stock returns arc 
discontinuous, " Journal offinancial Economics 3,125-144. 

Merton, R. (1973), "The Theory of Rational Option Pricing", Bell Journal of 
Economics and Management Science, 4 (Spring), pp. 141-83. 

Merton, R., (1973), "An Intertemporal Capital Asset Pricing Model", 
Econometrica, 41,867-888 

Miltersen, K. and Schwartz, E. (1998): "Pricing of options on commodity futures 
with stochastic term structures of convenience yields and interest rates, " Journal 
ofFinancial & Quantitative Analysis, vol 33,33-59. 

Nord Pool, Annual Report 2003, (Nord Pool ASA). 

Nord Pool, Options, (April 2003, Nord Pool ASA). 

Nord Pool, Security calculation and settlement of financial power contracts, 
(Sept., Nord Pool ASA) 

Nord Pool, Trade at Nord Pool's Financian Market, (April 2004, Nord Pool 
ASA). 

Nord Pool, Trade at the Nordic spot market, (April 2004, Nord Pool ASA). 
Pablo Villaplana (2003), "Pricing Power Derivatives: A Two Factor Jump- 
Diffusion approach, Working Paper, Univcrsitat Pompeu Fabra. 
Pilipovic, D., (1998), Energy risk. Valuing and managing energy derivatives, 
(McGraw-Hill, New York). 

267 



Pilipovic, D., and Wengler, J., (1998), "Getting into the Swing", Energy and 
Power Risk Management, 2. 

Pindyck, R., (1999), "The long-run evolution of energy commodity prices", 
Energy Journal, April, IAEE. 

Pirrong, C. and Jermakyan, M. (2000). "The Price of Power: the Valuation of 
Power and Weather Derivatives", working Paper, Olin School of Business, 
Washington University. 

Rebonato, R., (2004), "Volatility and Correlation: the Perfect Hedger and The 
Foxý', Wiley. 

Routledge, B. R., Seppi, D. J., and Spatt, C. S. (2000), "Equilibrium forward 

curves for commodities", Journal offinance 55,1297-1338. 

S. Koekebakker, Ollmar, F. (2001), "Forward curve dynamics in the Nordic 
electricity market", Preprint, Norwegian School of Economics and Business 
Administration 
Schwartz, E. and Smith, J. E., (2000), "Short-term variations and long-term 
dynamics in commodity prices", Management Science, 46 (7), 893-911. 

Schwartz, E., (1997), "The stochastic behaviour of commodity prices: 
implications for valuations and Wging", Journal offinance, vol. 52(3), 923-973. 

Simonsen, I., Wcron, R. and Mo, B., 2004, "Structure and styliscd facts of a 
deregulated power market", preprint submitted to Elsevier Science. 

Skantze, P. and Ilic M. (2000): "The Joint Dynamics of Electricity Spot and 
Forward Markets: Implications on Formulating Dynamic Hedging Strategies", 
Energy Laboratory Massachusetts Institute of Technology. 

Sorensen, C., (2002), "Modelling seasonality in agricultural commodity futures", 
Journal ofFutures Markets, Vol. 22,393-426. 

Tomposon, A. C., (1995), "Valuation of Path-Depcndcnt Contingent Claims with 
Multiple Exercise Decisions over Time: the case of Take-or-Pay", Journal of 
Financial and Quantitative Analysis, 3 0,271-293 

Turnbill, S. M. and Wakeman, L. M., (1991), "A Quick Algorithm for Pricing 
European Average Options", Journal of Financial and Quantitative Analysis, 
26(3), 377-389. 
Vasicek, 0. (1977), "An Equilibrium Characterization of the term structure, " 
Journal offinance 5,177-188. 
Vchvildinen, 1., (2002), "Basics of Electricity Derivative Pricing in competitive 
Markets", Applied Mathernatica Finance, 9,45-60. 
Weron, R., 2005, "Market price of risk implied by Asian-style electricity- 
options", Energy Economics, forthcoming. 

White, H., 1980, "A Hcteroskcdasticity-Consistcnt Covariance Matrix Estimator 
and a Direct tests for Hcteroskedasticity", Econometrica, 48: 817 - 838. 

268 


