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Abstract 

This thesis is in the area of active vibration control of Civil Engineering structures 
subject to earthquake loading. Existing structural control methods and technologies 
including passive, active, semi-active and hybrid control are first introduced. An 
extensive analysis of a frame-pendulum model is developed and analysed to 
investigate under what conditions effective energy dissipation is achieved in Tuned 
Mass Damper systems and the limitation of these devices under stiffness degradation 
when the structure enters the inelastic region. 
Linear Quadratic Gaussian and H-infinity active control schemes are designed, 
simulated and assessed for buildings, modelled as lumped parameter systems, 
including base and actuator dynamics. Various aspects of the designs are extensively 
evaluated using multiple criteria and loading conditions and validated in large-scale 
benchmark problems under practical limitations and implementation constraints. 
A novel design method is proposed for minimising peak responses of regulated 
signals via a deadbeat parametrisation of all stabilising controllers in discrete-time. 
The method incorporates constraints on the magnitude and rate of the control signal 
and is solved via efficient Linear Programming methods. It is argued that this type of 
optimisation is more relevant for structural control, as failure occurs when maximum 
member displacements are exceeded. 
The problem of stiffness matrix estimation from experimental data is formulated as an 
optimisation problem and solved under various conditions (positive definiteness, tri- 
diagonal structure) via an alternating convex projection scheme. Both static and 
dynamic loading is considered. The method is finally incorporated in an adaptive 
control scheme involving the redesign in real-time of an LQR (Linear Quadratic 
Regulator) active vibration controller. It is shown that the method is successful in 
recovering the stability and performance properties of the nominal design under 
conditions of significant uncertainty in the stiffness parameters. 

xill 



I. Introduction Pana2iotis Rentzos 

CHAPTER1 

INTRODUCTION 

1.1. Introduction 

Protecting structures from environmental hazards such as earthquakes and wind loads 

has always been a challenge in civil engineering. Strong earthquakes can have 

devastating effects even for countries like the USA and Japan that have the economic 

and technologic ability to design structures safely for such loads. Designing structures 

strong enough to resist earthquakes that are likely to occur at most once in their lifetime 

is uneconomic. Earthquake engineering design is always evolving and current codes of 

practice are based on concepts of inelastic energy absorption and controlled damage. In 

modem design practice emphasis is placed on giving structures elasticity rather than 

strength by allowing for larger deformations during earthquakes. This has resulted in 

fewer buildings collapsing and reduced number of deaths, but has increased the 

economic costs due to damaged buildings. There is growing demand for designing 

buildings that can not only prevent them from collapsing, but also minimises damage by 

reducing vibrations from earthquakes, wind loads and also heavy traffic, waves or 
deliberate acts. 

A novel idea for protecting structures is the use of structural control. This involves the 

use of damping devices or active mechanisms that help suppress undesired vibrations of 

civil engineering structures. Given that seismic design methods are already based on 

energy absorption concepts, it is surprising that it took so long for this method to be 

developed in the area of structural engineering, since similar techniques (e. g. 

suspensions) have been used for a long time in the automotive industry. Passive systems 

are mechanisms in structures that dissipate energy. In Civil Engineering applications the 

most common passive damping device is a tuned-mass-damper JMD). This dissipates 

energy by placing a mass on the top of a building, oscillating with the same frequency 

as the building's resonant frequency (fundamental mode). 
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A different method is active control, where actuators capable of producing large forces 

are placed inside a building to counteract external forces, e. g. due to earthquakes or 

wind loading. The most common mechanism is the active mass driver (AMD). A large 

mass, placed on top of the building, is being driven by actuators counter-balancing the 

movement of the building from the earthquake. What began as a theoretical state of the 

art method is slowly gaining acceptance by the industry and is progressively used more 
frequently in structures. The first structure to implement active structural control was 

the Kyobashi Seiwa building in Tokyo [Lynch 1993] in 1989. This 10-storey building 

had two controllers placed on the roof counteracting the first two modes of vibration 

whose mass was about 1% of the total mass of the building. The actuators were 

suspended like a pendulum and used hydraulic pumps to transfer energy. The devise 

was used to control the building during large winds and small to moderate earthquakes. 

An active control mechanism consists of an actuator, a control mechanism, a 

(mathematical) control law and sensors to record the motion of specific parts of the 

structure [Hatada and Smith 1997]. An actuator is placed at a certain position in the 

structure, and when a disturbance occurs (e. g., earthquake, high wind, etc. ) the sensor 

records it and sends the signal to the computer, which in turn analyses the data and 

triggers the actuator. The actuator generates the appropriate forces that attempt to 

minimise or suppress vibrations thus stabilising the building. In the sense described 

above, active control is more demanding than passive because a poorly designed system 

may lead even to instability. 

There are several disciplines required to design a good active structural system and 

several major areas where active research in structural control is taking place. These 

include: 

* Structural dynamics and the theory of vibrations; the underlying theory 

behind why and how structural control works. 

-Intelligent" mechanical systems that require the minimum possible 

energy to be efficient and can effectively transfer energy from the 

2 
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actuator to the control device with minimal losses (tuned mass dampers, 

active mass drivers, hybrid control devices, smart material etc). 

* Control systems design; including accurate modelling of disturbance- 

structure- controller interaction, appropriate optimal/robust control design 

algorithms and any other issue arising in control engineering problems 
(e. g. instrumentation, actuators- sensors placement, etc). 

e Evaluation of the overall control system via computer simulations and 

validation of simulations via experimental work. 

The thesis is mainly focused on theoretical aspects of control systems design necessary 
for structural control. Since structural control is a new application area of feedback 

control, the existing techniques (and algorithms) and design methods have to be re- 

examined and their applicability in structural control reassessed. 

Control Systems is the area of engineering that deals with the analysis and synthesis of 

dynamic system responses. The main objective of control engineering is to modify the 

"open-loop" dynamics of the system by manipulating its input and output variables, so 

that the "compensated system" has improved dynamic-response characteristics in terms 

of stability margins, disturbance rejection or noise immunity. Typically, the controller is 

implemented in a closed-loop (feedback) configuration, automatically adjusting its input 

signals using measurement information arising from its outputs, so that the overall 

system operates automatically. In the context of active structural control the measured 

information is typically provided by strain-gauges, displacement sensors or 

accelerometers placed at strategic locations on the structure. This information is 

sampled and fed to the controller, which consists of an algorithm implemented inside a 

computer. The algorithm generates digital signals that, after being converted back to 

analogue form, are applied to the inputs of the actuator (typically an electro-mechanical 

or hydraulic device), which generates an appropriate force or torque to counteract the 

external effects due to the earthquake or wind load. 
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Modelling is central in control systems design. Buildings are usually idealised as linear 

time-invariant lumped spring-mass-damper systems. The control device requires 

appropriate modelling and by interacting with the structure a new increased order model 
is obtained. The effect of disturbances on a structure and the way they propagate and 

affect its response are also essential aspects in modelling the combined earthquake- 

structure-controller system. Material non-linearities, external perturbations and 

uncertainties of structural parameters are also common and need to be taken into 

account in the modelling process. Physical systems can never be exactly approximated 
by mathematical models, but the closer the representation the more accurate conclusions 

can be drawn about the system's expected behaviour. 

In the context of active structural control the objective is to suppress vibrations arising 
from external disturbances (Earthquake or Wind load) by effectively absorbing energy 

and improving the damping of the structure. In contrast to more straightforward active 

control applications (e. g. automotive active suspension systems), civil engineering 

structures are significantly more complex systems dynamically. This is mainly due to 

the presence of a large number of vibration "modes" (longitudinal, lateral, torsional), 

which are typically coupled. Complexity also arises from the interaction between the 

structure and its surrounding soil (in the case of earthquakes) and due to non-linear 

effects, especially in the presence of large forces/displacements when parts of the 

structure enter the inelastic region. Modelling accurately the disturbance signal 

(Earthquake or Wind load) in terms of its strength, frequency and energy content and its 

interaction with the structure gives rise to an additional source of complexity. 

Over the last few years a wide range of design methodologies have been proposed in the 

area of structural control, including non- I inear/sl iding- mode control, pole-placement 

and observer-based methods, adaptive control, fuzzy/neural -based methods, reliability- 

based control and optimal control [Housner et al 1997]. Optimal control appears to be 

the design method increasingly favoured by most researches, mainly due to important 

recent theoretical advances in this field and to the design flexibility that this method 

offers. The two most important optimal control paradigms, around which most other 

optimal-control methods cluster, are LQR/LQG optimal control and H, " optimisation 

methods which are examined thoroughly in this work. In addition, new design optimal 

4 
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algorithms are proposed to account for different objectives and assessed via analytical 
and simulation results. 

1.2. Thesis main contributions 

0 Under cycling loading, present during earthquakes, steel ceases to have elastic 

properties. This results in the change of strength and stiffness of steel elements 

and reduction in the frequency of vibration of the structure. Simulation results 
based on the frame-pendulum system are used to describe the dynamic 

behaviour of an inelastic steel structure employing passive control. 

0 Prior knowledge of the characteristics of the input disturbance signal in control 

systems design is beneficial for the design of the feedback controller and the 

optimisation of its response. Here, an identification filter obtained by analysing 

the spectral characteristics of a real earthquake signal is obtained and 
incorporated to an LQR design procedure, which is subsequently analysed and 

simulated. The results show that improved levels of performance can be 

achieved with this method and suggest the importance of using any such a-priori 

information, whenever it is available. 

*A novel design method is proposed and developed that aims to reduce maximum 

peak responses of regulated inputs, an objective especially appropriate for 

structural engineering applications. The resulting optimisation problem involves 

the parametrisation of all discrete finite settling-time stabilising controllers and 

is solved using linear programming. The controller is designed for a variety of 

input signals and the obtained simulation results are compared with those 

obtained by other methods. Particular care has been taken to make the design 

method realistic by incorporating appropriate constraints on the magnitude and 

rate of the resulting control signal. Other practical issues have also been 

addressed, e. g. controller model reduction, addition of pre-whitening filters, 

optimising the design by considering different disturbance models, 

computational issues arising from the Linear Programming algorithm, etc. 
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*A novel method is proposed for estimating poorly or partially known stiffness 

matrices of structures from online data recorded from its dynamic response. The 

method relies on the solution of an optimisation (distance) problem over the 
cone of pos itive- definite matrices. The estimation method can be applied to 
structural stiffness matrices arising in civil engineering applications, including a 
special form of tri-diagonal structure corresponding to the models developed in 
this work. Various techniques are developed for the solution of the optimisation 
problem, convergence is formally established and comparisons between the 
different methods are made through simulations. 

0 Structures affected by earthquakes or other environmental loads often require 

reinforcement in terms of structural control. If the stiffness of such a structure 
has degraded at unknown levels, there is difficulty in designing a suitable 

controller. This problem can be overcome by performing on-line estimation of 
the uncertain stiffness parameters during an earthquake. After an acceptable 

number of measurements have been obtained, the estimator should ideally 

converge to the true stiffness parameters which can then be used to re-design the 

controller. In the thesis the estimation technique described in the previous 

paragraph is combined with an on-line LQR tuning control method, resulting in 

a robust adaptive design algorithm. Simulation results demonstrate the ability of 

this method to suppress vibration and stabilise a structure (which otherwise 

would be unstable if the wrong initial parameters were used for control design), 

even in the presence of considerable levels of uncertainty in the stiffness 

parameters. 

* The control techniques investigated in this work are applied for two industry- 

standard benchmark problems which have been proposed recently to evaluate 

different control design schemes. The benchmark problems involve the control 

design of two real large-scale structures under stringent practical requirements 

and assessed with multiple performance criteria. The relative advantages of each 

design method examined are analysed and discussed. 

6 
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1.3. Thesis Outline 

Chapter 2 reviews the literature on existing structural control methods. The chapter is 

focused on describing practical aspects of mechanical control systems and their use. The 

main control methods, i. e. passive. active, hybrid and semi-active control are 
introduced. The potential merits and drawbacks of each method are explained and an 

example of a real structure employing a control mechanism corresponding to each 

method is presented. 

In chapter 3 the control-design methods used throughout the thesis are presented, 

starting from basic definitions and building up to more advanced topics, which form the 

foundations of the techniques used in subsequent chapters. A brief introduction of the 

preliminaries of control systems theory is given, followed by topics related to systems 

modelling and mathematical systems' representations. Examples are given of simple 

mass-spring-damper models, their transfer functions and state-space representations. 

Concepts of discrete-time control, controllability, observability, and systems' 

representation in terms of time-domain and frequency- domain techniques (Bode plots) 

are also included here. Classical control methods such as pole placement, Linear 

Quadratic Regulators (LQR) and Kalman filters are discussed in more detail. The H. 

control problem is formally stated and its solution is outlined using the Youla 

parametrisation approach. 

The next chapter analyses a passive control system, namely a frame with a pendulum 

providing energy dissipation. The aim here is to establish whether the pendulum, which 

is a natural system without any external interference, can reduce directly or indirectly 

the vibrations of the frame. Three possible mechanisms for achieving this are suggested 

and analysed with the help of linear and non-linear simulations. General rules are 

established on how to tune the parameters to obtain optimal results. The second part of 

this chapter deals with the concept of inelastic material behaviour. When steel exceeds 

its elastic limit its stiffness degrades permanently or temporarily. This results in changes 

of the characteristic period of vibration of the structure. By using a simple non-linear 

7 
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stiffness model the effectiveness of the developed passive control system is anal\ sed 

and discussed. 

In chapter 5, a detailed design of an active controller is presented. The objective here is 
to establish how active control can be designed and implemented in practice. A 3-store"' 
building is modelled, including base dynamics and employing an active tendon control 
mechanism. The control design method used is based on Linear Quadratic Regulator 
(LQR) theory which is analysed in depth. A multi-objective controller is designed and 
tuned by including appropriate penalty terms and subsequently augmented with a 
Kalman state estimator (LQG). The LQR controller is evaluated for many different 

scenaria using extensive simulations: Passive, impulsive, sinusoidal and real earthquake 
responses of acceleration, displacement and inter-storey drifts are presented and 
analysed, both in the time and frequency domains. Finally, an identification filter is 
included emphasising performance in the frequency range where the spectral density of 
the earthquake signal is large (i. e. the frequency range where most of the energy of the 

earthquake signal is concentrated) and an LQR controller is re-designed and re-assessed. 

In chapter 6, as a continuation of the work in the previous chapter, an H controller is 

designed. The same structural model is used for design purposes and the simulation 

results are evaluated including passive, impulsive, sinusoidal and earthquake responses, 

as before. In the design problem formulation frequency -dependent weighting functions 

are included in order to emphasise specific frequency ranges appropriate to each design 

objective, in addition to scalar penalty terms also used in LQR. The results of LQR and 
H,, control designs are compared in terms of peak/RMS responses and damping 

properties. Conclusions are drawn about the validity of the two design methods for this 

specific case study and also their general applicability in the area of structural control. 

Chapter 7 presents a novel design approach aiming to minimise the maximum peak 

response of regulated signals (rather than their energy or RMS values). This is a more 

relevant design objective for structural control, since structural failure occurs when the 

maximum deformation capacity of members is exceeded. The method is formulated in 

discrete-time and uses a parametrisation of all closed-loop finite settling time stabilising 

controllers. This leads to a linear programming optimisation problem. The problem 

formulation allows the designer to set constraints on the maximum control signal and its 

8 
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rate. The designer has also the choice of setting the exact settling time of the response. 
After the derivation of the design algorithm, the optimal controller is obtained and 

simulated for various inputs. Comparisons are made with the results of the LQR clesion. 
for a full evaluation of the method. 

Chapter 8 deals with the estimation of positive (serni-) definite stiffness matrices. By 

applying a set of forces F and measuring the resulting displacements X the stiffness 

matrix of a structure can be obtained. The "Procrustes algorithm" is proposed as an 

optimisation tool for estimating K when there are measurement errors in F or X and 
(possibly) a-priori knowledge of the structure of the K matrix. Three special forms of 

stiffness matrices are common among Civil engineering structures; these include 

general positive (semi-) definite matrices, triadiagonal positive (semi-) definite 

matrices, and triadiagonal positive (semi-) definite matrices with additional redundancy 
between their elements, arising in models of buildings. All three cases are examined by 

using the Procrustes algorithm, developing analytic solutions or combining with 

existing optimisation methods (e. g. convex alternating projections algorithm). The 

estimation can be computed using either static loading, or from the structure's dynamic 

response in the presence of an external disturbance. Finally, a case study is presented 

where an active control system is employed by a structure without exact knowledge of 

its stiffness matrix. The aim here is to determine whether such a system can be 

stabilised, by re-designing the controller at every sampling step using the updated 

information of the stiffness parameters provided by the estimation procedure. 

Chapter 9 applies the control design algorithms used in previous chapters in two 

benchmark problems, followed by the evaluation of the results of each method. Here, all 

the practical aspects related to the implementation of real schemes are included in the 

analysis, such as time delays, saturation of control signals, quantisation effects in digital 

control, large-scale models and their approximation, multiple design objectives, etc. The 

control methods are evaluated mainly in terms of peak and RMS responses of 

acceleration, displacement and inter-storey drift variables. Two benchmark problems 

involve the control design for two real buildings, the first being a _3 3 -storey structure and 

the second a 76 storey tower designed for resistance to wind loading. 

9 
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The last chapter outlines the main conclusion of this work and suggests directions of 
future research based on open issues resulting from the present work. 

10 
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CHAPTER 2 

LITERATURIE SURVEY ON STRUCTURAL 

CONTROL 

2.1. Introduction 

Earthquakes' action is a natural disaster responsible for many casualties and economic 
loss. Although seismic design has been increasingly improved over the years and the 

majority of buildings can resist high earthquakes, casualties are still high and the 

question of achieving good results subject to economic considerations is important. 

Currently the codes of practice (in Europe and USA) state the following [Eurocode 8 

1998]: 

For small earthquakes: A structure should be able to withstand the earthquake 

without any damage. 

For moderate earthquakes: Some structural damage is allowed as long as it is 

repairable after the earthquake. 

For large earthquakes: Heavy structural damage can occur without collapse and 

loss of life even if after the earthquake the building is 

uninhabitable. 

The current way of seismic design, which satisfies the above requirements, is to design 

buildings in the inelastic range. This means that a structure can resist only a specific 

amount of the applied force (20-25 %) but does not fail because it has high ductility. 

This method fulfils the requirements set out by the code of practice, and has managged to 

limit the number of casualties. As a result the death toll after an earthquake is 

significantly reduced but the economic loss has increased due to damaged buildings. 

New methods have developed that minimise the effect of earthquakes and make the 
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buildings usable even after high earthquakes. Active control of structures is a promising 

new field that fulfils these criteria. 

The idea of passive control for minimising the effects of earthquakes is very attractive 

since, without withstanding the whole energy of an earthquake, a passive device can be 

installed that dissipated high amounts of energy thus making a structure economic and 

safe. The main advantage of this system is that it remains undamaged even after a 

relative large earthquake. However, it soon became apparent that such a system cannot 

fully protect a structure from very large earthquakes. Since the idea of controlling 

structures existed, the new concept of actively controlling structures was bom, in which 

energy could be injected to a building to help it withstand earthquake forces. In the 

following paragraphs a detailed review of the most-commonly used control methods is 

given. These include passive, active, semi-active and hybrid control. 

2.2. Passive Control 

A passive control system is one in which structural vibrations are reduced using a 

passive control device imparting a force upon the structure. By the term passive control 

two main types are meant, base isolation and mechanic energy dissipation systems. 

These include: metallic yield dampers, friction dampers, viscoelastic dampers, viscous 

fluid dampers, tuned mass dampers (the framework of active control), tuned liquid 

dampers, etc. [Housner et al 1997], which will be described in later sections. 

2.2.1. Base isolation 

The concept of base isolation dates 50 years back but it was not since recently that it 

was applied in its current form. It is not a widely used method, mainly because it is not 

sufficiently tested for large earthquakes. The theory of base isolation relies on the idea 

that the superstructure would not be subjected to large accelerations if it was partially 

"disconnected" from the foundations of the building. Hence the earthquake force would 

not be transferred from the ground to the upper floors of the building. Base isolation 

manages to keep the structure rigid, by inserting a layer of rubber under the ground tn 

I', 
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floor, so that the energy of the earthquake is dissipated and the superstructure exhibits 

reduced accelerations. The main disadvantage of this method is that high ground 
displacement can occur, but if two buildings are separated by a sufficient distance. it can 
be very efficient. Base isolation cannot minimise disturbances arising from higher 

modes but increases the damping of the fundamental mode of the structure and therefore 

provides a safe solution in many cases. 

There are two basic types of isolation systems. The system that has been adopted most 

widely in recent years is typified by the use of elastomeric bearings [Kelly 1991]. This 

isolation system deflects the earthquake energy through the dynamics of the system 
instead of absorbing it. A layer of low horizontal stiffness is added between foundations 

and building, aiming at decoupling it from the horizontal components of the earthquake. 

This results in decreasing the fundamental frequency of the structure and removing it 

from the dominant earthquake frequencies and also increases the fundamental mode 

contribution, minimising effects from higher modes [Chang et al 2001]. The higher 

modes, that can produce displacements, do not participate in the motion because they 

are orthogonal to the first mode. The first dynamic mode produces large deformations 

on the isolated system while keeping the structural responses low. This base isolation 

approach is valid even when no damping is present, although some damping is 

beneficial. Recently, a significant amount of research in this area involves ways to 

increase damping [Tsai et al 2003], the problems with this issue lying in the highly non- 

linear mechanical behaviour of high damping rubber bearings. Apart from this topic, 

significant amount of research concentrates on the design and implementation of more 

practical base-isolation systems that can be used in practice; this mainly consists of 

testing various schemes for choosing the appropriate material required and gaining 

acceptance from the industry. 

The second type of base isolation uses the sliding system, where a friction-pendulum is 

a sliding system using a special interfacial material sliding on stainless steel [Kelly 

1991]. This works by limiting the transfer of shear across the isolation interface. The 

friction pendulum system uses a spherical sliding interface to provide restoring stiffness 

while the friction between the sliding interfaces dissipates energy. It results in 

increasing the structure's fundamental period and moving it away from the earthquakes" 

dominant frequency content. There are several systems [Wang '10021 employina 

1, 
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friction-pendulum systems, among others the San Francisco International airport, 
Greece's centralised liquefied natural gas storage tanks, the Benic ia- Martinez bridge 

and three buildings in China. 

Base isolation on its own does not have any control associated with it and therefore will 

not be examined further. However, it can be combined with several active or semi- 

active control systems and therefore a basic understanding of the concept is needed. For 

further information on the topic of base isolation see [Tsai et al 2003]. A typical 

example of a base isolation system is shown in figures 2.1 and 2.2. 

Seismic isolartors located at top of Basementt columns 

Seissmic isolýdýrs 

Figure 2.1 Seismic isolators located at top of basement column. Source: [DIS] 
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Figure 2.2 Seismic isolator. Source: [DIS] 
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2.2-2. Mechanic energy dissipation systems 

Tuned mass dampers: The concept of tuned mass dampers dates back to the 1940's. 

Tuned mass dampers can stabilise the heights of tall buildings against violent motion. 
The presence of a tuned mass forces a comparitavely lightweight building structure to 

overcome the inertia of a giant concrete block placed in such a way that the block only 
begins to move in one direction just as the building begins to move in the other, thus 

dampening the building's oscillatory motion. Shown schematically in Figure 1, a TIVID 

is a modular device composed of a spring, mass, and dashpot. These three components 

can each be implemented in a number of different ways, as illustrated in figure 2.3. 

Figure 2.3 Tuned mass damper 

Tuned mass dampers are very effective in reducing vibrations excited by high winds, 

high traffic loads or gyms inside buildings and minimise inhabitants discomfort during 

minor earthquakes. The question is whether they can also produce good results in 

protecting structures from large earthquakes. Different researchers have reported 

different findings in terms of the efficiency of TMD's. It has been widely recognised 

that the reason for these different findings is due to the characteristics of the ground 

motion affecting vibration reduction; thus it is very important to find appropriate 

relationships to obtain the optimum, tuning and damping parameters, an area of 

significant current research interest [Singh et al 2002]. Also a TMD can only decrease 

the fundamental (the normal mode of vibration having the lowest frequency) mode's 

response. An answer to this problem is the use of several TMDs [Li 2002], [Li 2003)], 

15 
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[Li and Liu 2002], each tuned at different modes to represent all dominant modes of 

vibration. 

Another area of research in TMDs is the form of the actual mechanism with several 
different types of systems being proposed (spring-mass type, pendulum type, circular 
track type, ring-like pendulums etc. ). Other considerations on TMD's include the actual 

mass that can be placed on the top of a building, the movement of a TMD that would be 

enough to stabilise the building and minimising the friction of a TMD. 

Among all the different mechanical energy dissipation systems, TMD is the most 

attractive one since its use is economic and proven for other vibration mitigation apart 
from large earthquakes. Therefore it could be more efficient to improve TMD's rather 

than develop and use other more sophisticated methods. TMD's are very commonly 

used together with other active control systems and hybrid systems, and it has even been 

suggested that a TMD would be very efficient if combined with a base isolation system. 

The base isolation would act to increase the contribution of the fundamental mode and 

the TMD would decrease the amplitude of vibrations. Extensive work on the area of 

TMD control has been reported by several researchers including [Johnson et al 2003] 

and [Singh et al. 2002]. 

Tuned liquid Dampers(TLD). - Tuned liquid dampers are systems that add damping to a 

structure by the adverse motion of water. The advantage of this method is that the liquid 

can provide a very large force in very economic terms (low energy, low cost of material 

and maintenance). The disadvantage is that the motion of water is very difficult to 

describe and model. Although TLD's have been used for suppression of wind 

vibrations, their use in cases of earthquakes is in question due to the very large force 

that will have to be applied. The behaviour of liquids is very difficult to model, 

especially when at increased motion waves occur that tend to destabilise the system. 

Therefore, a lot of theoretical and experimental work needs to be carried out in order for 

this method to gain acceptance for earthquake resistance. 

Configuration: A TLD consists of a rectangular container filled with two immiscible 

fluids that dampen the response through the motion of the interface. Another popular 

TLD is a Tuned Liquid Column Damper (TLCD) which consists of a tube filled ýýIth 

16 
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water. The fundamental period of the system depends on the length of column of'ýýater. t5 
The dissipation term is non-linear and depends on the coefficient of head loss (figures 

2.4,2.5). The concept of using water to actively control a structure is attractive but due 

to its very unpredictable behaviour, especially at sudden loads that would be present in 

active control, it is very difficult to use for large earthquakes [Housner et al. 1997]. 

X1 TLD 

T LD 

Figure 2.4-2.5 Tuned liquid damper. Source: [Damatty 2002] 

Fluid viscous dampers: Fluid Viscous dampers (FVD) have also been used to add 

damping into structures. The concept is not new and FVD's are being used in the 

military and aeronautical engineering industry. The concept is that a cylinder piston is 

filled with a viscoelastic fluid (figure 2.6). Energy is dissipated due to the movement of 

the piston inside the highly viscous fluid. The viscous nature of the device is ensured by 

orifices along the piston. Taylor Devices' Fluid Viscous Dampers have gained 

acceptance recently and are used for seismic protection on new or existing buildings. 

FVD's are relatively small and can be placed in several parts of the structure depending 

on what extend and number they are needed. 

Cylinder 
Silicone Fluid 

Piston Rod 

Piston Head 

Figure 2.6. Diagram of a Fluid Viscous Damper. Source: [ Constantinou 1994] 
17, -- 
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Although the behaviour of FVD's is more linear and easier modelled than that of 
TLD's, at strong earthquakes the FVD develops excessive damping forces, which tend 

to destabilise the system. Therefore si nificant amount of research is currently carried 91 

out at a theoretical level to establish non-linear laws modelling its behaviour [Hsiung 

and Chopra 2002]. Usually FVD are placed like bracings in structures in one or several 
floors. 

del Frame 

d Viscous Damper 

Diagonal Brace 

Figure 2.7 Fluid Viscous Damper. Source: [CONST] 

Alletallic yield daml2ers. - Current seismic codes are based on inelastic energy absorption 

from damping. Damping can be added by other means, one of which is by placing 

metallic yield dampers (MYD). Such devices use mild steel plates with triangular 

shapes so that the yielding is spread uniformly throughout the material. Several different 

devices are used, some of which are U-strip energy dissipators and torsional and 

flexural beams [Housner et al. 1997]. MYD is a safe method of guaranteed results but of 

limited strength. 

Metallic yield dampers cannot be used as active control devices but could be combined 

with other mechanisms to reduce the movement from environmental loads. Because 

their interaction could hardly change the behaviour of the active mechanism, they 

should be treated as two different control mechanisms. 

Friction daml2ers. -, Friction dampers are designed to have moving parts that slide over 

each other during a strong earthquake. When sliding occurs, friction is created, which t) 

dissipates sorne of the energy from the earthquake. Like metallic yield dampers they 

provide a safe, easy to implement and of guaranteed results answer to earthquake 

protection. They can minimise the devastating effects on buildings of earthquakes by 

sorne margin. Friction dampers can be easily implemented at minimal cost since they 

18 
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are of similar structural material and do not take much space [Almazan et al. 20011. 

Friction dampers could be implemented together with other control mechanisms like 

viscoelastic devices, although they are of limited use as active structural control 

mechanisms. 

Viscoelastic dampers Viscoelastic dampers are used to dissipate energy at all 
deformation levels. They were first used for civil engineering purposes in the twin 

towers in the World Trade Centre in 1969. A typical viscoelastic damper is made of 

copolymers or glassy substances and consists of viscoelastic layers bonded with steel 

plates and hysteretic loops. The behaviour of viscoelastic material under cyclic loading 

depends on frequency, strain and temperature. The relationship between shear stress (r) 

and shear strain (y) with frequency ((o) is given by [Housner et al. 1997]: 

G "(w)y(t) 
r(t) = G'(t»)y(t) + 

(1) 

where, 

G'(co) is the shear storage modulus and, 

G"((t)) is the shear loss modulus of the viscoelastic material 

In contrast to other energy dissipation systems, theoretical results and complex 

relationships are needed to maximise the effects of viscoelastic dampers. An advantage 

is that their behaviour is linear and that they can be used in several classes of systems. 

2.2.3. Overview of passive control 

Passive systems have the following advantages: 

I They are inexpensive systems that can be incorporated in the structure 

without much difficulty. 

There is no or limited maintenance cost. 

3 They do not need any external power. 

4 They constitute a safe method, functioning at all times, which reduces 

vibrations by a limited amount. 
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5 They are stable. 

6 They assure that no structural damage occurs during small or moderate 

earthquakes. 

The main disadvantage of passive control is that it has a limited capability of reducing 

vibrations because it dissipates energy and does not counteract forces. This means that, 

on its own, it might not provide enough protection against large earthquakes. 

Structural control implementations: Dampers are not only used at skyscrapers in regions 

of severe natural hazards. Recently in London the millennium bridge was built, a 

prestigious and famous work, as the name suggests, and high financial help was 

provided for its successful completion. The millennium bridge was closed for the public 

for almost two years due to the large vibrations that it exhibited. Dampers were added to 

reduce the effect of vibrations and the bridge was re-opened to the public. 

The day that it was opened 80,000-100,000 people crossed the bridge. The maximum 

sway of the bridge was 70mm, which was not related to wind loading but was generated 

simply from the large amount of people walking on it. This phenomenon is now called 

synchronous lateral excitation. The solution was to place a number of viscous dampers 

under the deck, around the piers and the south landing to control the lateral motions. 

Tuned mass dampers were also placed under the deck as a precaution. 

20 

Figure 2.8. Millennium bridge Source: [Arup n. d. ] 
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lima 

Figure 2.9. Dampers on millennium bridge Source: [Arup n. d. ] 

The most famous TMD is installed in the tallest building on earth, which is the Taipei 

101 in Taiwan (figures 2.10,2.11), having 101 floors above ground as the name 

suggests. It is in a region of very strong earthquakes and typhoons. A TMD (figure 

2.10) is installed to reduce vibrations. It is a steel pendulum suspended from the 88"' to 

the 92 nd floor with a force of 662 metric tonnes. It has a 5.5m diameter, which is the 

largest damper sphere in the world. The structural frame is able to resist the earthquakes 

by itself but the TMD is added for increased security and to increase inhabitant comfort 

during earthquakes and strong winds. 

ýjj -ýJov! 
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Figure 2.10 TMD in Taipei 10 1 
Source: [Wiki n. d] 

Figure 2.11 laipci 10 1. Sourk: c ý\\ iki ii. J] 
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2.3. Active control 

Active control is a new idea to protect structures. An active control mechanism consists 

of an actuator, a control mechanism, a (mathematical) control law and sensors to record 
the motion of specific parts of the structure [Hatada and Smith 1997]. An actuator is 

placed at a certain location in the structure, and when there is a disturbance (earthquake, 

high wind, etc. ) the sensor records it and sends the signal to the computer, which in turn 

analyses the data and triggers the actuator. The actuator acts and generates the 

appropriate forces that would minimise or suppress the vibration and stabilise the 

structure. In contrast to passive control, active control minimises the disturbance from 

its source and is therefore considered to be more effective. 

The first structure to implement active structural control was the Kyobashi Seiwa 

building in Tokyo [Lynch 1993]. The 10-storey building had two controllers placed on 

the roof. The first one (4.2 tons) was placed in the roof s centre of mass to control 

transverse vibration and the second one (1.2 tons) at the edge of the building to control 

torsional motion. The actuators (active mass drivers) were suspended like a pendulum to 

minimise friction and air resistance. The device was used to control the building during 

large winds and small to moderate earthquakes. Finally, the actuators used hydraulic 

pumps to transfer energy. 

The number of actuators employed depends on the modes that have to be targeted. 

Normally the actuator is tuned at the fundamental mode vibrating in the opposite 

direction. Usually one actuator for the fundamental mode is used in structures where the 

first mode has a large contribution. It is likely that tall structures are more flexible hence 

stabilising one mode is not enough, and thus more actuators may need to be used in this 

case. 

Since the success of the Kyobashi building, the use of active mechanisms or similar 

devices spread to several buildings (table 2.1). These can be grouped into two kinds of 

actuators: Active tendon control and Active mass driver described in detail in the next 

section. The table below lists all the buildings using active control in Japan and South 

East Asia [Yang n-d] until 2001. 
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Su ma! ý of Actively Controlled Buildings Towers 
Full-Scale Structure/location I Control AMD/HMD! Actuation 

Yearl Scale of Building System Mechanism 
Kyobashi Center Bldg. / Tokyo 19891 33m, 400 ton, II stories AMD 2 liýdraulic 

Kajima Technical Research Institute 
No. 21 Bldg) Tokyo 1990 12m, 400 ton, 3 stories AVS 

variable orifice 
hN draul ic damper 

Sendagaya INTES/ Tokyo 1991 58m, 3280 ton (I" mode), II stories AMD 2 72 hvdrauhc 
Shimizu Tech. Lab/ Tokyo 1991 7 stories HMD 1 4.3 servo motor 

Applause Tower (Hankyu Chayarnachi 
Bldg. )/Osaka 1992 162m, 62660 ton, 34 stories AMD 1 480 liNdraulic 

Elevator Tech. Lab. 1992 60rn AGS 
Kansaj Int. Airport Control 

Tower/Osaka 1992 86m, 2570 ton, 5 stories HMD 2 10 servo motor 
OAC 200 Bay Tower/Osaka 1992 200m, 56680 ton, 50 stories HMD 2 200 servo motor 

Osaka Resort City 200/Osaka 1992 200m, 56680 ton, 50 stories HMD 2 230 servomotor 
Long Term Credit Bank/Tokyo 1993 1 130m, 39800 ton, 21 stories HMD 1 195 liýdraulic 
Nishimoto Kosan Nishikicho 

Bldg. /Tokyo 1993 54m, 2600 ton, 14 stories HMD 1 22 servo motor 
Yokohama Land Mark 

Tower/Jokohama 1993 296m, 260600 ton, 70 stories HMD 2 340 hydraulic 
Harnainatsu ACT Tower[Hamatsasu 1994 21 3m, 107534 ton, 45 stories HMD 2 180 servo motor 

Hikarigaoka J-City Tower/Tokyo 1994 11 2m, 25391 ton, 24 stories HMD 2 44 servo motor 
Hirobe Miyake Bldg. /Tokyo 1994 31 in, 273 ton, 9 stories HMD 1 2.1 servo motor 
Hotel Phoenix Hotel Ocean 

45/Miyasaki 1994 1 54m, 83650 ton, 43 stories HMD 2 240 servo motor 
MHI Yokohama Bldg. /Jokoharna 1994 1 52rn, 61800 ton, 34 stories HMD 1 60 servo motor 

NTT Kuredo Motomachi 
Bldg. /Hiroshima 1994 1 50m, 83000 ton, 35 stories HMD 1 78 servo motor 

Penta-Ocean Exp. Bldg. /Tokyo 1994 6 stories HMD 
Porte Kanazawa (Hotel Nikko 

Kanazawa)/Kanazawa 1993 13 1 in, 27600 ton, 30 stories AMD 2 100 livdraulic 
Riverside Sumida Central 

Tower/Tokvo 1994 1 134m, 52000 ton, 33 stories AMD 2 30 1 servo motor 
Shinjuku Park Tower/Tokvo 1994 233m, 130000 ton, 52 stories HMD 3 330 servo motor 

Nissei Dowa Phoenix Tower/Osaka 1995 145m, 26800 ton, 29 stories HMD 2 84 servo inotor 
Osaka WTC Bldg. /Osaka 1995 255m, 80000 ton, 55 stories HMD 2 100 servo motor 

Plaza Ichihara/Chiba 1995 58m, 5760 ton, 12 stories HMD 2 14 servo motor 
Kaikyo-iriesse Dream 

Tower/YamagUshi 1996 153m, 5400 ton HMD 2 10 

Rinku Gate Tower North Bldg. /Osaka 1996 255m, 65000 ton, 56 stories HMD 2 160 servo motor 
Herbis Osak'a/Osak-a 1997 190m, 62450 ton, 40 stories HMD 2 320 hydraulic 

Itoyama Tower/Tokvo 1997 89m, 902 5 ton, 18 stories HMD 1 48 servo motor 

Nisseki Yokohama Bldg. /Yokohama 1997 133m, 53000 ton, 30 stories HMD 2 166 

TC Tower/Taiwan 1997 348m, 221000 ton, 85 stories HMD 2 100 servo motor 

Burika Gakuen New Bldg. /Tokvo 1998 93m, 43488 ton, 20 stories HMD 2 48 servo motor 
Daiichi Hotel Ollita Oasis Tower/Ohita 1998 10 1 in, 20942 ton, 21 stories HMD 2 50 hvdraulic 

Odak-vu Southern Tower/Tokvo 1998 1 50m, 50000 ton, 36 stories HMD 2, 30 linear motor 
Otis Shibayama Test Tower/Chiba 1998 154m, 6877 ton, 39 stories HMD 1 61 hvdraulic 

Sotesu Takashimaya Kyodo 
Bldg. /Yokohama 1998, 11 5m, 68954 ton, 2_7 stories HMD 2 122 

Century Park Tower/Tokyo 1999 1 70m, 124540 ton, 54 stories HMD 4 440 

JR Central towers/Nagova 1999 Hotel, 226m, Office, 2451n 300000ton HMD 
4(H) 
2(0) 

60(H) 
75(0) 

servo motor(H) 
hvdraulic(O) 

Nanjing Tower/Na-Riing 1999 31 Om AMD 1 60 hNdraulic 
Shin-Jei Bldg. /Taipei 1999 99m, 22 stories AMD 1 3 120 1 ser, ýo motor 

Shinagawa Intercity A/Tokyo 19991 144m, 50000 ton, 32 stories HMD 2 75 
Incheon Int. Airport Air-traffic Control 

Tower/Korea 2000 1 00m HMD 2 12 servo motor 

Kelo University Engineering 
Building/Tokyo 2000 

Smart 
Base 

Isolation - - 
variable orifice 
orifice damper 

Harumi Island Triton Square/Tokyo 2001 3 buildin-gs (I 95rn, 175m and 155m) 
Couple 
Building 
Control 

2 servo actuator 

Table 2.1, SOURCE Yang nd 

3 
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2.3.1. Active Tendon Control 

Active tendon control seems to be theoretically the most powerful control method in 

active structural control. Tendons are existing parts of a structure and therefore do not 

need to be added separately. A tendon, usually in the ground floor, cross connecting the 

two corners of the first floor to the two comers of the ground floor can pull the tendon 
by an actuator in the ground floor in a direction opposite to the movement of the 

earthquake (figures 2.13,2 
. 14, [Dyke et al. 1994a]). 

This method does not work by adding damping or dissipating energy but it applies a 
force whose direction is opposite to the movement of the building. Since the tendons are 

usually placed at the ground floor (unlike other passive schemes where the controller is 

at the top) if the movement of the building at the ground floor is minimised, the 

response on the rest of the building is minimised proportionally. This is the most 

accurate method to suppress a disturbance since it counteracts forces on the structure 

and at the point where the earthquake first encounters the structure. 

The actuator is powered usually by a servo controlled hydraulic actuator since this is the 

most cost-effective method to inject large power. The disadvantage of this control 

system is that it has very large energy requirements, which makes it very expensive to 

use. Active tendon control can be combined with other passive energy systems like base 

isolation to reduce the energy demand by keeping the structure safe. 

ACC,, irýulato, 
HydrauhC aCtuator 

Oil tank 

Hyýj, auhc p. -p 

. ", A Ic I- 
(22 K-) 

vI as 

AMD -2 Mass IT to suppress 
AI 

Hyd-,, hý P'_P 
torsional oscillation Control computer 1K- Air-cooling top 

AAA[>-ý At) 
1-9. 

Fi"Lire 2.12 First implemented active control actuator. Source: [Lynch 199-33] 
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Figures 2.13,2.14 Active tendon control. Source: [ Dyk-e et al. 1994a] 

2.3.2. Active Mass Driver/Damper (AMD) 

An active mass driver is a mass, placed at the top of a structure. During movement of 

the building the mass moves at a direction opposite to that of the building so as to 

maintain the centre of mass at the same position, thus stabilising the building. The 

advantages of AMD are that it can be combined with a passive system (TMD) to 

improve stability and the force requirement is less than that of an ATS. The 

disadvantage of this method is that since the earthquake is applied to a building from the 

ground, the actuator force coming from the top may not be able to stabilise it since the 

waves propagate at opposite directions. In civil engineering terms if the fundamental 

mode having a large modal mass contribution is the main one (which is excited) a 

building can be stabilised, but if the higher modes are also significant the AMD has a 

lower impact. In control engineerino terms the problem arises due to a non-minimum Z_ tý 

zero in the transfer function of the system, characteristic of systems with non-collocated 

sensors and actuators, which imposes additional phase lag and tends to destabilise the 
I 

systern. Since active control is usually used in high flexible structures, modal 
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contribution from higher-order modes is typically significant. and therefore this 

disadvantage needs to be addressed. 

An AMD is usually activated by hydraulic pumps (or electric servomotors), which 

cause jacks to move a suspended mass (figure 2.11). AMD was the first active control 

mechanism implemented on a structure and therefore has received a lot of attention. The 

Kyobashi Seiwa building in Tokyo was constructed in 1989. It consisted of two AMD's 

placed upon the roof. The first one, of 4 tons, was placed at the centre of gravity to 

control the fundamental mode and the second one, consisting of I ton, was placed at the 

edge of the building to control torsional motion. The control mechanisms represent 1% 

of the total weight and could produce a force of 3.4 and 2.2 metric tons respectively. 

The AMD primary goal was to improve habitant's comfort during moderate earthquakes 

and high winds rather than to withstand extreme earthquakes. 

The success of this system has led to the implementation of active control mechanisms 

for protection from earthquakes and high winds, including attempts to control even 

extreme earthquake events. More sophisticated systems like the DUOX or TRIGON 

[Lynch 1993] were designed that would be able to operate at lower energy levels. A 

very attractive system is the combination of a passive system together with an active 

control mechanism (hybrid control). A lot of research has been carried out in this area 

and certain limitations of this approach have been discussed in the previous section. 

AMD is the active control area that has received most attention in terms of research. 

Some papers in the literature include benchmark problems [Spencer et al. 1998], [Baker 

et al. 1999] where many different control algorithms are compared for several design 

aspects (root-mean-square values, peak values, maximum displacements, accelerations 

etc. ). Also several researchers have attempted to find the limits of these controllers in 

terms of saturation levels, when larger forces are applied than those the controller can 

withstand [D' Amato and Rotea 1999], [Forrai et al. 2003]. Further work on active 

control is presented in [Zhang and Ivan 2001a], [Zhang and Ivan 2001b], [Min et al. 

2001] - 

Another difference between active and passive control is that a passive device Ný III be 

dissipating enerw, at all times. An active device ina\ have a negative effect and 
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destabilise a building if the force is applied at the wrong direction or at the ývron, -, time. 
Therefore the following aspects need to be taken into consideration as %ý ell. 

I Time delay 

2 Actuator saturation/ Controller saturation 
3 Control I abi lity/Observabil ity, sensor/actuator related problems 
4 Possibility of power cut-off during earthquake 

Time-dýla ýL. From the time the earthquake waves reach the surface to the moment the 

sensor measures it, sends the signal to the computer, the computer processes it and the 

actuator applies the required force there is inevitably some time delay. New techniques 

and new sophisticated technology have managed to decrease the delay to 0.1-0.2 ms, 
which can be significant. A number of papers have been published analysing the effects 

of time delays in structural control [Soong 1990], [Chu et al. 2001]. [Agrawal and Yang 

2000], [Alt et al. 2000]. Current structural control design techniques deal with the 

problem of time-delay satisfactory and some researchers claim that the time-delay can 

even be used to have a positive effect on the structure [Firdaus et al. 2003]. 

Actuator saturation: Sometimes the force required by an actuator is larger than the 

maximum that can be produced. Else, a large force over a short time interval needs to be 

produced. In such situations the actuator may saturate. The behaviour of the control 

system is not predictable in this case because the theoretical way by which the controller 

was designed no longer applies. The problem of actuator saturation has been discussed 

in [D'Amato and Rotea 1999], [D'Amato and Rotea 1997]. 

Control labi lijy/Observabi lijy, sensor/actuator related problems: Controllabilitý 

measures how effective a controller is when placed at a specific location on a structure. 

Observability measures the amount of information that can be obtained from the 

measured variables if a sensor is placed at a specific location. A formal control theoretic 

definition is given in the next chapter. The problem of actuator placement in other 

control mechanisms is often trivial. From the nature of the control system or from 

practical and construction considerations there may be only one obvious optimum 

location of an actuator (usually the highest floor). In active tendon control usuallý the 

ground floor is considered to be the optimum location but there are other considerations. 
. =1 
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like using several active tendon systems (ATS) or having a larger ATS that covers more 

than one floor. Soong has proposed some simple methods for finding the optimal sensor 

and controller location in a structure [Soong 1990]. 

The problem of observability is important because if the mode at which the building is 

vibrating is not known, the information from only one mode is not sufficient to describe 

the behaviour of the rest of the structure. A simple solution to this problem is the 

placement of several sensors (for a building one in each floor) something that is costly 

and increases system complexity. Nevertheless, the cost of an extra sensor is 

insignificant. This is not true in the case of controllability, where it is crucial to find the 

optimal controller location(s), since the cost of an extra actuator (or more power) may 

be sufficient to make the system uneconomic. 

A similar way may be fOllowed to identify the optimal controller locations. First, define 

a controllability index as: 

[n 

(X)Iyj(m 
)(t) 

2 

1/2 

)O(x)= 
lfg[(Dj 
j=1 

where: 

x= percent of total height of structure 

n= number of modes considered 

(Dj =j-th modal shape 

yj = maximumj-th modal response spectrum 

g= A(D, (x) / Ax (for ATS controller) 

Although this method is valid for the above example, more sophisticated methods 

originating from control theory can be used. As suggested by [RANA], [Hamdan and 

Nayfesh 1989], a gross measure of controllability of the i-th mode is the norm of f 

where: 
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qTB I 
l1q, 11 

in which q, is the i-th left eigenvector of the system matrix A given by Aqj 
ýAT q, and 

ý, i is the i-th eigenvalue of A. The author proposed this method for first and second order 
linear systems but in [Rana et al. 1997] it was extended and used for evaluating the 

controllability of an active bracing system (similar to ATS) of an 8 floor storey building 

after appropriate model reduction. Further research in the area of optimal 

sensor/actuator placement, including QN control and spline function interpolation 

methods have been reported in [Xing et al. 2001] and [Limongelli 2003)], respectively. 

The above problems are mostly areas where further research is needed to improve the 

behaviour of active control systems rather than disadvantages, although they 

demonstrate that if any of these aspects is miscalculated, the controller might become 

unstable or ineffective, a problem that does not arise with passive control. The ma or (if 

not only) concern is the large energy requirements which might make the controller 

unable to meet its requirements or very expensive. Furthermore, during an earthquake 

there might be an electricity cut-off and the controller could cease to operate unless a 

local generator is in place. This however is more of a practical problem rather than a 

civil or control engineering design issue. 

2.4. Hybrid Control 

A hybrid control system has one active and one passive component. The idea behind a 

hybrid system is that passive control cannot fully protect a structure from extreme 

earthquakes but active control is too expensive and requires high energy levels. An 

active system is always on, resulting to a constant energy supply and high cost. In the 

case of a hybrid system, the passive component is acting at all times, while the active 

component starts to function only when the disturbance signal arrives. This means that 

the maintenance cost of the active system is minimal, since it is used onlý during the 

periods when earthquakes occur. 
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Hybrid mass damper: The hybrid mass damper is the most commonly employed 

actuator in controlling buildings. It comprises of a TMD and an AMD. The energy 

requirement of this system is relatively low and achieves similar results to those of an 
AMD. A very attractive system is the inverted pendulum. Tuned at the natural 
frequency of the building it vibrates with a relatively small force. Many systems have 

been developed, like multiple active-passive mass dampers that are tuned to more than 

one natural frequency of the system [Li 2003]. Almost any passive energ systems can gy 
be combined with AMD. Hybrid systems are typically more complex since the 

dynamics of two components are combined (figure 2.15). 

wn 

Figure 2.15 Hybrid mass damper 

Hybrid base isolation: Base isolation can reduce the inter-storey drift and absolute 

acceleration on a structure but has a very high base displacement. If combined with an 

active system (active tendon or AMD) it can reduce the base displacement as well. Base 

isolation systems exhibit non-linear behaviour and therefore different control algorithms 

are used as opposed to the traditional LQG and H., methods like fuzzy, neural networks, 

adaptive non- I inear control, etc [Chang et a]. 200 1 ]. 

One of the first buildings to have a hybrid mass damper was the Ando Nishick-iko 
4n 

building in Japan, Tokyo. It was designed by the Kaji ation which also 
117,1-71 

ima corpor 

designed the first AMD as well. The building is a 14 storeY steel structure. The control 
In 
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device called DUOX consists of a 20-ton TMD and tNAo AMD restino on the TMD of 2 

tons each. The stroke of the TMD and AMD is 50 and 25 cm respectively, and they are 

targeting the first two modes of vibration. The total mass of the building is 2600 tons, 
t 

i. e. the DUOX is less than 1% of the total mass of the building. This system is supposed 

to be more cost-effective than AMD. Also the DUOX system is designed to reduce 

vibrations due to strong winds and moderate earthquakes. 

Outdoor aluminium cover 

AC servo motor 

Spring 

I Weight of TMD 

- 

AMD-X 

1. Oil damper 
Hollow laminated rubber bearin 

Figure 2.16 Concept of a hybrid mass damper (DUOX system) Source: [_Lynch 1993] 
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Figure 2.17 Hybrid mass damper (TRIGON s,, "steni). Source: [Lynch 199-3)] 

Digital 
controller 
computer 

Built-in 
controller 



2. Literature Survey on Structural Control Pana2lotis Rent7. o---, 

2.5. Semi-Active Control 

Semi-active control is a mechanism that cannot inject mechanical energy into a system, 

but has properties that can be controlled to reduce the responses of the system [Spencer 

and Sain 1997]. In control engineering terms such systems are observable but poorly 

controllable. They have the advantage that they require a minimal amount of energy but 

perform much better than passive systems and have the potential to compete with active 

control systems in terms of performance. They also do not tend to destabilise the system 

due to small errors. Semi-active schemes have already been implemented with success. 

It is expected that they will be more frequently used in the future, due to their high 

efficiency for the low energy they require. A practical difference between active and 

semi-active control is that in semi-active control several small actuators are 

implemented in a structure rather than one. 

Variable-orifice dampers (VOD): The idea behind a VOID is a variable stiffness device 

mechanism. "V"-bracing is used and at their apex a variable stiffness device is 

connected (figures 2.18,2.19). This device can be locked and therefore be ineffective or 

unlocked so that the brace can resist lateral loads. The power required to lock and 

unlock the braces is minimal and can also be produced by a backup generator [Spencer 

and Sain 1997]. 

-1 -1q, cloco 
-- 

"I-- - 

RF 

2F 

2F 

Scw, -a, bvc H- wr., Ij 

(SHD) 

Figure 2.18,2.19 Semi-active hydraulic dampers. Source: [Spencer and Sain 1997] 
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Recently the Kajima k-Building was constructed in Tokyo, a 38-story building " ith 88 

variable orifice dampers and two hybrid mass dampers and also the Kajima R-building, 

a 54 story building with 356 variable orifice dampers and 192 passive dampers. 

Variable friction dampers/Control I able tuned liquid dampers: A Variable friction 

damper consists of a friction shaft that is rigidly connected to the structural bracing. The 

force in the friction at interface is adjusted by allowing slippage in controlled amounts. 
Another device is a friction controllable fluid that produces good results if connected 

with a base isolation system. Controllable tuned liquid dampers utilise the motion of a 

sloshing fluid or column of fluid to control a structure. 

Smart dampers (or controllable fluid dampers): These consist typically of 

electrorheo logical (ER) or magnetorheological (MR) fluids. ER and MR are free 

flowing fluids that within milliseconds after their exposure to electric or magnetic field, 

become semi-solids of controllable yield strength. The properties of those fluids are 

shown in figure 2.20. During vibration they change from stiff when the element is at its 

original position to fluid when the element is at maximum displacement and vice versa. 

This is done during each vibration which is why a fast response time is necessary. 

ER and MR are suspensions of particles in liquids. They are added in fluids without 

altering their behaviour. When they are exposed to electric or magnetic field, these 

articles form chains that cease the flow of liquid and transform it into static structure. 

The stiffness and yield strength of ER or MR dampers depends on the electric or 

magnetic field and the concentration of the particles. ER and MR fluids were developed 

in the 1940s but they were not used for engineering purposes until the 1980's in 

mechanical engineering. ER initially received more attention since electricity is used 

more widely than magnetism, but lately MR fluids seem to be increasingly attractive 

due to the very good properties they posses compared to ER. Their behaviour, ho"ever, 

is non-linear which means that a lot of research is needed before they can be reliabl%' 

"], [Djajakesukma et al. 2002]. used [Sun et al. 200 3 
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Figure 2.20 Force-displacement graph of MR fluids source: [ Spencer and Sain 1997] 

Structural control implementation: The first structure with MR dampers has been 

operating in Japan since 2001. It is the Nihon-Kagaku-Miraikan, the Tokyo National 

Museum of Emerging Science and Innovation. It has two 330-ton MR fluid dampers 

installed between the 3 rd and 5"' floor. The first bridge using smart materials is the 

Dongting Lake bridge in Hunan, China. It is a cable-stayed bridge that uses two MR 

dampers on each cable to mitigate cable vibration. 

Figure 2.21 Tokyo National 
Museurn of emerging Science 

17, : _, ý 
and Innovation. Source: 
Spencer and Sain 1997 

IT"" I 

Figure 2.22 Dongting Lake bridge, Hunan, 
China. Source: Spencer and Sain 1997 
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2.6. Summary 

There are several structural control methods, which are divided into passi,. e. active, 
semi-active and hybrid control. Passive devices are those that dissipate energy. Tlleý 

can be divided into two classes, base isolation and passive energy dissipation systems. 
Base isolation systems are very robust and effective. The logic behind them is simple. 
i. e. if the superstructure is isolated from the substructure then the effect of the 

earthquake will be minimal. Base isolation is effective in minimising the fundamental 

mode movement. 

In contrast to base isolation there are many different types of passive dissipation 

systems. Here the challenge is to find a creative way to dissipate as much energy as 

possible. Some systems require just one device, targeting the fundamental mode (e. g. 
tuned mass damper) and some several devices (e. g. fluid viscous damper). The most 

common device is the tuned-mass damper. A mass vibrating at the top of the building in 

the fundamental mode is used to reduce vibrations by dissipating energy. 

In active control powerful actuators apply forces aiming at counteracting the induced 

vibrations. This is the strongest kind of control. Here, full control analysis and 

modelling is required. An active controller requires a control mechanism, an actuator, 

sensors and a mathematical control law. The main advantage of active control is its 

ability to produce large forces and theoretically counteract any earthquake. The 

drawback is that such actuators, usually hydraulic, require very large forces. Active 

controllers are dynamic systems and hence require detailed mathematical modelling and 

control theory for their effective design. Feedback control laws, full robustness analysis 

and many other control aspects related to control implementation and validation are also 

required before installing such a system. 

Semi-active devices cannot inject any mechanical energy into the system. but have the 

ability to vary their stiffness characteristics. It has been reported in the literature that 

semi-active devices can achieve results close enough to active control by using much 

lower energy requirements. Hybrid systems combine aspects from the above systems. 

They usually consist of a passive device, which is always on, and a small active device 
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activated during a strong earthquake. In semi-active and hybrid sý stems' detailed 

control analysis is required for their effective design and implementation. 

The most effective mechanisms are active control devices since they can apply forces 

and can resist very large disturbances. Hence, the rest of the thesis will be main1v 

concentrated in the area of active control. Since the area of structural control is ne", 

much additional research is required before they can be fully accepted by the research 

and industrial communities. Areas such as modelling, optimal placement of actuators 

and sensors, controllability and observability, the effects of time delay, robustness, 

optimal control laws and actuator saturation are only some of the areas requiring further 

work in the area of active structural control. In passive control most new research is in 

the area of developing and implementing new or existing ideas in a practical way, 

whereas for active control fundamental research is required in the area of controller 

design itself. 
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CHAPTER 3 

CONTROLTHEORY 

3.1. Introduction 

This chapter outlines the main aspects of control theory that will be used in the thesis, 
by starting from the basic definitions and building up to the required theories and design 

methodologies. The introductory topics include general concepts of control and 

automation, classification of systems, open and closed-loop systems, feedback control 

and some basic concepts of classical control. Special emphasis is placed on state-space 

equations, including representation of mechanical systems by differential equations and 

their state-space equivalent form. The next section outlines the concepts of pole 

placement and controller design including a number of widely-used techniques such as, 

Linear-Quadratic Regulators (LQR), Linear Quadratic Gaussian (LQG) control and H" 

optimal control. Finally, a method for parametrising all stabilising controllers (Youla 

parametrisation) is described, which is of great importance to H, control and also 11 - 

optimal control theory which is described in a separate chapter. 

3.2. Fundamentals of control theory 

The work described in this thesis is in the area of active vibration control of civil 

engineering structures. In this section we introduce the main concepts in the area of 

Systems and Control theory, which are used extensively throughout this work. A system 

is an assembly of physical components related in a way to form a unit. Control is the 

science that studies systems, by observing the system's output signals via measurements 

and regulating the system's response in an appropriate way. For a more formal 

definition, a system can be considered to be a mathematical model described by a set of 

interrelated equations and constraints; Control involves the stud, of these equations, 

includina the ability to manipulate them, in a ýý ay that modifies the system's response in 
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the desired way. Thus, an important part of control is the ability to model a real system 
mathematically, so that the response of the real system can be adequatelý determined 

from the model. 

An example of a system is a room having a thermostat to control its temperature. A 

thermometer measures the temperature and when this drops to a certain level the heatin, -, 
is automatically turned on, until the desired temperature is reached. A typical control 

system has three main elements. The Plant (in this case the room and its heating/cooling 

properties) the sensors (in this case the thermometer that measures the room 
temperature), and the control system or Controller (in this case the thermostat that 

switches the heating on and off). A system that needs to be controlled always has an 
input and an output. An input signal is the excitation applied to the plant by the 

controller, in this example the thermostat signal. Output is the response obtained from 

the plant. The difference between the input and the output signals is the error signal, 

which should be zero in a perfectly controlled system. The system may be subjected to 

external disturbances, e. g. opening a window will alter the room's temperature. 

The above system is considered to be in closed-loop form because the control action is 

dependent on the output. An open-loop system is one where the control action is 

independent of the output. In the previous example, if the heating would be switched on 

and off at the same time every day the system would be open-loop. The vast majority of 

control systems are closed-loop and use feedback. Feedback is a property of the closed- 

loop system; by comparing the input with the output, the system can take the 

appropriate corrective action. There is alsofeedforward control, when the system knows 

in advance (at least partly) the disturbance signal and can counteract it (e. g. partially 

cancel it). Feedforward control is used rather rarely in real systems. In the previous 

example, feedforward control would correspond to a situation in which the exact time of 

a window opening or the exact change of temperature was known, so that corrective 

action was taken before a significant drop in temperature was detected. In this case, due 

to the slow dynamics of the system, feedforward would probably not lead to significant 

performance improvements of the control system; this is in contrast to cases of 

structures' protection against earthquakes. where prior knowledge about the 

characteristics of the earthquake signal would be very useful. 1ý 
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Feedback control systems are divided into two classes. The first class corresponds to the 
"regulator problem", where a physical variable needs to be maintained at a constant 
value. The second class corresponds to the "servo-mechanism-Problem" where a 
physical variable which varies in time needs to be tracked, e. g., a robotic arm moving 
along a pre-determined path. The regulator problem can be shown to be equivalent to 
the problem of disturbance rejection, and will be used throughout this thesis. 

3.3 Further systems classification 

Throughout this work systems will be described by differential equations arising from 

mechanics. These can be either ordinary differential equations giving rise to lumped- 

parameter systems, or partial differential equations arising from continuous mechanics 

resulting in distributed parameter systems. Another important distinction is between 

linear and non-linear systems. Linear systems are typically described by linear 

differential equations, which can be reduced to systems of first-order differential 

equations. Linear systems satisfy the principle of superposition and are typically, much 

simpler to model and control. Another important distinction is between time-varying 

and time-invariant systems. The differential equation describing a time-invariant system 
does not depend explicitly on the time-variable. The majority of systems that will be 

examined here are linear-time- invariant (LTI). This assumption already implies some 

degree of approximation, since physical systems will always degrade with time and are 

to some extend non-linear. 

The response y (t) of a linear system to several inputs U, 
(t) 

I 
U2 

(t) 
I ... u,, (t) acting 

simultaneously is equal to the sum of the responses of each input acting alone, when all 

the initial conditions in the system are zero (the system is at rest) [Stubberud et al. 

1994]. That is, if y, (t) is the response due to input u, (t), then 

y(t) yi (t) (3.1) 

Equivalently, a system is linear if its input-output relationship can be described by the 

convolution integral (assuming zero initial conditions): 
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f 

y(t) = 
fw(t, r)u(r)dr 
0 

(3.2) 

If further w(t, -r) = w(t - 7), the system is time-invariant and w(t) denotes its impulse 

response. Systems can further be classified as analogue or digital. A signal dependent 

on a continuum of values of the time-variable is called a continuous-time signal or 

analogue signal. A signal defined at discrete instants of time, is called a discrete-time 

signal. Discrete-time systems often use difference equations rather than differential 

equations and their transfer function is defined as a function of a unit-delay element, 

e. g. u(z- 1). 

Discrete control 

Most of the work carried out in this thesis involves continuous-time (analogue) control 
but some sections include work involving discrete control. In most applications, 
discrete-time (or digital control) is applied via a computer or microprocessor on a 

continouous-time system, sampled at regular intervals U, for k=0,1,2,... T. In such 

cases, the sampled system is often represented at the sampling instances by means of a 

discrete transfer function G(z), depending on the continuous-time plant G(s) and the 

sampling interval T. The most common representation arises via the so-called ZOH 

(zero-order-hold) equivalence, in which the response of G (z) to any discrete-time 

signal coincides to the response of G(s) at the sampling instances to the corresponding 

continuous piece-wise constant ("staircase") signal resulting by holding the digital 

samples constant over one sampling period. An important issue of digital control of 

analogue systems is the choice of sampling frequency rate f, = I/ T. According to the 

Nyquist criterion in Signal Processing, continuous signals which are sampled and 

subsequently reconstructed back to analogue form suffer from aliasing, unless the 

sampling rate is chosen to be at least twice as high as their highest frequency 

component, i. e. f, ý! 2fm.., [Philips and Harbor 1996]. To avoid aliasing in digital 

control analogue signals are low-pass filtered before sampling and, in practice, the 

sampling rate is chosen at least 5-10 times higher than the target bandwidth of the 
I= 

closed-loop system. 
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Discrete-time control involves the design of digital controllers in the Z-domain typically 

using z-transform or discrete state-space techniques. The theory of z-transforms is 

similar to that of Laplace transforms applicable to continuous-time system and most 

classical-control design techniques (e. g. root-locus, Nyquist, Bode, etc) developed for 

continuous-time systems have their z-domain counterparts. The same applies for state- 

space techniques, with most concepts (stability, controllability, observability) and 

design methods (state-feedback, observers, LQR/LQG, etc) having developed in both 

domains. Finally "cros s- domain" design approaches also exist (w-plane, Tustin's 

bilinear transformations), in which a discrete-time system is transformed into a 

continuous-time "equivalent", a corresponding (continuous-time) controller is designed 

by analogue techniques and then transformed back into digital fon-n using the inverse 

transformation. 

3.4. Mathematical representation of systems 

3.4.1 Transfer Functions 

The first part in setting up and solving any control problem involves modeling the 

corresponding physical system using mathematical equations. For linear time-invariant 

systems the output (1) is usually defined in the Laplace-transform domain as a function 

of the input (b); the ratio Y(s) / U(s) is called a transfer function G (s). Thus, 

Y(s) = G(s)U(s) (3.3) 

Consider a simple spring-mass-damper system (figure 3.1. ) [Philips and Harbor 1996]. 

The governing dynamic equation is given by a standard differential equation of the 

form: 

F(x) = . 11 
dIx+C dx 

+ Kx (3 ). 
dt 2 dt 
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where x denotes displacement, M is the mass, K the stiffness and C the damping 

coefficient. In a control-design situation a typical problem would be to generate an 

appropriate force F(t) in order to regulate the displacement (x) of the mass. In order to 

simplify the problem and avoid solving the differential equation directly, the equation is 

transformed by taking Laplace transforms. 

I, 

Figure 3.1.1 DOF Spring-mass- damper model 

The Laplace transform of a function f (t) is defined as: 

x 
ff (t)e-"dt 
0 

(3.5) 

Taking Laplace transforms in equation (3.4), assuming zero initial conditions, this can 

be written as: 
=(M2 F(s) s+ Cs + K)X(s) 

and thus: 
X(S) 
F(s) 

I 

Ms' + Cs +K 

(3.6) 

(3.7) 

Setting U(s) = F(s) as the input and Y(s) = X(s) as the output of the system gives the 

transfer function of the system as: 

G (s) Y(S) 1 (3.8) 
U(s) Ms2 + Cs +K 
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This is the standard procedure used to derive the transfer function of any linear time- 
invariant system. Equation (3.8) can be generalised for multivariable mechanical 
systems to structural models of the form: 

MY + C, ý + Kx =F 0-9) 

where x is a vector of displacements, M is a mass matrix (typically symmetric and 
positive definite), C is the damping matrix (typically symmetric), K is the stiffness 

matrix (typically symmetric and positive definite) and F is the vector of external forces 

applied to the structure. 

3.4.2. State-space models 

Another way of representing a dynamic system is as a state-variable model (state space 
form). The state variable model is a set of I't order coupled differential equations, 

usually written in vector-matrix from. An n th order system is written in state-space form 

using n-first order equations, which preserve the input-output relationship. A state-space 

model is an "internal" description of the system and as such it contains more 

information than the transfer function. This additional information involves internal 

variables that are either unreachable from the input (uncontrollable modes) or do not 

contribute to the output (unobservable modes). If a state-space model does not contain 

uncontrollable and unobservable modes it is called minimal. Non-minimal modes (i. e. 

uncontrollable/unobservable modes) appear as pole-zero cancellations in the system's 

transfer function. 

A minimal state-space model of a system can be derived from its transfer function using 

the following method. Consider the simple spring-mass-damper system in the previous 

example. The governing dynamic equation is given by (3.4). Clearly, in this case the 

behaviour of the system is completely specified by two variables, the displacement and 

the velocity. We thus choose the states: 

Xi --.,: y (t) (-). Io) 
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dt (-). 11) 

Note that: 

dy 
dt 

and 

d2Y CbC2 F-C chc 
- Kx 

= dt (3.13) 
t dt m 

using (3.9) and (3.12). By rearranging the equations we obtain: 
x, =X2 

xi - x-, + 
m 

Y=X 

These equations are written in the standard state-space form: 

01 

c 
xi 

K 
mlý 

and 

Y=[l 0] xi 
X21 

which define the state-transition and output equations, respectively. In general, a state 

space model for a linear time-invariant (LTI) system is of the form: 

)ý(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

where i(t) denotes the time-derivative of x(t). In general: 

V (t) = state vector (n by I vector for an nth-order sý stem) 

(3.17) 
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A= (n by n) system matrix 
B= (n by n) input matrix 
C= (p by n) output or sensor matrix 
D= (p by r) matrix representing direct coupling between input and output 

(feedthrough) 

Also, u (t) and y (t) represent the input and output vectors, respectively. 

In some cases it is important to determine (a minimal) state space model of a transfer 
function and vice versa. The task of obtaining a minimal state-space realisation from the 
transfer function is called the minimal realisation problem [Hall 2006]. The reverse task 
(obtaining the transfer function from a state-space realisation) is straightforward and can 
be performed using the formula: 

G(s) = C(sl - A)-'B +D 

Note that a system has many (in fact infinite) state-space realisations, i. e. internal 

descriptions. All these realisations, however, correspond to the same transfer function 

(since the input-output characteristics of the system must be identical). 

3.5. Stability 

One of the most important objectives of control design is stability. There are many 

definitions of stability but, roughly, a system is stable if it remains at rest unless excited 

by an external source and returns to rest if all excitations are removed. More formally, 

A system is called bounded-input-bounded-output stable if every bounded input 

results in a bounded output. 

An example of an unstable system is a driver moving the steering wheel on a wet road. 

The system is unstable once the car goes left and right with increasing amplitude rather 

than following a steady direction, because the input (the direction of the steering wheel) 

of the driver is having a negative effect to the output (the actual direction of the car). In 

theory. the response of the system in figure 3.2 is unbounded, so its steady-state 

(impulse) response (i. e. where the response settles after infinite time) is not defined and 
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the system is unstable. In contrast, in figure 3.33 the steady-state (impulse) response 
attains a constant value, therefore the system is stable. In this case the response tends to 

a constant value (possible zero) and is called transient before settling to its limiting 

value. 

Figure 3.2 Unstable system response Figure 3.3 Stable system response 

The roots of the numerator and denominator polynomials of the transfer function of a 
linear system define its zeros and poles, respectively. If any pole lies in the (closed) 

right-half plane, i. e. if it has a non-negative real part, the system is unstable; for 

example, the system 

G(s) = 
(s-1)(s+3) 
(s-2)(s+2) 

(3.19) 

is unstable because it has a pole at s=2. There are several other methods to determine 

the stability of a system, e. g. from the coefficients of the characteristic polynomial 

(Ruth-Hurwitz test), the system's state- space realisation outlined in the following 

section, etc. Other tests (Nyquist, Bode, Root Locus) allow us to determine the stability 

of a feedback system as some parameter (e. g. gain) varies. Poles and zeros of a 

multivariable system are normally defined via the transfer function's Smith McMillan 

from [Antsaklis and Mitchell 1998] 

3.5-1. Stability in state-space models 

In state space representation the stability of an LTI system can be determined of its -. 4" 

matrix. If the real part of an eigenvalue is positive the corresponding mode is unstable. 

otherwise it is asymptotically stable: 
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If Reo, (A))< 0 ý, is a stable mode 

If Re(A, (A))> 0 A, is an unstable mode 

Here the system is assumed to be in the standard state-space form of equation (3 )- 17). 
Recall that the eigenvalues of A are the roots of the characteristic polynomial of . 4. 
det(Ai - A) = 0. 

3.5.2. Controllability, observability 

The concepts of controllability and observability are very important in control systems. 
In almost all control problems in order to proceed with the design, the assumption that 

the system is controllable and observable is made. An uncontrollable system (or mode) 
is one that cannot be affected by the input. For example if a system needs to control the 

movement of an object in the x-direction, applying a force in the y-direction will not 

affect the movement in the x-direction, therefore the corresponding system (or mode) is 

uncontrollable. More formally, 

An LTI system is controllable if, for every x* and every T>O, there exists an 

input function u (t), 0<t!! ý T, such that the system state can be steered ftom 

x(0) =0 to x(T) = x*. 

The concept of observability is dual to that of controllability. If some modes cannot be 

determined from the measurements, the system is unobservable. More formally, 

An LTI system is observable if the initial state x(O) can be uniquely deduced 

form the knowledge of the input u (t) and output y (t) for all t between 0 and 

T>O. 

There are several controllability and observability tests for LTI systems, the most 

common being the -rank test" [Stubberud et a]. 1994] which states the following: 
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An LTI system is controllable if the controllability matrix Fc has rank n (, ývhere n is the 

number of state variables), where 

F, = 
[B AB A2B... A n-1 BI (3.20) 

Similarly, an LTI system is observable if the observability matrix FO has rank n, ýý here: 

C 
CA 

ro = CA2 

CA n-I 

Finally a system is called detectable if all unstable modes are observable, and 

stabilisable if all unstable modes are controllable. 

Thus, a system can be stabilised by state-feedback (output injection) only if it is 

stabilisable (detectable). Unobservab I e/uncontrol I able dynamics do not show up in the 

transfer function. If all modes in a state-space realisation of a system are observable and 

controllable the system is in minimal realisation form. 

3.5.3. Bode plots 

sin (wtýý A, sin (ot + 6p-) 

Consider equation (-3 3.3 3) where the signal U(t) = .ý sin (cct) is applied to the input of an 

LTI system with transfer function G(s); Provided the system is stable the output, Y(t), 

is a sinusoid of the same frequency (after all transients have -died out") but in -, cneral 
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of different amplitude and phase, i. e. Y(t) = A,, sin (cot + (p) The gain at frequenc. v w is 

the ratio of the steady-state amplitude of the output over the amplitude of the input i. e. 

gain (3.22) 

A magnitude (gain) Bode diagram is a plot of the gain in dB's, where gain in dB=20 
logio(Zinear gain), against frequency. Similarly a phase Bode diagram sho%ýs the 

variation of phase (p with co. Consider the magnitude Bode plot of a system. The highest 

peak of the graph shows the highest gain and the frequency at which a sinusoidal input 

will excite the system the most (largest output over input ratio). 

3.6. Controller design 

3.6.1. Pole placement 

As the locations of the poles of a system strongly affect its dynamic (transient) 

response, one way of modifying the characteristics of the system (under state-feedback) 

is to place the poles of the closed loop system at desired locations. The technique is 

called pole placement. It can be shown that if the system is controllable, the poles of the 

closed-loop system can be placed at arbitrary locations (provided they are symmetric 

with respect to the real axis). This is a very strong result which shows that under 

controllability the designer has complete freedom in modifying system's dynamics. Of 

course, this does not take into account constraints on the magnitude/energy of the 

required control signal and other practical considerations. 

To illustrate the procedure, assume that u(t) = r(t) - Kx(t), where r is a reference input, 

u(t) is the control input and K is a gain (state- feedback) matrix. Under closed-loop 

control, 

, ý(t) = Ax(t) + Bu(t) = Ax(t) + B(r(t) - Kx(t)) = (A - BK)x(t) + Br(t) (3). 2 3) 
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and hence the closed-loop dynamics are now described by the eigenvalues of -4 - 
BK - 

The aim is thus to pick K so that the eigenvalues of A- BK have the desired properties. 
If, for example, we want to stabilise A, we need to pick K so that -4 - BK is stable (all 

eigenvalues have negative real part). If, in addition, we want to increase the damping of 
the system, all eigenvalues of A -BK must be placed in the high-damped (left) region 
of the left-half plane. A standard procedure for obtaining the required gain matrix for 
SISO system is via Ackermann's formula [Antsaklis and Mitchell 1998]: 

[0 
... 0 'Y, '(Dd (A) 

where, 

(3.24) 

FC = 
[B AB ... AN-'B] (3.25) 

andod(s) denotes the required characteristic polynomial of the closed-loop system 

evaluated at s= A. Note that Fc is assumed to be invertible, i. e. (A, B) must be 

controllable. 

After the system has been identified, modelled and has taken its final form as a transfer 

function or a state-space model, it needs to be controlled by designing a feedback 

controller (or else compensator or regulator). The most common type of controller used 

in classical control is the proporti onal-p lus- integral- pl us- deriv ati ve (PID) controller. 

Modern control theory uses more powerful controllers, typically arising from the 

solution of an optimisation problem. In the context of active vibration control 

applications, one of the most widely used control-design methodologies arises from the 

solution of the Linear Quadratic Gaussian (LQG) problem, which is outlined below. 

3.6.2 Linear Quadratic Regulators (LQR)-optimal control 

Optimal control methods are control design techniques which provide --the best 

possible" (optimal) solution to an optimisation problem. Thus, in pole placement the 

aim is normally to stabilise a system. NA,, hereas in optimal control the objective is to 

optimise a performance index (while still keeping the system stable). 
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LQR (Linear quadratic regulator) is an optimisation method involving a quadratic 

objective function, corresponding to the weighted energy of all regulated and control 

variables. In the case of active control design, this formulation gives the designer 

sufficient flexibility to include all relevant design objectives, e. g. absolute 
displacements or relative inter-storey drifts, accelerations of each floor of the building 

forces or strains developed at critical locations of the structure, constraints on the size of 
the actuator's signals, etc. 

Assume that the plant to be controlled has a state space realisation: 

-ý(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

The objective in LQR is to select the control input u (t) that minimises the performance 

index: 
T 

Jlqr '- "MT-).,, 
c 

f(XTQX 
+ UT Ru)dt (3.26) 

0 

overall control signals u (t). 

In the above formulation it is required to minimise a performance index consisting of 

(weighted) energy terms involving the state-variables and the control signals. Thus the 

performance index balances transient-perfon-nance requirements ("fast" state-variables' 

decay) with control-effort constraints (control energy remains "small"). Normally, the 

matrices Q and R represent design parameters which shift the emphasis between these 

two (typically conflicting) objectives. A high value of Q (relative to R) places more 

emphasis on system performance (dynamic response), and vice-versa. 

The standard assumptions of the general LQR problem are as follows: 

I. The weighting matrices satisfy Q= Qý' -> 0 and R=RT>0. 

1). The pair (. 4, B) is stabilisable, and, 

The pair (A, Q) is detectable. 
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Under these assumptions, the optimal controller is obtained in the form u(t) = -Kx(t), 

where K, is the optimal state-feedback gain, given by: 

Tp Kc = R-'B 
c (3.27) 

and P, is the stabilising solution of the algebraic Riccati equation: 

A Tp Tp 
c +PcA-PBR-'B c+Q=O (3.28) 

Here "stabilising" refers to the solution for which the closed-loop "A" matrix 
Tp A, =A- BR-'B 

C 
is asymptotically stable. It can be shown that under the stated 

conditions P, is unique, symmetric and positive semi-definite matrix. Apart from 

stabilising the system, it may be shown that LQR controllers are also guaranteed to have 

good stability margins [Maciejowski 1989]. 

3.6.3. Linear Quadratic Gaussian (LQG) control 

The main assumption of LQR is that all state-variables are measurable, which clearly is 

unrealistic in practice. This is removed by using LQG control (L inear- Quadrat, c- 

Gaussian), which is a generalisation of LQR and poses the design problem in a 

stochastic framework. 

In LQG external disturbances are modelled as (filtered) white noise signals, while the 

objective function to be minimised is a stochastic version of the one used in LQR 

control. LQG removes the LQR assumption that all states are measurable; instead noisy 

measurements are assumed, and the overall problem decomposes to two separate sub- 

problems involving optimal estimation of the state-variables and optimal regulation 

("separation" or "certainty - equ i val enc e" principle). This is especially convenient for the 

designer, since the regulator part of the design remains unaffected. The optimal 

estimator ("Kalman filter") gives rise to a dynamic controller and is essentiall" an 

optimal observer, achieving a balance between the effects of disturbance and sensor- 

noise signals. 
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LQG control is a wel I -established design method, which has been applied successfullý 
in many application domains. Computational ly, it is eas% to implement (requiring the 

off-line solution of two algebraic Riccati equations), while the "eighting functions can 
be "tuned" in a systematic way to shift the emphasis between the various objectives 
included in the quadratic cost function. As mentioned earlier. LQR provides the desl4zn 

automatically with excellent stability margins. Unfortunately, these are no longer 

guaranteed when the Kalman filter is implemented, although various techniques are 
available to partially recover them and inject some measure of robustness into the 
design (Loop Transfer Recovery) [Maciejowski 1989]. 

The state space equation describing the plant is similar to the LQR formulation, with the 

addition of two white noise terms, representing process and measurement noise: 

-ý(t) = Ax(t) + Bu(t) + Ew(t) 
(3.29) 

y(t) = Cx(t) + Du(t) + v(t) 

Here w(t) and v(t) are zero-mean stochastic processes, uncorrelated in time (white 

noise) with known covariance matrices. The initial state is also assumed to be a random 

vector, with known mean and covariance matrix, and uncorrelated with both it, (t) and 

v(t). The stochastic version of the problem is to find the optimal control signal which 

minimises the performance index 

E f(x 7' Qx + UT Ru)dt (3.30) 

01 

x 

where E(-) denotes statistical expectation, under the standard assumptions of 

stabilisability of (A, B), detectability of (A, C) and Positive semi-definiteness (positive- 

definiteness) of Q (R). The problem is divided into two sub-problems: the first sub- 

problem is to obtain the optimal estimator, which minimises the root mean-square value 

of the state- estimation error, i. e. 

minEý(x-, ý)T(x-ý)j (3.3 ) 1) 

This is solved by the Kalman filter [Davis and Vinter 19851 
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dý 
3 = Aý + Bu + L(y - Cý - Du) (3.32) 

dt 

in which L is the optimal Kalman gain, defined from the solution of an algebraic Riccati 

equation involving the covariance matrices of v and w; this is actually of the dual form 

to the algebraic Riccati equation used in the solution of the LQR problem. The second 
sub-problem involves the solution to the optimal regulator's gain and is identical to the 

solution of the LQR problem (with all stochastic terms removed). The separation 
(certainty equivalence) principle guarantees that this decomposition into two separate 

sub-problems still gives the overall optimal solution to the original problem. 

A drawback of this theory is that it may have poor stability margins (the excellent 

stability margins guaranteed for the LQR controller no longer apply) and therefore 

several design modifications have been introduced to improve the system robustness 
(loop-transfer recovery [Maciejowski 1989]). Furthermore, since the Kalman filter 

replicates the dynamics of the plant, the general issue of model uncertainty and 

robustness becomes critical. Note that all uncertainties are represented in LQG as noise 

signals affecting the process dynamics or the measurements, which may not be realistic 

in practice. Despite these limitations LQG methods have a sound mathematical 

foundation and have proved effective in many practical designs; overall they produce 

very good results that are difficult to obtain with classical control methods. 

The LQG problem is equivalent to the so-called -H2optimal control problem". The aim 

of this problem is to find a proper real-rational controller K(s) that stabilises the plant 

G(s) internally and minimises the H, norm of the transfer matrix T, (s) between w 

(disturbances) and z (regulated signals). The formulation and solution of the H2 problem 

is different from LQR but essentially the two problems are identical. 

3.6.4. Robust -H. control 

Robust control is a design methodology which deals s,,,, stematicall\, with the effects of 

uncertainty, especially its implications on the stability and performance properties of the 

feedback system. Model uncertaint\ is known to be one of the most important 
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considerations in control systems design. A mathematical model, 'Ahich is used for 

control desi n, can never represent exactly the real ph,, sical s% stem which is controlled. 91 

resulting in a model mismatch or perturbation. The objective of robust control is to 

make the design insensitive to this model error. 

LQ methods can take into account robust performance objectives onlý, in an ad-hoc ý\ aý, 
after the controller has been designed [Maciejowski 1989]). H-,, optimal control is a 
more systematic robust control methodology, which can address directly robustness 

2 
issues in its optimisation framework. This is achieved by imposing (frequenc,, - 
weighted) bounds on the "size" (norm) of the uncertainty, and optimising for the worst- 

case perturbation within the assumed uncertainty class. Thus, H,, is a "worst-case" or 
"min-max" design approach, and as such it can be potentially conservative if the 

assumed size of the uncertainty is overestimated [Zhou and Doyle 1998]. 

Before proceeding with outlining the method, some mathematical terms need to be 

defined: 

I. A vector p-norm is defined as: 

n 
I/P 

llxllp 
=IIx lp 

i=l 

(3.33) 

For example, the two-norm (or Euclidian norm) 
OX112) 

gives the length of a vector. 

2. Singular values of a complex matrix A are the square roots of the eigenvalues of AA*, 

where A* denotes the complex conjugate transpose of A, i. e. 

(AA) (3.34) 

If A is a function of frequency, the singular values can be plotted in the frequency 

domain (Bode plots) and the H-,, norm is the distance from the x-axis to the peak value 

of the largest singular value. In H, control, the aim of the controller is to minimise this 

peak value - in general this is achieved by adjusting the gain at other frequencies, until 

ideally the plot of the maximum singular value becomes flat and no further reduction is 

possible. Mathematical ly the infinity norm of a transfer function is alven by: 
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, ý, 
5; [G(jco)] 35) max, 

where 5-7 denotes the largest singular value. 

The following graph (figure 3.4) illustrates the generalised regulator problem \vhich is 

the standard paradigm in H,, optimisation. In this diagram P(s) is the generalised Z: ) 

plant, K (s) is the controller and A (s) represents the model uncertainty (perturbation). 

Externa 

inputs 

Control 

signals 

Error 

leasured variables 

Figure 3.4. Generalised plant including modelled external perturbation 

In the diagram: 

w(s) all external disturbance signals 

z (S) all controlled (regulated) variables (e. g. errors etc. ) 

U (S) all control signals 

Y (S) all measured outputs 

A (s) model perturbation 

P (S) generalised plant (including frequency -weights) 

K (s) compensator 

The generalised regulator problem is represented by the above block diagram. Set A=0 
tý, tý, 

and partition P conformally with the signals (ýi,, u) and (z, j), i. e. 

56 



3. Control 1-heorv PanaLIoils Rentzo, 

[ PI 
I 

(S) PI 2 
(S) 

33 6) 
P121(S) 1ý12(S)l 

(). 
-3 

Then we can write: 

z=P W+p u (3.3 ) 7) 11 12 

Y :- P21 W+ P22U (3.38) 

The objective is to design an output-feedback controller K (s) (i. e. such that u= Ky ) 

which stabilises the system and minimises the infinity norm of the transfer function 

between w(s) and z(s). By substituting u= Ky in eq. (3.38) we get, 

u= K(I - KP,, )-'Plw (3.39) 

Substituting this in eq. (3.37) gives 

ýpl 

I+ P12K (I -P,, K)-l Pj Iw (3.40) 

For simplicity this function will be written as: 

z=F(P, K)w 1 

(lower linear fractional map of P and K). The H, problem now becomes: 

minK(s) 
11PIl 

+ P, 2K(I-P, -, K)-lP.,, [, (3.42) 

over all realisable controllers K(s) which stabilise the closed-loop system 

[Maciejowski 1989]. Note that the infinity norm represents the maximum enera", 

transfer between the disturbance signal li, (s) and the regulated signal : (s). 
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In order to proceed to the solution of the H,, problem, the Youla parametrisation o\ er all 

stabilising controllers needs to be performed, established by [Youla et al. 1976]. This is 

outlined in the next section. 

External 
inputs Error 

Control 

signals 

Measured variables 

Figure 3.5 Generalised plant 

Recall that the general H, problem is the minimisation of an infinity norm eq. (3.42) 

which, via Youla's parametrisation of all stabilising controllers becomes: 

min . 
JITI 

I+ TI 2 Qlý'] 11, (3.43) 

where now Q is a free matrix parameter in H,, ("model-matching" problem). Depending 

on the number of rows and columns of T12 and T21 the 1-, 2- or 4-block problems arise. 

If T, is square (or has more columns than rows) and T, is square (or has more rows 

than columns) the problem reduces to a1 -block problem which can be solved explicitly. 

If T has more rows than columns or T, has more columns than rows we obtain a 2- 
12 

block problem or else a 4-block problem, respectively. Both 2- and 4-block problems 

have to be solved iteratively. 

Assume without loss of generality that T, 2 and T, are square and all pass (1-block 

problem), i. e. 
T 12 Tl*, =I and =I 

where T* (s) = T" (-s) denotes the "para-hermitean conjugate" system. Then, 
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T 12QT21 
I IT12(TI2 

11 ! '1 + 0711, JITT, 
17ý*, + Qýý', = 

1ý7ý,, T, *T, 
2+ Q* jjý (3.44) ll+T T 7' 

It can be shown [Limebeer et al. 1987] that T-), T,, T, 2 is a stable system, and the problem 

thus reduces to: 

min, IIT, 
l +T12 QT2111, 

= min C) 
jjlý, 

I Tj* T12 + Q. min, JJR +Q *11. (3.45) 

which is a Nehari extension problem (optimal approximation in the infinity norm of a 

stable system by an anti-stable system) and can be solved in closed-form, the minimum 
being the Hankel norm of R [Maciejowski 1989]. In the 4-block case it is possible to 

find transfer functions T12_, and T21_, such that [T, 
2 T, 21] and [7ý1 Tý, 

_] 
are stable, 

square and all-pass, i. e. 

TI*2 ] 
[T 

T, 
12 

Proceeding as above: 

T12-L I and 
71" 

'.. 
I=I 

I 

T-1 

= min, 
TI*2 

T7 min, JIT, 
I+ 

TI 
2Q7111 

Iloo 
I 

TI *2 
111 

11+T12QT211MI 
ý11-1 

min Q 

[TI *2 

TI II 
T2*1 71' * J+ Q0 

TI*2-L 

I100 

min Q 
[RI+Q R12 ] 

k, R, 

which is the so-called general-distance problem. Here: 

Ril :- Ti *2TIIT2*1 

T*T 12-L 11 

R 
--ý TT )ý * 12 : 1*2 11 21- 

'22 
=7I1T2 

(3.46) 

The 2-block problem with T, 2 having more rows than columns simplifies by using the 

same procedure to: 
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RI, +Q T min, ) minQIITII+Tl2Q 2111,1 R21 

If T, has more columns than rows then: 

min, JIT, 
I+ T12QT2111,0 = mino JJRII + QR12 l1w (3). 4 8) 

The above problems have only iterative solutions [Maciejowski 1989]. Typically, a 

scalar y is chosen, and a bisection algorithm is applied to discover whether a stable Q 

exists such that JIT,, +T QT2,11. <; v. In this way the minimising Q can be obtained 12 

(within arbitrary accuracy), from which the optimal compensator K (s) can be defined 

by substitution. An alternative algorithm for solving the general H, optimal control 

problem is the Glover-Doyle algorithm given below: 

Glover-Doyle alaorithm [Glover and Doyle 19881 

(i) A stabilising controller exists, such that 11p, 
I+ P12K (I - P,, K) -'P2111 

00 
< -" if 

(a) )/>maxfC[Dll,,, DIlll, o 1119DIII'21 -IDIT 

where D, I is partitioned as: D, 
[DIII, DI, 12 

D, 1 21 D, 1221 

(b) there exist solutions X. ý: 0, Y,, ý! 0 of the Riccati equations: 

ITITT TX" + CT (I T)C 

X, (A-BR-DI. C, )+(A-BR-DI. Cl) X,,, -XBR-'B I- DI*R-'Dl* I=0 
(3.49) 

and 
Tk-IC)T _y -Icy TT 

=0 Y10 (A - B, A, +(A-B, D*l "CTý x+B, 
(I - D., ý -'D, *)BI 

(3.50) 

such that: 

p (v, I' f)<; /2 ( 3.5 1) 
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If (a) and (b) are satisfied, all rational stabilising controllers K(s). for ýýhich 

PH +pl2K(I - P,, K)-'P, 1 
111, <7 (3.52) 

are given by K (s) = F, (K,,, (D), where II(D,, 11. :! ý y-' and K,, is a fixed system (for 

explicit formula see [Maciejowski 1989]). 

The above result suggests the following method for calculating the optimal H, 

controller: Reduce y until one of the following three conditions fails: (i) A stabilising 

solution to the first Riccati equation does not exist, (ii) A stabilising solution to the 

second Riccati equation does not exist, or (iii) The spectral radius P(XY, is not 
2 

strictly less that 7 

3.6.5. Youla parametrisation of all stabilising controllers 

The Youla parametrisation is a powerful result which expresses all stabilising 

controllers of a given plant in terms of a linear transformation involving a free stable 

matrix parameter Q. In addition, all closed-loop system matrices are parametrised 

linearly in Q, which makes the solution of the H,, -optimisation problem tractable 

[Francis 1987]. The parametrisation proceeds by defining left and right coprime 

factorisations of the plant. 

Recall that two polynomials f (s) and g (s) with, say, real coefficients, are said to be 

coprime if their greatest common divisor is 1. It follows form Euclid's algorithm thatf 

and g are coprime if and only if there exist polynomials x(s) and y(s) such that 

fx+gy =I 

Consider Figure 3.5 in which the generalised plant P is partitioned as: 
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PI 
2 

P, 
(3.5 3) 

withP22= G denoting the plant, assumed to be a proper real-rational matrix. Then there 

exist eight RH-, , i. e. all poles in open left half plane and proper (degree of numerator 

<degree of denominator), matrices satisfying the equations: 

G= NM IF11V (3.54) 

and 

-fl[m Yl=l 
(3). 5 5) 

7V ý I- NX 

These may be defined more easilY in a state-space setting. Let G (s) have a state space 

realisation: 
G(s) =D+ C(sI - A)-'B (3.56) 

with (A, B) stabilisable and (CA) detectable. Introduce state, input and output vectors x, 

u and y respectively so that y (s) =G (s) u (s) and 

x(t) = Ax + Bu 

y(t) = Cx + Du 

Next, choose a real matrix F such that AF= A+ BF is stable and define the vector 

v=u- Fx and the matrixCF= C+ DF. Then we get: 

i= AFx+Bi' 

Fx+v 

y=CFx+Dv 

(3.57) 

The right coprime factors M (s) and N (s) may be obtained in terms of the followin-gy 

realisations: 
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M(s): = [AF, B, F. I] and N(s): = [AF B, CF, D] 

Similarly, by choosing a real matrix H so that A. =A -t HC is stable and defining 

BH= B+ HD, we get the left coprime factors as: 

M(s): = [AH, H, C, I] and FV(s): 
= [AH, BH, C, D] 

Formulas for the remaining four transfer functions X, Yj, f are given as: 

X(s) =[A�, -H, CF, I], Y(s) =[AF, -H, F, 0], X(s) =[AH, -BH, F, I], Y(s) =[AH, -H, F, 0] 

Now one stabilising controller K (s) of G (s) is given by K(s) = IV = ýf -'. The set 

of all proper real rational ICs stabilising G is given as: 

K= (Y - MQ)(X - NQ)-'= (, ý - Qlý)-'(f - QA71), Qc RH,, (3.58) 

Further, consider again the generalised regulator in Figure 3.5. It may be shown 

[Francis 1987] that a controller K(s) stabilises P(s) (interrially) if and only if it 

stabilises P,,, = G(s) (internally). Thus, under the assumed stabilisability and 

detectability assumptions on (A, B) and (CA), all stabilising controllers of P(s) are 

given by the set K defined above. Moreover, it may be shown [Francis 1987] that all 

(stable) closed-loop systems between vi, and z in Figure 3.8 are parametrised linearly as 

Tll -T12 Q7ý, Qc RH, where 

TPP MYPI 1+ 12 

T =PM 12 12 

T21=MP2 

These three matrices T. belong to RH, Let P have a state space realisation: 

(3.59) 
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C, D, I 
D12 I 

P(S)= A, (BI 
C, . D2, D, (3). 60) 

[Note that in this notation the realisation of the plant G(s) is noýý re-defined 

as G(s) =PSC, D ]. Then a state-space realisation of the 7ý is given as: 22(S)=(A, 
B29 

22) 

TI 1 
T12 AF 

-B2F B, 
T, 1 0 AH B, + HD2, 

B2 Cl +D, 2F -D, 2F DI, DI2 
(33.61) 0), 0 D2,0 

)1 

This will be explored further in Chapter 7. 

3.6.6 Systems identification 

A stochastic process is a sequence of random variables with well-defined joint 

probability distributions. In most cases this information is too demanding for modelling 

purposes, and the stochastic process is described only in terms of its second-order 

statistics, i. e. as a collection of identically distributed random variables in which onlý 

the (common) mean and the covariance function are assumed to be known. A stochastic 

process can be adequately modelled as the output of a filter driven by white noise. Thus, 

if a disturbance entering a system can be modelled as a stochastic process, it can be 

assumed to be a white noise signal, the corresponding filter being augmented in the 

dynamics of the system. This technique allows us to model effectively disturbances of 

known spectral density. It is especially useful in structural control when the disturbance 

is an earthquake or a wind load signal whose spectral density function is approximately 

known. Typically the following procedure is used for modelling disturbance signals 

from discrete random data {27,1 ([Davis and Vinter 1985]: 

1. Remove any significant mean or trend components (these can be assumed to be 

deterministic disturbances). 

2. Obtain estimates of the covariance function from the data as: 
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N 

R(k) I )71'7t-k (3.62) 
N t=k+l 

for k= 05 M, m 4 

3. Use Fourier transform (FFT) to obtain estimate of spectral density function: 

(k) e -jwk (3.63) 
k=-m 

4. Design a stable, minimum-phase filter 

(3.64) 
A 

so that its frequency response IG(ej' )12 "fits" T (co) adequately. 

The estimated model is then of the form: 

A(z-') e, + E(q) (3.65) 

as shown in figure 3.6: 

fe, ) 

(77, ) 

I fqt) 

Figure 3.6. Identification filter 

Here e, is the input of the process (assumed "white"), q, is the output of the process, and 

A(z-'), B(z-') are polynomials in the unit-delay variable z-'. This model type is known 

as Autoregressive Moving-Average (ARMA). If B(z-') = 1, i. e. if q, can be written in 

regression form with its past values only, the model simplifies to an Autoregressive 

(AR) model of the form 

(3.66) 
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assuming for simplicity that E(77, ) = 0. Normally, the order of the polynomial . 4(z-') 

(order of AR model) is selected as the lowest integer for which the model fits t1le 

experimental data adequately (i. e. with the required accuracý) by using least-squares or 

another parameter-estimation technique. 

3.7. Summary 

In this chapter the background of control theory has been outlined. Fundamental ideas 

of system properties, control design methods have been presented, with particular 

emphasis to the material which will be used at the later chapters of the " ork related to 

active control design. 
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CHAPTER 4 

STRUCTURAL DYNAMICS AND PASSIVE 

SYSTEM ANALYSIS OF A PENDULUM MODEL 

4.1. Introduction 

This chapter is divided into two parts. The first is a brief review on earthquake 

engineering concepts and the theory of vibrations. The second part is a detailed analysis 

of a pendulum-frame model. In the first part the main concepts of structural dynamics 

are discussed, a topic which is essential for vibration control. Buildings are modelled as 

LTI systems with mass, damping and stiffness. The dynamic behaviour of these models 

is governed by several modes. Furthermore, the period of a multi-modal system depends 

critically on its modal mass contribution. The effect of an earthquake on a building 

largely depends on the period and the modes of the building. Understanding the effect 

of modal frequencies and shapes is crucial because passive control is usually targeting 

specific modes. 

The second part of the chapter examines the effect of tuned mass dampers on a frame 

for vibration control. A simple model consisting of a frame with a suspended mass is 

analysed in detail. The objective is to investigate the concept of passive control on 

buildings for earthquake protection. The pendulum used here is an idealisation of the 

most common passive control system, the tuned-mass-damper. The pendulum-frame 

interaction is analysed from first principles. Although the model is simple, the analysis 

presented is adequate to identify the main principles behind passive energy dissipation 

systems. 

There are several approaches for explaining how a pendulum can be used for vibration 

control of civil engineering structures. The first is to consider the damping coefficient 

corresponding to the pendulum's motion. In this case, due to the pendulum-frame 

interaction, energy is dissipated. A second approach is to consider the reduction of the 

frame's amplitude due to the force applied by the pendulum on the frame. A third, more 

indirect, way is to consider the increase of the system's period. due to the extra 
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pendulum mass, which corresponds to shifting the characteristic frequencýý of the 

system outside the earthquake's bandwidth. Here is examined which of the abo%e 

mechanisms, and to what extend, can help reduce the vibrations of a structure. If this 

type of vibration control proves to be efficient, it can be the most economic waý of 

protecting structures. 

The final part of this chapter introduces an area that has received very little attention in 

structural control. It investigates a building's behaviour when the material yields 
(reaches its elastic limit) and behaves inelastically. Although conventional ways of 

seismic design are based on inelastic concepts, these are rarely taken into account in 

structural control. It is normally assumed that the controller's action will be effective 

enough to ensure that the controlled structure will not enter the inelastic region, an 

assumption which cannot be guaranteed in general (e. g. if the earthquake signal is 

sufficiently strong). Here, the frame pendulum model is simulated by taking into 

account its inelastic behaviour i. e. change of the stiffness and consequently the 

characteristic frequency of the frame. This analysis is not carried out in depth, as the 

main objective is simply to investigate the efficiency of the pendulum in reducing the 

amplitude of vibrations when the stiffness is altered. 

4.2.1. Earthquake engineering design 

Earthquakes are probably the worst natural hazards in terms of economic loss and death 

toll. Due to the nature of this type of loading it is typically difficult to design against 

earthquakes. Seismic design was first introduced into the codes during the 1920's in the 

USA. The code assumed that the earthquake loading was a horizontal load of about 10% 

the weight of the structure. In the 1960's due to technological advances and the 

emergence of accelerogramms, the actual seismic force could be estimated more 

reliably. By observing damaged or destroyed buildings from earthquakes, it was noticed 

that buildings that allowed for high elastic deformations survived large earthquakes XAith 

damage but without collapse. 

This observation led to a new era of earthquake design. Ductile structures ý, ý ere able to 

withstand much higher loadings than others of equal strength but no deformation 
1. ) zn 
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capacity . Since then, buildings were designed in the inelastic range rather than in the 
elastic. The force that a structure needs to resist is much lower than the actual 
earthquake force. This leads to economic and safe structures that have to be carefulk 
designed to meet the requirements of inelasticity and the capacity design procedures 
[Elnashai 2001 ]. 

Modem codes are based on concepts of inelasticity and deformation capacity. As the 
stress on a member during earthquake loading increases, it reaches the yield point 
(elastic limit), after which the member enters the inelastic region. At even larger loads 

the member starts elongating without collapsing until the ultimate member strength is 

reached. By having members with high ductility (ratio of ultimate to yield deformation) 

structures can keep deforming without failing. This allows the member to be able to 

withstand only a portion of the total load but without collapsing. As a consequence, at 
large earthquakes the building does not fail but at moderate earthquakes there is damage 

due to the members exceeding the yield point. Hence, construction is economic and 

collapse may be avoided (thus reducing human deaths and injuries), although there can 
be a high economic loss due to repairs needed after earthquakes. 

Figure 4.1 shows an idealised force-displacement graph of steel. From this figure, we 

can define the stiffness and ductility of the material as follows: Stiffness is the tangent 

of the force displacement graph and ductility the ratio of maximum elongation before 

collapse over elongation at yield point, i. e. 

P 
Pe 

py 

A 

Figure 4.1 Idealised elastic and inelastic force-displacement graph 
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K= 
Se 

(51 
15), 

A strong and stiff structure having maximum force Pd and deformation 6ý has total 

stress capacity equal to the area ABC. A structure with low strength, yielding at P, low 

stiffness (K but large ductility (, 5,, / 9, ), has larger stress deformation capacity 

equal to area ADEF. This is the concept upon which current seismic codes are based. 

The earthquake force is assumed as a horizontal load applied at the top of the building. 

This can be deduced from the Acceleration Response Spectrum (ARS), which is a graph 

that gives the maximum response of a Single-Degree-Of-Freedom (SDOF) system with 

respect to natural frequency. The idealised shape of such an ARS is shown in the graph 

below. Several countries use their own ARS and there exists also one used by Eurocode 

8 (figure 4.2). The exact values depend mainly on the soil, the seismicity of the region 

and damping of the material used. The elastic response spectrum is divided by the force 

modification factor q, to obtain the inelastic spectrum response. The force modification 

factor is mainly a function of ductility. Once the period of the building is known, the 

acceleration experienced by the building as a result of an earthquake is obtained from 

the inelastic acceleration response spectrum. 

Acceleration reponse spectrum 

2.5 1 
r_ 

.02 

1.5 

1 

0.5 CL 
U) 

0-. - 
0 
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0.5 1.5 2 2.5 3 

Period (s) 

Figure 4.2 Idealised elastic and inelastic acceleration response spectrum 
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Stru, tural Modelling In Civil Engineering buildings are represented by lumped mass 
parameters. This approach is valid when a large part of the mass is concentrated at a fe%ý 
locations and assumes that the mass is located at a discrete point, or is uniformlý 
distributed at a specific part of a structure. This approach is valid for buildings where 
most of the mass is at floor levels. The column mass is negligible compared to the rest 
of the building and is therefore assumed to be weightless. 

The lumped parameter method simplifies the mathematical derivations related to 

vibration analysis problems. Differential equations govern the behaviour of such 

systems. An advantage of using lumped mass parameters is the underlying assumption 
that the degrees of freedom of a structure are as many as the number of masses, e. g. a 3- 

storey building has 3 degrees of freedom. The behaviour of a multi-degree-of- freedom 

(MDOF) system can be significantly different from SDOF systems. Typically there are 

as many modes of vibration as degrees of freedom. Each degree of freedom corresponds 

to a different mode of vibration and characteristic frequency. 

A second structural representation involves distributed mass parameters. This 

description is usually used for bridges where the mass distribution is similar at most 

parts of the bridge. In this case, partial derivatives are normally used for modelling. A 

third representation which is much more powerful is the finite element method. In this 

method, piecewise polynomial interpolation is used to describe a field quantity between 

nodes. A structure is divided into several elements, typically hundreds in number and its 

structural behaviour analysed. Elements are reconnected at nodes and thus the structure 

is modelled as a lumped parameter system whose order depends on the required 

accuracy. The method relies on the solution of hundreds or thousands of equations, 

depending on the number of elements used, which depends on a matrix inversion of 

order twice as high as the number of elements. The finite element method was only 

theoretical until the introduction of computers, which were able to handle large number 

of equations. Finite element problems are especially useful when dealing with irregular 

structures or shapes, non-linearities and non-uniform materials. These days, most 

realistic design problem involving, structural analysis are modelled with finite elements. 
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Modal analysis The governing dynamic equation of a lamped parameter model in 

structural dynamics is: 

Af)ý(t) + U(t) + Kx(t) = P(t) 

where M is the mass matrix, C is the damping matrix and K the stiffness matrix. All 

three matrices are typically positive definite and sparse. Usually, the stiffness and 
damping matrices are tri-diagonal while the mass matrix is diagonal, and the (1.1)-th 

entry represents the mass at the i-th floor. 

Eigenvalue analysis The equation of motion for an undamped freely vibrating system is: 

MY+Kx=0 (4.2) 

where x represents the vector of displacements of each DOF. Assume that the free 

vibration motion is simple harmonic, 

x(t) =ý sin(cot + 0) (4.3) 

In this expression ý represents the shape of the system and 0 is the phase angle. The 

second derivative of the above expression is: 

. 
ý(t) = _o2ý sin(cot + 0) = _0)2X (4.4) 

Substituting (4-3) and (4.4) into (4.2) gives: 

2M, 
-0 9sin(ot+O)+Kýsin(ot+O)=0 (4.5) 

or, 
[K _OJ2M]ý =0 (4.6) 

For a non-trivial solution (x^ = 0), the matrix K_ C02M must be singular and hence 

I det(K - o)--Il) =0 (4.711) 
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This is an eigenvalue problem, where the square of the angular frequencý % ariable. ct)2 

corresponds to the eigenvalues of the pencil. There are as many eilgenvalues as de-urees 

of freedom and each one corresponds to a mode of vibration. Eigenvalues provide 
important information about systems, as discussed in the previous chapter. The 

eigenvectors ý in equation (4.6) define the corresponding mode shapes. The smallest w Z=) 
is the fundamental mode corresponding to the first mode of vibration, the second 

smallest corresponds to the 2 nd mode and so on. 

Mode shape analysis: Once the N frequencies are obtained, the mode shapes for each 
frequency can be derived by solving equation (4.6) in terms of ý. The actual amplitude 

of vibration cannot be determined because the problem is indeterminate. but the relative 

displacement of each floor can be obtained. The solution is normalised by making one 

of the displacements equal to I (top floor usually) as in example 4.1. The procedure is 

repeated for all the frequencies and an N by N matrix is obtained where each column 

represents the mode shape at each frequency. All elements of the first mode shape have 

the same sign, the elements of the second mode change sign once, the elements of the 

third change sign twice and so on, until the last mode shape changes sign every other 

element (figure 4.3). In mathematical terms each eigenvector defines the mode shape at 

the frequency corresponding to each eigenvalue. The above argument can be expressed 

mathematically in the following example. 

Example 4.1. 

[K 
- ct)'M] 0 =>_ 

0 
[K-(t), 'M]-[(D, ]- : 

-0- 
where (Dii=l 
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4 DOF system Mode I Mode 2 Mode Mode 4 

Figure 4.3 Mode shape of a4 DOF system. 

Modal mass contribution: This section outlines the analytical derivations of the dynamic 

equations needed for modal analysis [Clough and Penzien 1993)]. 

Recall equation (4.1) where, the dynamic equation of motion for a damped systems is: 

M-i + C. ý + Kx =P (t) 

In order to proceed to modal analysis, the above system of coupled equations needs to 

be de-coupled. The displacement vector x, in matrix notation is given as: 

A, 

Oy = (')]Yl + (')-IY2 ++ (1)AYA' L (DnY, (4.8) 
nýl 

where (D is the NxN mode shape matrix, Y is the vector of generalised displacements, 

and Y, is the n"' modal amplitude. By substitut'ng) (4.8) into (4.1) and multiplyinIg by the 

transpose of the n th mode shape vector (1),, we have: 
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ý, k), i, R,: nizos 

(I)TM(I)k(t)+ V'C(Dý'(t) + (D"K(DY(t) = (DTp(t) (4.9) nnnn 

The orthogonality conditions state that: 

(1)TM(I) =O mn 

(V K)n : -- 0 m# n (4.10) 
m 

(1)TC(I) 
n=0 m 

The first two conditions for stiffness and mass are derived in [Clough and Penzien 

1993] while the third one for damping can be derived similarly. By substituting the 

orthogonality conditions, equation (4.9) is simplified to: 

y,, + c,, y. + k, y,, (4.11) 

where m, k, and p, are the normal coordinates generalised mass, stiffness and load 

defined and derived in [Clough and Penzien 1993]. c, is the generalised viscous 

damping coefficient defined accordingly. The formal definition of these variables is 

given in the following equation: 

(I)T Mn 
nM(l)n 

kn (D"K(D,, 
n 

(DTC(D Cn 
nn 

, 
pn (DTp(t) 

n 

Finally, by dividing (4.11) with the generalised mass m,, the modal equation of motion 

is expressed as: 

Y� 
Mn 

where the stiffness and damping terms have been replaced by: 

(4.13) 
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t), 
2 C 

Cn 

I 
Mn ýn 

2 con m,, 

The modal viscous damping ratio ý, can be determined experimentally. It is convenient 

to define the damping of a MDOF system using the damping ratio, as is commonly used 
in civil engineering. In control engineering when state space models are used expressing 

all terms as matrices, it is more convenient to express the damping in terms of the 

coefficients of the damping matrix C. 

Equation (4.13) is the final dynamic equation of motion which requires the following 

parameters in order to be solved: m, c, co, and p,,. 

The load vector P is the external load applied on the MDOF system. It can vary with 

time in amplitude and spatial distribution. In the case of earthquake loading the load 

distribution varies with time but is assumed to have the same load distribution per DOF. 

The general form of the load vector can be expressed as: 

P(t) = Rf (t) (4.15) 

where R is the load distribution vector, and f is the amplitude function. In the specific 

case of earthquakes the effective loading vector is taken as: 

P= Mrii eff 9 
(4.16) 

where M is the structure mass matrix, ýg(t) is the earthquake acceleration history 

applied at the structure's support, and r is a displacement transformation vector that 

expresses the displacement of each structural degree of freedom due to static application 

of a unit support displacement. 

it is common practice in earthquake engineering to express the seismic input as a 

fraction of the acceleration of gravity, g: 
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f(t) =I iýg (t) 

9 
(4.1-) 

By substituting equations (4.16) and (4.17) into (4.15) and solving for R, the load 
distribution factor becomes: 

R= Mrg (4.18) 

The displacement transformation vector r for lumped mass models subject to 
earthquakes is a unit column vector. If equation (4.16) is substituted for the normal 
coordinate generalised load and mass into equation (4.13), the earthquake loading 

equation of motion takes its final form: 

(DTM 
+ 0)2yn --n 

r- 
iý (4.19) ýn + 2ýncqj, 

Tg 
(t) 

(')nM(l)n 

The coefficient of iýg (t) at the right hand side of the above expression is the modal 

Participation factor (MPF), i. e. 
(I)TM j 

MPF nr 

(D. TM(D,, (4.20) 

This function shows the importance of each mode of a lumped mass with N degrees of 
freedom as a percentage. Thus the sum of all mode contribution factors is equal to one. 

Most structures are regular, which means that they have similar mass distribution per 

floor, equal distance per floor and are rigid. In these cases the first mode has a large 

participation factor compared to the other modes and contributes for most of the 

earthquake load. Thus, it is acceptable in the preliminary design stage to assume that the 

building has one mode only as in simplified static analysis. In structural control 

dampers are normally used to suppress vibration of the fundamental mode since only 

this contributes for most of the loading. This is not the case for irregular and flexible 

structures, where the participation factor of the higher modes has a large contribution 

and all modes need to be taken into account, as can be seen from the solution of 

equation (4.20). 
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From the modal mass contribution the "overall" period of the building can be obtained. 

From the ARS the acceleration (and hence force) for each mode is obtained bý 

multiplying the spectral acceleration corresponding to each period bý its modal mass 

contribution. Finally, the total force on the building is obtained by combining the 

modes: Several equations can be used for this purpose, the most common being the 

square root of the sum of squares (SRSS) given by: 

F=F- (4.21) 

Equivalent lateral force method: This is a simpler design method referred to also as the 

fundamental mode analysis. Here only the fundamental mode is taken into account and 

the others are ignored. This is valid only if the modal contribution of the fundamental 

mode is significantly large. The method is conservative if the spectral acceleration of 

the fundamental mode is larger than that of the other modes, i. e., the fundament mode 

period is in the ascending part of the ARS. If the structure has a low period, then the 

higher modes have a lower period and thus a lower spectral acceleration making the 

design conservative. If on the other hand the structure has a large fundamental period, 

larger than the ascending part of the ARS, the higher modes of lower period correspond 

to larger accelerations. Thus, the spectral accelerations are larger than the designed 

ones. 
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4.3 Frame-Pendulum Model Analysis 

The simplest form of vibration control is achieved with a tuned mass damper. In its 
idealised form this consists of a hanging mass from the roof of a building, like a 

suspended pendulum. The aim of this section is to derive the governing differential Z: ý 

equations that describe the motion of the system and also to simulate the model and 
investigate the response of such a system to earthquake signals. There are generally 

three possible ways that could help mitigate the earthquake response of such a system. 
The first one is to increase the energy dissipation by making the pendulum to have a 
large damping factor which dissipates energy from the system. The second is to 

minimise the amplitude of the frame vibration due to the pendulum's motion being 

opposite to the frames. The third method is to move the frequency of the frame (which 

increases due to the added mass of the pendulum) away from the critical frequency 

range excited by the earthquake signal. The objective here is to determine if any of the 

methods can be useful in vibration control problems and, in general, how energy 

dissipation mechanisms work. 

xM 

B, K, 

K, C 0 

ID 

m 

rigeoso 
mg 

Figure 4.4 Pendulum model Figure 4.5 Forces on suspended mass 

Model: The model consists of a frame with massless columns of horizontal stiffness K 

and damping C. The frame has inass M, unifon-nly distributed as a beam on top of the 

columns. At its centre hangs a massless member of rotational stiffness K, - and frictional 

damping B, with a mass m attached to it. The beam of mass W moves horizontally. 
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while the suspended mass m rotates in the plane of the frame and is restricted of an,, 
horizontal or vertical movement apart from rotating. The frame is fullý fixed to the 

ground. 

4.3.1. Modelling 

The system will be modelled in order to find the governing differential equations and 

then analysed. The variational method will be used [Wellstead 1979]. The modelling 

steps are as follows: 

I. Obtain generalised co-ordinates: 

The generalised co-ordinates are chosen as the beam horizontal movement x, and the 

hanging member rotation 0. 

2. Forces in direction ofgeneralised co-ordinates. 

YF =F EQ (4.22) 

where FEo is any horizontal component of the earthquake force applied on the frame. 

The moment applied on the suspended mass in the 0 direction is: 

Mg =M=Fxd= -mg sin, 9 x1= -mgl sin, 9 (4.23) 

Next, the dependence of the kinetic and potential (or strain) energy on the two 

generalised coordinates needs to be established: 

3. Energies: In standard notation these are summarised as: 

KEý, 

KE, 9 =1M (X 2+ 12j2+ 21, ýi cos, 9) 
2 
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PE', 
I 

Kx 2 

2 

PE. 9 
I 

Kr Lq 
2 

4. Total Energy: 

L=U-T 

K-Eý, + KE,, - PE,, - PEq (4.24) 

N1 ý2 +12ý2 
1r2+ 

ý&2 + iX Lq 
2 

2A2m+ 
21, ýý cos 22 

Kr 

5. Dissipative energy is: 

J= 
I 

Ci' +I Bý' 
22 

6 Solve the Lagrangians: 

(4.25) 

d aL)_aL+c9J=yF 
dt & ax C, 5c 

(4.26) 
d aL) 

- 
aL 

+ c9j Mg 
dt a, 9 ao C90 

Here, 

,; ý T 
ci 

aL 
= -Kx 

cx 

c9L 
= Mý + M)ý + mlý cos, 9 

d (c9L) 
Af 

dt ý&)- _j 
+ nlý + Mjj COS tg _ Mjý 

2 
sin 9 

d(üL)_aL aJ 1, ý, => M-ý + mý + mli cos ý9 - mlj' sin 9+ Kx + Cý = FEQ (4.27) 
dt 

=B, 9 
ao 

ýL 
= -ml)ý j sin 9 
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=ml'ý+21icosd 

d L" = M12j + M& COS Lq -mlkýsin, 9 
dt a, 9 

d aL 
_aL+aj= 

j: Mq =: ý M12j +m&cos, 9+ Bý + K,, 9 = -mglsin, 9 (4.28) dt a9 C90 ao 

From the Lagrangians two coupled equations are obtained. In order to find the state - 
space model of the system the state variables need to be decided, which are the 

generalised co-ordinates (x, O) and their derivatives (-ý, ý). The next part is to solve for 

the second derivative of the generalised co-ordinates from equation (4.27) and 
(4.28) to obtain: 

ml COS 0 (Bd + KýO +m Ig sin 0) _ M12 (Kx + Cý - mld sin 0) 
f,: 3ý =- (M + M) M12 _ M212 COS 0+ 

FEQ (4.29) 

. mlcosO(Kx+ C'ý 
_ MIý2 sin 0) - (M + m) (Bd + KO +m Ig sin 0) 

(4.3 ) 0) A: ý 

(M+M)M12 
_M212 COS 0 

The equations have many non-linear terms and therefore non-linear simulations should 

be performed. Alternatively the equations can be linearised around an equilibrium point, 

and linear simulations performed which, however, will be valid only for small 

amplitude motion around the equilibrium point. 

Non-linear simulations 

A large class of second-order systems, including spring mass damper models, can be 

described by differential equations off the form [Slotine and Li 1991 ] 

.ý 
(4.3 ) 1) 

Their dynamics in state-space form are represented as: 
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x, =X, 

X2 = -f 
(XI 

"X") 

Such a system is non-linear. All physical systems are to a certain extend non-linear and 

time varying, but for small range motions they can be approximated with their 

linearised counterpart. For autonomous systems, i. e. time invariant systems. the 

dynamics can be expanded using Taylor series (Slotine and Li 1991) which in the scalar 

case is given by: 

f (a+ h) =f (a)+ h Lf 
+ 

h' ý2ýf 

(4.32) 
aX 

x=a 2! ýX 2 

x=a 

under the assumption that f(x) is continuously differentiable. For a function f(x) 

depending on vector parameters a and h the Taylor series expansion is of the form: 

f (a+ h) =f (a)+ hT Vf (a) +Ih 
TV 'f(a)h+... 

2! 

where 

Vf (a) =I ai 

denotes the gradient of f (x) evaluated at x=a and 

V'f (a) =I axaxi 

is the Hessian matrix of f (x) evaluated at x=a- 

if a is an equilibrium point then f (a) = 0, and by neglecting second order and higher 

terms, the dynamics matrix at an equilibrium point is given by: 

cx J X=o 

(4.33)) 
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In this case, the state-space model having as states the 4 generalised coordinates 
0,0 i 

0100 
x x 

C'X ao 00 X (4.34) 0 0001 0 af2 af2 af2 af2 

CX cx ao 

where u is zero since no control is needed to maintain the system at its equilibrium 

position (in the absence of any external interference). Here the origin is an equilibrium 

point at which the system is at rest. Therefore, calculating all partial derivatives and 

substituting (x, O, x, 0) with zero, the state-space A matrix is reduced to: 

0 0 0 
K c 

_K, 
+m Ig B 
Afl 

0 0 0 
K c + m)(K, +m Ig) B 

Afl Afl IVI 12 m IVf 12 m 

4.3.2. Frequency analysis 

The characteristic frequencies of the two subsystems (frame and pendulum) can be 

obtained from the eigenvalues of the A matrix. In order to simplify the calculations the 

rotational stiffness K, was set to zero, effectively assuming that the pendulum is hanging 

from a rope, which is a more realistic approach. Note, that even in this simple model the 

symbolic Matlab toolbox has difficulties to obtain the exact natural frequencies 

expressions. Here: 

w2=ýI 
(m+A4)g+Kl-+I[KI-g(M + M)]2 + 4KImg' (4.35) 

AII 

lo 

The above expression gives four solutions in pairs, each pair having opposite signs. The 

two positive solutions correspond to the two natural frequencies of the system. In order 

for the two subsystems to have the same period, the square root must be zero. Noýý. 
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[KI _ g(M + M)]2 + 4KImg >0 (4.3 ) 6) 

since all parameters are positive. Therefore the two subsystems can never have the same 

period and the two modes of the system are always different. The period of the 

pendulum is always larger than that of the frame. To investiclate numerically the Z: ) 
behaviour of the two modes, the following choice of parameters was made so as to 

make the two frequencies similar (of the same order of magnitude): 

Frame parameters Pendulum parameters 

K 125 K-N Kr 0 

M 10 Kg M I Kg 

c 0 B 0.5 Nslm 

T, = 1.6s I 
T, = 2.2s 

IL 
IM 

Table 4.1 

The period of the building as a function of the pendulum mass and length is shown 

below: 

Period as a function of pendulum mass and length 

0.45 

0.4 

0,35 

0.3 

, 
ýý 0,25 
-0 

0.2 
CL 

oý 15 

0.1 

0.05 

0 
10 

42 

00 

10 

pendulum length (m) pendulum mass (Kg)) 

Figure 4.6. a) Period (of frarne) as a function of rn and 1 
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Period as a function of pendulum mass and length 
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20 
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0 
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10 
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00 
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Figure 4.6. b) Period (of pendulum) as a function of m and I 

4.3.3. Effect of pendulum's parameters to system damping 

To simulate the system's behaviour the periods are chosen to be as close as possible, by 

choosing the following structural parameters. The period of the frame-pendulum system 
depends on 

I (m+M)g+KI±V[KI-g(M +m)]'+4KIM9 c9l = 3.9rad /s => T, = 1.6s 

2 mi co, = 2.9rad /s => T, = 2.2s 

The response of the system is calculated after a unit displacement is applied to the 

frame. Since there is no damping from the frame the system relies on the pendulum to 

dissipate energy and gradually reduce the displacements. This is achieved from the 

interaction (coupling) of the two subsystems. Figure 4.7 (pendulum dissipation similar 

period) shows the horizontal displacement of the frame where the displacement is 

gradually decreased. 
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Next, the period of the two modes is examined. The pendulum length was set to 10 m 

and the periods are obtained as 4 s. and 1.26 s. The response is shown in figure (4.7- 

pendulum dissipation different period) where the displacement is almost steady. This 

means that in this case (in which the two periods are very different) there is very little 

energy transfer between the two sub-systems, and thus very limited energy dissipation. 

When a similar value of damping-factor coefficient is assumed for the frame and the 

pendulum's damping is set to zero, the amplitude of the displacement is reduced even 

more slowly (figure 4.7-frame dissipation similar period) indicating that it is more 

efficient in this case to add damping by means of the pendulum rather than to the 

structure itself as the coupling between the two systems is asymmetric. Also, damping 

on the frame is not related to the period of the two subsystems. Figure (4.8) shows the 

Bode plots (magnitude frequency responses) for the four cases (dissipation on the frame 

with similar periods, dissipation on the frame with different periods, on the pendulum 

with similar mode periods and on the pendulum with different mode periods). The main 

conclusions of the previous analysis are supported from these four frequency responses. 

Energy dissipation for different cases 
0.3 

0.2 

0.1 - -1- 
V--l'-f- 

---- 

c 0- 

CL 

-0.2- 

Frame dissipation simil r period 
-0.3- Frame dissipation diffe ent period 

Pendulum dissipation similar period 
Pendulum dissipation different period 

05 10 15 20 25 30 

time (s) 

Figure 4.7 Displacement when frame and pendulum have similar and different 

frequencies, when damping occurs in the frame or the pendulum 
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Energy dissipation for different cases 20 

10- --- - ------ -I --- ------------------ - -------- 

0-- --------------- -------------------------- 

-10- --- --- - ----------------------- 

-20- 

-30 ------- Frame dissipation similar period 
Frame dissipation different period 
Pendulum dissipation similar period 
Pendulum dissipation different period 

-401 012345678 

radial velocity (rad/s) 

Figure 4.8. Frequency responses when frame and pendulum have similar and different 

frequencies, when damping occurs in the frame or the pendulum 

4.3.4. Effect of pendulum's parameters in shifting the structure's 

period of oscillation. 

Another effect of using a pendulum or a tuned mass damper is to increase the total mass 

which results in an increase of the period of the system. Depending on the frequency 

content of the earthquake acceleration signal, this may result in lower levels of 

excitation of the system's modes and hence lower amplitudes of displacement. The 

shape of a typical earthquake spectrum or ARS is shown in figure 4.2. If a structure has 

a period longer than that corresponding to the peak of the spectrum, by increasing the 

period the acceleration on the building is reduced. This is common practise when base- 

isolation techniques are used. Apart from minimising accelerations, base isolation 
t) 

increases the fundamental period of the building. A similar study was undertaken by 

[Johnson et al. 200-3)] where the use of rooftop tuned mass dampers, i. e. a TMD placed 

at the top of a structure was explored, without considering the effects of dampinll-Y.. It was 

reported that by adding a RTMDF of mass and stiffness equal to 1/2 Oth of that of the 
1. 

building, the period is increased by approximately 12%. 
4: ) 
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An example is included next with reference to the frame-pendulum system. The 
following structural parameters are also chosen: M=I OKg and K= 125A, , m. Zero 

frame damping and no pendulum are initially assumed. The period of this system is 
1.79s. The system is excited by a sinusoidal input having a frequency similar to the 

natural frequency of the structure. By adding a pendulum of mass lKg (1/10'h of the 
frame) the period of the frame changes to 1.59s while the maximum output 
displacement is reduced from 7.7m to 0.37m. If some damping is added to the pendulum 
(C = 0.5Ns /m) the maximum displacement is further reduced to 0_33m. The length of 

the pendulum needs to be appropriately chosen so that the pendulum's mode is close to 

that of the frame (for maximum energy dissipation) and different to the frequency of the 
input (to avoid being excited). This method is valid only for structures with relatively 
long periods, larger than that of the excitation, for otherwise the opposite result is 

achieved (see section 4.2.4 about Equivalent lateral force method). This is not a problem 
in practice because usually passive control systems are added to tall flexible structures 

that normally have long periods. With the addition of the pendulum, the angular 

frequency of the system changes from 3.5 to 3.9 rads1s which is an increase of 11%, 

while the total mass increases by 10%. It is difficult to calculate the exact period 

change, because equation (4.35) is non-linear and hence the steady-state response is not 

a sinusoid at the input frequency (as in the linear case), although linearisation 

techniques applicable to small amplitude oscillations can be used. 
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10 
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-40 - 2 

F req uency response 
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oendulum with dam pinq 
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-- ------- ---------------- --- -------------- 

------------------ - -- ---- -- 
-------------------------------------------------- 

2533544,5 5 

angu la r ve locity (rad/s) 

Figure 4.9 Frequency responses for system: frame, frame with pendulum and frame 

with pendulurn and damping. 
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Maximum response for different arrangements 

Method Maximum displacement 

Frame, no pendulum 7.7 m 
Pendulum, no damping 0.37 m 
Pendulum and damping 0.111"I M 

Table 4.2 
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Figure 4.10 Acceleration response spectra of various earthquakes 

Source: [johnson et al. 2003] 

4.3.5. Effect of pendulum's parameters to amplitude of oscillations 

The objective of this part is to establish whether the pendulum motion has an effect on 

the amplitude of the frame's displacements, in the absence of pendulum damping. This 

can be evaluated only if the frame and the pendulum have the same frequency such that 

the pendulum applies a constant opposite force (for otherwise the force exerted by the 

pendulum to the frame is different at each cycle). However this is not possible, since the 

two modes are always different, as was shown earlier. 
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Frequency response 30 - 
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Figure 4.11 Frequency responses frame with and without undamped pendulum 

By adding the pendulum to the system a new mode is produced at lower frequency, 

while the frame's frequency is increased due to the added mass. From this graph it is not 

clear if the pendulum has a positive effect or not. Its main effect is to change the modes 

by keeping the gain at similar levels. If the input is an impulse then the maximum 

displacement is exactly the same as without the pendulum (figure 4.12). However, the 

amplitude of the frame's displacement is not constant and thus the RMS displacement is 

reduced by the presence of the pendulum. 
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Figure 4.12 Displacement of frame with and without undamped pendulum Z: ý 
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The response suggests that if a force is constantly applied opposite to the structure at the 
same frequency the amplitude would be reduced. This is a forced vibration ýýhich 
cannot be implemented by the present system. Such a control system would need to be 

active. 

Obviously if the two frequencies of the pendulum and frame are significantly different 

the pendulum does not influence the frame amplitude significantly, and in fact it may 
actually lead to slight increases of the peak displacements at some times. 

4.3.6. Non-linear simulations 

For the frame-pendulum system the non-linear state space model is of the form: 

K(x, -ý, 
0, d) =0 

where 
M+m m1coso M(g) 

ml Cos 0 M12 

I 

and 

0, 
Kx + C'ý 

_ MIý2 sin 0 [BO+Kro+mlgsinO 

So that 

Kx + Ci - mlO 2 sinO 
(Bý+KO+mlgsinO)cos9 

MCOS2 0_ A/f -M L 
(M 

Cos 
20_M_ 

M) 

(Bd+KO+mlgsinO)(M+m) (Kx+Cý-mM 2 sin 0) Cos 0 

ML2 
(M 

Cos 20_M_M) L(m COS2 0-M- M) 

Normally, no analytical solution for non-linear models exists (apart for simple cases) 

but simulation can be performed via numerical integration. Here Simulink's s-function 

was used. For small changes in initial conditions (relative to the equilibrium) the non- 

linear and I inearised- model simulations produced similar results. which shows that the 

linearisation method is accurate, even for relatively large angles (figures 4.13 and 4.14). 
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Figure 4.13. Frame displacement, linear and non-linear simulations 
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Figure 4.14. Pendulum angle, linear and non-linear simulations 

4.4. Inelastic behaviour 

During strong earthquakes structures experience large inelastic deformations. The 

behaviour of materials during these inelastic deformations is non-linear. Current seismic 

design relies on this behaviour to protect structures against collapse. The materials used 

have a large deformation capacity to allow for effective energy dissipation and to absorb 

the majority of the earthquake load (figure 4.1). This is the main philosophy behind 

current methods of design against earthquakes. A building may not have enough 
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strength or stiffness to resist the full earthquake but can have enough ductility, "hich 
allows the material to deform enough without breaking. The result is that the structure 
can withstand large earthquakes and the building's function and integrity is preserved 
despite potential large damage to the structure. 

400 

300 

200 

loo 

0 

Sirmn 4%) 

Figure 4.15 Typical diagrams of high-strength reinforcement bars: Source [Pinho 2001 ] 

The response of elastic structures is linear. This is not the case when structures behave 

inelastically. The behaviour of structures in the inelastic region is non-linear and 

difficult to model. Entering the inelastic region changes significant the effective 

stiffness of the structure, and thus also its period and its overall response to earthquakes. 

This is usual in the favour of the structure since longer period structures tend to have a 

lower spectral acceleration (figures 4.10 and 4.2). Furthermore, during an earthquake 

there is cyclic loading (figure 4.16), i. e. loading of the structure on one side and 

immediate unloading and re-loading on the opposite side. This is of insignificant when a 

material is in the elastic range. During inelastic behaviour there is gradual strength and 

stiffness degradation. This results in further structural period change and makes the 

material even weaker and more susceptible to the earthquake load. 
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Figure 4.16 Force-displacement hysteretic graph under cyclic loading 

:n 

In structural control the effects of cyclic loading and inelastic behaviour play an even 

more important role since specific modes are being targeted. If the period of these 

modes changes the (modal) controller will be less effective. This effect has been 

neglected so far in structural control literature. This may be because during moderate 

earthquakes and large winds structures are not supposed to enter the inelastic range. In 

active control the controllers are prevented from functioning during large earthquakes, 
in order not to have a negative effect and destabilise the system [Koshika et al. 1996]. 

This choice of not turning the controller on is usually not possible especially in passive 

systems where the controller is a part of the structure. Here the behaviour of the frame- 

pendulum system when the material follows a non-linear force-displacement pattern is 

investigated. 

Choice of P-6 graph: Previous work in this area was presented by Yang in papers 

including [Wong and Yang 2003] where an active controller using the instantaneous 

optimal control algorithm was designed. The force analogy method was used where 

there is inelastic deformation but no stiffness degradation. Here the effect of stiffness 

change is included but not the effect of cyclic loading and stiffness degradation. There 
1. ) 1: 1 4: ) 

is no unique acceptable shape of an inelastic force displacement graph. An idealised 
1. 

graph was given by [Erberik and Sucuoglou 2004] shown in figure 4.17. Here, a simpler 

shape is assumed where the stiffness is a function of the displacement, and the force is 

always zero when the displacement is zero (and vice versa). The shape and 
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corresponding equation is shown is figure (4.18) and is given by equation (4.337). The 4D 

stiffness is the tangent of the force-displacement graph: 

F=A tanh (Bx) (4. -3) 
7) 

where 
A-B=K= 125 AIT/m 

Figure 4.17 Geometric description of the idealised first cycle by Erberik and Sucuoglou 

(2004) 

Non-linear force-displacement graph (Stiffness) 
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Figure 4.18 Stiffness as a function of force and displacement 
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Displacement for linear and non-linear model 
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Figure 4.19 Displacement response for linear and non-linear stiffness model 

The displacement of the non-linear model is larger, as expected. After the first two 

peaks where the displacement is larger due to the stiffness reduction, the displacements 

are reduced again but are marginally larger than the non-linear ones. There is a period 

increase visible in the first few peaks (but it reduces back to its original value), which 

remains for the rest of the time despite the system gaining its original stiffness. In a real 

example where there would be permanent stiffness degradation, the period would not 

return to its original value and the TMD would be targeting the wrong period. The 

change of period can also be seen in the Fourier transform plots below. 
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Figure 4.20 Power spectrum of elastic stiffness model 
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Figure 4.21 Power spectrum of inelastic stiffness model 

The Fourier Transform of the elastic model has two sharp peaks at the two modes and 

then rapidly reduces to zero. The inelastic model has one large peak, corresponding to 

the pendulum mode, but has a wider spectrum with a few additional minor peaks due to 

the stiffness change. 

4.5. Summary 

In this chapter the simplest form of a structural system was designed with an energy 

dissipation mechanism in order to demonstrate from first principles the concepts of 

energy dissipation systems. The structure was a frame with a suspended mass like a 

pendulum. The variational method was used to model the system which is highly non- 

linear. By assuming that the pendulum can provide damping, energy dissipation can be 

achieved if the period of the pendulum is as close as possible to the period of the frame. 

The period of the pendulum is always higher than that of the frame but by effectively 

the length and mass of the pendulum the two periods can be made similar. choosing 

Energy dissipation thus occurs due to the interaction of the two-systems, but only if 

their periods are similar. Otherwise there is little energy transfer from the frame to the 
I 

pendulum and hence not significant energy dissipation. 

98 

0.5 1.5 2 2.5 

Frequency (Hz) 



4. Structural Dynamics and Passive System Anak sis of a Pendulum Model Pana2iotis Rentzos 

A pendulum can also be efficient by means of altering the period of the frame, due to 
the added mass. This can help to move the structure's period away from the earthquake 
period. This is possible only when the structure has a period larger than the one 
corresponding to the characteristic period of the earthquake. Finafly. the movement of 
the pendulum cannot help reduce the amplitude of motion. The last part of the chapter 
assumed that the material has an elasto-plastic behaviour which is the case in real 
structures under strong earthquake excitation. This results in higher displacements and 
in stiffness reduction. Furthermore, the period of the frame changes, moving away from 

the period of the pendulum and hence the energy dissipated is reduced. 

Passive energy dissipation systems are very effective because they can increase 

damping. Pendulums are natural systems, *'internal" to the structure without any 

external interference. The period can be tuned to be similar to that of the frame by 

simply altering the length (or mass) of the pendulum. The limitation of this system is 

that it cannot reduce displacements. The amplitude of motion can only be reduced by 

active control where external forces are applied. Furthermore, at large earthquakes 

passive systems are not effective because the period of the system changes and 

dissipation is no longer possible. This problem can be solved by using active control 

where the forces are stronger and can ensure that the structure will not move to the 

inelastic region. Even if this occurs, active control can alter the period of the controller 

and be effective even when the structural period changes. The remaining parts of the 

thesis investigate various active control methods. 
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CHAPTER 5 

LQG CONTROL 

5.1. Introduction 

In the previous chapter the concept of passive control via damping was introduced in a 
simple example involving a frame. It was shown how damping can dissipate energy and 
hence strengthen a structure subject to dynamic loading. Here, the concept of active 
control is explained. In active control an actuator applies forces and counteracts the 
disturbing forces. This is typically more efficient than passive control but requires large 
forces and accurate control design including sensors, actuators and a mathematical 
dynamic model of the system. In active control if forces are applied at the wrong time or 

place the structure may become unstable and the controller can therefore have the 

opposite than the desired effect. Feedback control is used in this chapter to illustrate the 

concept of active control. 

The objective of the present (and the next) chapter is to examine two control design 

methods in depth, which are the Linear Quadratic Regulator (LQR) and H, optimal 

control. The main aspects of these design methods are considered and many different 

design scenarios are analysed. The overall aim is to examine different control 

algorithms and compare their results with those expected by theory, and also to compare 

the methods between themselves in order to determine their relative advantages and 

limitations. Finally, several other issues of control applicable to specific problems are 

investigated. The main limitations of each control scheme are described and the main 

conclusions about their effectiveness are drawn. 

The theory of LQR has been outlined in chapter 3 and here it is examined with 

extensive Matlab simulations. LQG is an optimal control design methodology, which 

aims to minimise the RMS values of the regulated signals subject to the presence of 

white disturbance and sensor-noise processes. A quadratic optimisation index is 
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formulated involving the energy of the state and control variables which is minimised 

via the solution of Riccatti equations. The Kalman filter may be used to estimate the 

states from noisy measurements if these are not directly measurable. Also, penalty terms 

can be added in the scalar performance index to shift the emphasis between different 

design objectives. Frequency weights can also be used to penalise the energy of the 

regulated signal in different frequency bands or to reflect more accurately the energy 
distribution of the disturbance and noise signals. 

A regular three-storey structure has been chosen where all designs will be tested and 

simulated. Several design inputs are examined including an impulse, the simplest form 

of loading, a sinusoidal input and finally a real earthquake signal. The structure employs 

an active tendon control system and also includes a passive energy dissipation element. 

5.2 Structural model 

5.2.1 Description of structure 

The structure chosen employs active tendon control, which is reported in the literature 

to achieve the best results disregarding cost and power supply considerations [Soong 

1990]. An existing structure investigated by other researchers is considered [Nishimura 

and Kojima 1991]. This represents a simple and regular 3-storey structure, so that the 

effect of the higher order modes is minimal. A schematic of the structure is shown in 

figure 5.1 and its parameters are summarised in table 5.1. 

Structural parameters 

Floor I M (kg) C(Ns / in) K (NIM) Actuator 

Base 5 100 16000 KI =2NIA 

I St 1.72 0.078 22600 
Ke 2 V-slm 

1-48 0.078 
I 

2600 
I 

R=1.5 Q 

r 7--t _3 2.34 0.078 2600 

I able ý,. I 
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Figure 5.1 Representation of 3-storey building as a mass-spring-clamper model 

The tendons are connected between the ground and first floor and produce an equal and 

opposite force, which means that even when the maximum possible force is applied by 

the actuator the displacements of the building's floors cannot be made zero. The 

structure is a test model and has small masses and dimensions. A large stiffness value is 

assumed for the base to account for the stiffness between the base and the surrounding 

ground. The objectives of the controller are to minimise the ground floor acceleration 

and the inter-storey drift between first and second floor. 

The structure is idealised as a large mas s- spring- damper system as shown in figure 

(5.1 ). In this diagram, u, is the actuator force and v is the disturbance (earthquake) force 

signal assumed to act on mo. The tendons add damping to the structure, therefore even 

if no force is applied by the actuator there is some resistance from the tendons. 

5.2.2 Modal analysis 

Modal analysis needs to be performed to identify the natural period of each mode and 

the modal mass contribution. Since the structure is a three-storey building, three distinct 

modes are expected. By including the ground floor a fourth mode can be observed, but 

due to the hiah damping value (C = 100 Ns /m) this does not contribute significantly to 

the mode shapes. The procedure for carrying out modal analysis, as outlined in section 

4.2.1 (page 72) and by Eurocode 8 (1998) is as follows: 
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Assemble the stiffness and mass matrices for the building: 

MI Ul 

M) 

M3 ll_, 

Original Node I Node 2 Node 3) 

Figure 5.2 Assembly of stiffness matrix for a3 DOF system 

ki -ki 0 
Here, K, = -ki K, = k, + k-) K3 -k' 

0- k-, k' + k3 

where, K,, is the force corresponding to coordinate i, due to a unit displacement of 

coordinatej [Clough and Penzien 1993]. Here, a unit displacement is applied at each 

node and the corresponding force at each node is determined. The three vectors are 

combined to give the stiffness matrix. Also, all element have the same stiffness 

(k, = k, = k-, ). Hence, the overall stiffness and mass matrices are: 

I-10 

K= -1 2 -1 x2600NIm 
0-12 

and 
1.72 00 

M=01.48 0 Kg 

0 2. '35 

respectively. 

ii) Solve the corresponding eigenvalue equation; Each eigenvalue represents tý 1-: 1 ltý 
physically the angular frequency of each mode. 

K-a)2Mý =0 => KAI Iý =0 

10) 
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Hence, 

"7 301.7 17.1 
19 5 5.2 44.21 rad /s 
4981 70.58 

Obtain mode shapes by calculatin the eigenvectors corresponding to the 9 

eigenvalues obtained in step ii) 

For example, for mode 1: 

a), 
2MI(l), 

or, 
2600 - 301.7 x 1.72 -2600 0 (D 0 

-2600 5200 - 1955 x 1.48 -2600 (1) 0 

0 -2600 5200 - 4982 x 2.34_ 
_ 

(1) 
3,1 

0- 

where (D, is the first eigenvector. The same procedure is followed for the remaining 

mode shapes. Every mode shape is normalised to have its first element equal to 1. In 

this case the mode shapes are given below and shown in figure 3. 

0.68 -0.25 -1.97 
0.63 -1.72 1.25 

Mode shapes 

L- 
0 

-2 -1.5 -0.5 0 0.5 1.5 

unit displacement 

Fioure 5.3. Building mode shapes 

---*- Mode 1 

--a- Mode 2 

6 Mode 3 
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iv) Determine modal mass contribution: this is achieved by solving equation 
(4.20): 

1 
1! 2 

GM' 

where L and GM is given by: 

GMi = (DiTM(D 

I 

=(DiTM I 

-I- 
Hence, in this case: 

[83% 13% 4%] 

where the percentages represent the modal mass contribution of each mode. 

V) Determine the natural periods of vibration. Here, 

0.36 
T2T0.14 seconds 

0) 

-0.09- 
Note that the fundamental mode has 83% modal contribution, which is significantly 
large, as expected for a regular structure. 

The majority of buildings possessing active control schemes, place the controller on the 

roof. The disadvantage of this scheme is that the controller is only able to suppress one 

mode. In the structure under consideration such a controller would be powerful, but for 

taller and more flexible buildings the fundamental mode has a lower modal 

contribution, which would make the controller less efficient. 

5.2.3 State-Space Model of uncontrolled system 

Deriva ations: The dynamic model of the structure is shown in 
figure 5.4. : 
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k 

CO 

Figure 5.4. Building idealisation as a Mass- spri ng-damper model 

By setting the inertial force for each mass m, (i = 0,1,2,3) to zero, we obtain: 

mo-ýO + Co, ýo + Koxo - C, (ýI - xo) - K, (x, - xo) =: v-u 

M'ý + C, (, ý, -, ý0) + K, (x, - xo) - C, (x -xK, (x, - x, u 1121 

x X, ) + K, (x, xx )-K M"-ý" + C2 
2 --X1)-C3( 3- 2 3(X3-X-1) 

0 

m3. ý3 + c3 + K3 (X3 

- 
-X, 

) 
=0 

where u is the control force produced by the actuator and v is the disturbance force. 

Note, that the actuator produces a force u acting in equal and opposite directions 

between the ground and first floor (masses mo and ml). 

B solving for. ý,, the above equations can be written as: y It) 

K, co + Cl 
ý 

cl 
-u 3ý0 X0 + xi -0+ X1 -- + 11 

mo mo mo mo mo 
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K, K, ci 
- 

ci + C, 
. 

C, 
.u ý -ýI 

= xo - x1+zX, +-x 0-'ý 
xi + X, +- 

mi mi mi mi mi mi mi 

K, K, +K3 K3 C, C2 + C3 C3 
- X, =- xi - X' +- + X3 +--j-XI x3 

M, M, M, M, 

K3 K3 C3 C3 

X, X 3+ x" 3 
M3 M3 M3 M3 

These can be written in compact form as: 

,ý= Ax + Fv + Bu (5.1) 

y= Cx + Du (5.2) 

In equation (5.1) and (5.2), 

A represents the dynamics of the structure 

F is the disturbance input matrix 

B is the control input matrix 

C is the output (measurement) matrix 

D is the direct feed-through matrix 

X= 
[X" 

X1 X" X3 'ýO X1 X2 X3 is the state, all floor displacements and 

accelerations. 

In full, 

A=l 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

k,, + k, ki 0 o - 
Co +Cl cl 0 

mo in 0 mo mo 

k, k+k, 1 
k, 

0 cl c+ C' I C, 0 
ml ml ml ml ml ml 

k' k, +k3 t 

k3 
0 

C2 + C3 C3 
0 

in, 
--- ------- 

in, in, in, in, in, 

0 0 k, k 3 0 0 
C3 C 

in, 1 in 3 in, -1 in 
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00-I10 OIT 

mo mo 

(0 00010 

K, 
_K, 

+K 2K20 
Cl Cl +c2 C2 

0 
C= mmmmmI ml 

10 
-1 

100000 

1 
D= m 

0 

Since the controller is not present the control signal u is set to zero. 

5.2.4. State-Space model including actuator dynamics 

Typically, the control force is produced by an electromechanical actuator. The actuator 
is a dynamic system of a finite bandwidth and hence cannot produce its force 

instantaneously (after a certain input voltage command). The dynamic model of a 

typical linear actuator is described below. Note that this resembles the dynamics of a 

DC motor, except that the angular speed (o is now replaced by linear velocity vo. As the 

actuator is connected between mo and ml, 

vo = )ý, - )ýo (5.3) 

which is the relative velocity between the two masses. The electromechanical equation 

describing the system is: 

F= KfI (5.4) 

where F represents actuator force, I is the armature current and K, is the -force 

constant" of the actuator. Kirchoff s law for the circuit in Figure 5.5 gives: 
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IR+e= IR+K, (X, -X, ) (5.5) 

Here V is the applied armature voltage and Kevo represents the *'back-emf' e of the 

actuator, where K, is the actuator's back-emf constant. For an ideal actuator (no losses) 

the input electrical power (ignoring the power dissipated in the armature resistance R) 

must be equal to the output mechanical power and thus: 

k, vOF 
eI = FvO ý or kf = FvO => ke = kf (5.6) 

In order to obtain the overall closed-loop system the actuator dynamics need to be 

added: 

F =kf I 

V-IR= ký, (X, -X0) 

From equations (5.7) and (5.8), 

k. f 
V k, (-ýl )0 

R 

ACTUATOR 

/ 
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v (extemal 

(5.7) 

(5.8) 

(5.9) 

I 
------ ------------------------------ 

Figure 5.5. Concept of controlled structure 
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Figure 5.6 Representation of DC motor 

or, 
K. V K. 1 Ký, KIK 

e F= - -Xl + X0 RRR 
(5.10, ) 

By substituting F from (5.10) into equation (5.1) and rearranging in order to remove all 

state variables from the control input, we get the following augmented state space 

system which now includes the linear actuator's dynamics, where the control force F is 

denoted by u in the state space matrix: 

0 

0 

0 

0 

k-0 + k, 

-mo 
k, 

in 

0 

0 

0 

0 

0 

0 

k, 

mo 
k, +k2 

-ml 

k, 

M, 

0 

00 

00 

00 

00 

00 

k, 
0 

ml 

_k-, 
+ k3 k3_ 

-M, M., 

k3 k3 

M3 -M3 

1 

0 

0 

0 

co + c, + 
kl k, 

-mo m. R 

e, + 
kfký, 

m, m, R 

0 

0 

0 

1 

0 

0 

cl k, f k, 

mo moR 

C, +C, k, 

-ml mR 

C, 
M, 

0 

0 

C, 

ml 

C' + C3 

-M, 

C3 

M3 

0 

0 

0 

C3 

M, 

C3 

M3, 
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B, =0000_ 
kf kf 

0 OIT 

m, R mR 

K K, + K2 K2 
0+ 

kf k, C, +C, l(f k, C, 
0 cl = Mi ml mi m, mR mi 

-- 
m, R -m, 

0100000 

D, m0R 

This may be written more compactly as: 

, ý=: Ax+[B F] 
v (5.11) 

lul 

y=Cx+Du 

where now u represents the actuator voltage. 

5.3. Controller Analysis and Design 

5.3.1. Uncontrolled response 

There are three different types of simulations, specifically uncontrolled, passive and 

closed loop. In passive simulations an actuator is included but without applying any 

forces, hence the ATC works only as a passive system adding damping. This is only 

added for completeness because the uncontrolled responses are different to the closed- 

loop responses when there in no control input. In closed loop simulations the active 

control is fully employed. 

The first simulation is for the uncontrolled system. First an impulsive load was applied 

as an input, then a sinusoid and finally a real earthquake signal (appropriately scaled). 

The peak levels, RMS values and frequency responses were obtained to evaluate the 

structure's response. 
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The next section shows the natural response of the building due to the three different 

inputs, i. e. impulse, sinusoidal and earthquake. These help identify the building's 

dynamic behaviour in order to design an effective active controller. 

5.3.1. Impulsive loading: The observed displacement of all masses was sinusoidal, with 

a very low damping, in agreement to the low damping characteristics of the structure. 
The floors were at all times out of phase to each other, behaving almost randomly. 
Raising all stiffnesses by a factor of 10 or higher results in greater synchronism between 

the motion of each mass, i. e. they are out of phase by 10-20' only. Clearly, the building 

is very flexible which gives rise to high modes with significant amplitudes; thus a 

passive device targeting only one mode would be inefficient for such a building, as has 

been confirmed from the modal mass contribution. The displacements of each floor x, 
(i = 0,1,2,3) are shown in the figure below: 

0.015 

0.01 

0.005 

E 

cz 
c- 

0.005 

-0.01 

Floor displacements 

-0.015 iI 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

time (s) 
Figure 5.7 Uncontrolled displacements for impulsive input 

Sinusoidal response: The same experiment was conducted with a sinusoidal wave as the 

disturbance input. The behaviour of the building was as expected (steady-state output is 

sinusoidal at input frequency after an initial transient). The three modes of vibration 

have the following periods, also shown in the Bode diagram as sharp resonance peaks. 

As expected. the steady-state amplification is related to the magnitude frequency 

response at the input frequency. 

I I) 
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Modes of vibration 

Period T (s) o) (rads/s) Frequency x, (Hz) 

I" mode 0.4 15.52 

- 
0.143 43.95 6.99 

rd 3 mode 0.086 F 73.28 11 . 6-3) 

Table 5. " 

Passive magnitude frequency response x 2- x1 
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Figure 5.8 Magnitude frequency responses of inter-floor displacement X2 _XI 
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The first disturbance input applied was a sine-wave of angular frequency o= 10 rad,, s. 
The response of the system (each floor) is shown in figure 5.10. 

Sinusoidal response: nu->x 2- x1 
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-0.8 
ýII 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1 .82 

tim e (S) 
Figure 5.10 Uncontrolled displacements after sinusoidal loading 

The response of each mass tends to a sinusoidal oscillation at the input frequency, after 

a brief transient. In contrast to the impulsive-loading case the amplitude of oscillation is 

not diminishing, but stays at constant levels throughout the period of simulation, since 

the load is constantly applied. The behaviour is different when the input frequency 

coincides with one of the building's natural frequencies. The acceleration and 

displacement response keep increasing for a few seconds which is considered a long 

time for such a short period structure. Next, they fluctuate for some time (transient 

response) and finally settle to a steady oscillation, after about 50 seconds, a huge 

amount of time compared with the 0.4 seconds period. The diagram below shows the 

inter-storey drifts for the input signal v= sin 70t (third mode frequency). In this case, it 

takes about 9 seconds for the response to stabilize to a value much higher than the first 

output. 

The amplitudes of the steady-state response of the system (I st floor acceleration, x, - x, 

and top floor displacement) are shown in the following table for different input 

frequencies: 
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Figure 5.11 Uncontrolled displacement for a sinusoidal loading v =sin 45t 

Response as a function of radial frequency 

w (rads/s) 10 15 20 30 40 45 50 60 70 

X2-XI (MM) 0.23 2.81 0.61 0.49 1 2.1 0.6 0.6 2 

(M IS2) 0.6 0.737 0.845 0.747 2.122 7.385 

1 

3.652 1.904 

1 

4.085 

1 
X3 (MM) 0.99 1 8.98 1.40 0.61 1 2.3 ý 0.9 0.5 ý 0.4 ]. 

Table 5.3 

It can be seen that as the angular frequency increases, the response of the building 

slightly increases but when the frequency of the input is similar to a natural frequency 

of the building o)=(15,45,70) rad/s the amplification factor is very hi, )h. The first Z: ý 

floor acceleration is similar in all cases and shows small fluctuations, a problem also 

encountered in the impulsive load case. Hence, a controller should target the frequencies 

that coincide with the building's natural frequencies. These are the frequencies that 

would make the building unstable, as opposed to all other input frequencies. 
I 

115 



5. LQG Control Panap-iotis Rentzos 

5.3.1. Real Earthquake sipnal: Here the response of the system was modelled for a 
1h "real" earthquake signal. The Loma Prieta earthquake, occurred on October 17 1989, 

60 miles south of California and had magnitude 7.1 Richter and maximum peak ground 

acceleration of more than Ig. Real data of this earthquake were extracted from Matlab 

and used for simulation purposes. The acceleration caused by an earthquake typically 
diminishes with distance. The test structure used in this study is a I-meter model, and 

therefore the real earthquake acceleration would have a devastating effect on it. In order 

to take into account these two factors, the amplitude of the acceleration data were 

attenuated, but not the period. Since the mass of the building is about 1/1 00th of a real 
buildings mass a scaling factor of 100 was applied to the model. Note that since the 

structure is assumed to operate in the elastic region, scaling the input force results in 

scaling of all responses. Here, the east-west acceleration is shown which is used 

throughout this section as an input. 
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Figure 5.12 Normalised east-west acceleration of earthquake signal 

The response of the building to the earthquake was also calculated and the interstorey 

drifts are shown (figure 5.13). 
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Figure 5.13 Interstorey drifts ( X2 - x, xi - x� xo - x, 
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The three different inputs represent different requirements for the controller. The 

impulsive load shows the effectiveness of the controller to target maximum peak 

responses, how quickly it can respond to large loads and how long it requires to reach 
the steady state (zero) and hence stabilise the structure. It can be assessed in the time 
domain. The sinusoidal input shows the effectiveness of controller to target loads at 

specific frequencies and the earthquake shows the effectiveness of the controller at all 
levels, minimising peaks, RMS, and targeting specific frequencies. 

5.3.2 LQR Closed-loop responses 

LQR design-ý After the response of the designed building under different kind of 
loadings was studied, a controller was designed. The LQR method was used first since 
it is the most widely accepted design method in structural control. It has a simple 

mathematical formulation that has resulted in good designs for many diverse 

applications. 

The goal of LQR is to minimise the following performance index: 

x 
j(U) 

= 
f(XTQX + UT Ru+2XT Nuýt (5.12) 

0 

subject to plant dynamic constraints ý= Ax + Bu. Note that the performance index is 

slightly more general then the one presented in an earlier section (equation 3.30) where 

the general exposition of the theory is given, since it also includes the "cross-term" 

2x"Nu. This is needed here, and can be incorporated with minimal modifications to the 

theory [Maciejowski 19891. 

In this case the terms included in the cost function (apart from the control signal u) are: 

-the first floor acceleration ý, and 

- the relative displacement between first and second floor X2 - XI 
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as described by the problem specifications. Minimising each of the two tenns indirectly 

minimises the other, but both will be included in the performance index. The aim is to 

choose matrices Q, R and N so that the given control problem can be formulated in the 

standard LQR problem formulation. Specifically, we wish to select matrices Q. R and Y 

so that: 

J(U) = J(U) 

where: 

(5.133 ) 

jý 
2+ 

ol 112 
2 j(U) 

= 

['f 

1 
1X2 

-X + pu dt 
01 

Here 3ý1 represents acceleration of mass m 1, Ix., - x, I is the absolute relative displacement 

of m, and M2, u is the control input effort (actuator voltage). Parameters PIIP2 are 

penalty coefficients on IX2-x, l and u respectively. The penalty coefficient for x, is 

taken as I (note that only the relative weighting between the three variables included in 

the cost function is important). 

The terms involved in the integrand can be written as: (i) 3ý, = Cý Tx+ Du where: 

C T=[KI K, +K2 K2 
0 

cl Cl + Cý C2 
0 

I 
mI ml mi mI mi ml 

and D, =I/m, , and thus 

-ýI 
2= (XTC 

1+ 
Du)(CITX + Du) = XTC 1C1 

TX +2XT CDu +D 
2U2 (5.15) 

Further, (ii) x, - x, = 
C"TX, where 

C 
=[0 -1 

10000 0] 

and thus 
)o 

(X., _X 
)2 = P, X7'C, C, TX 

Hence: 
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2+A (X2 _ XI)2 + P2 U2 = XT (C, CIT + PIC., CT)X 
-ý- 

2XT CIDu + (pz + D2 )U2 (5.17) 

which is in the standard form x"Qx + 2XT Nu +UT Ru by setting 

Q=C 
ICIT+ PIC2 C2 T; N=CD; R=, 02+D 2 (5.18) 

Also, the standard assumptions of LQR theory must be satisfied [Maciejowski 19891 

0 The pair (A, B) is stabilisable 

R>0 and Q-NR-'N T>0 

NR-'N", A- BR-'N T) has no unobservable modes on the imaginary axis 

It may be easily seen that all the assumptions are satisfied for p, > 0' P2 >0. for 

example, 

Q-NR-lN T= I- D2 cl cIT+ PIC'C", >- o (5.19) 
)02+D 
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The penalty terms A= )02 =1 were initially assumed for the design, placing., equal 

emphasis to all three objectives. In the simulations, closed-loop responses are compared 

with the responses of the passive system. 

Impulse response: The uncontrolled peak acceleration is 29.3 MIS2 and the closed loop 

peak acceleration is 8.4m IS2 
. 

The LQR controller reduces the response by about 15 

times after 4 cycles (or 0.47 seconds) only, which means that the controller has good 

transient response characteristics. The passive response, where the actuator is included 

but without injecting any forces, is very similar to the uncontrolled response but has 

larger damping, therefore after two seconds its response is almost half that of the 

uncontrolled response. The maximum is 27.3 MIS2. 

Note that the first peak is almost identical in both the closed- and uncontrolled 

responses. This is because the controller does not have enough time to respond to the 

impulsive loading under the actuator's bandwidth constraints. Similar results can be 

obtained from the relative displacement graph. The maximum closed-loop response is 

reduced to 3.3 mm from 12.6 mm for the passive system. In this case it takes longer for 

the displacement to decay to zero because the two floors vibrate with a small phase 

difference. But after 2 seconds the relative displacement is still significant (0.5 mm) as 

opposed to the accelerations which are almost zero. 
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Figure 5.15 Passive and closed loop acceleration responses of impulsive loading 
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The main disadvantage of simulations having an impulse as the disturbance is that the 

maximum response usually occurs at the first peak because the disturbance force is 

applied only at time t=0 and the controller does not have time to respond. Even a 

powerful controller will not be able to reduce this peak and will thus give a conservative 
indication about the controller's capabilities in more realistic situations where the 

disturbance signal is applied more gradually. 
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Figure 5.15 Passive and closed loop acceleration responses of impulsive loading 
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The simulation of the control signal reveals that a maximum voltage of 16.28 volts has 

been applied at around 0.03 seconds. The voltage gradually decreases and after I second 

the system control input is almost zero. Different values for the penalty coefficients 
have been used in order to reduce the peak voltage, e. g. by setting o, =x thus 

assuming that the magnitude of the actuator force is unconstrained. A summary of 

results is included for eight distinct cases: 

I. 
)02 --": 1 

2. p, = oc (large penalty in the interstorey drift) 

3. p, =0 (no penalty in the interstorey drift) 

4. P2 ::::::: 00 (minimal amount of input force present) 

5.102 0 (no penalty on actuator signal) 

101 
=: 102 =0 (large penalty on acceleration) 

7. A -:: - J02 ::::::: 00 (no penalty on acceleration) 

OC)1)02 =: 

F LQR Output comparison (peak values) 
I 

, 
ý(MIS2) X, - X, (MM) Voltage(Volts) 

Uncontrolled 2 7.3' 11.5 

Passive 29.32 12.6 - 

ý01 P2 8. '36 3.3 16.28 

0.00061 -0 26.83 

)02 = 0C 27. ) 11.5 0 

A=0 8.36 16.28 

)02 =0 0.36 =0 
26.83 3 

10, = )02 =0 0.36 0 26.8) 

A= 02 27.3 11.5 0 

A= '3C, P, =0 -0 =01 
26.83 3 

I aulc -1. -+ 

1221 



5- LQG Control Pana-21otis Rentzos 

In the case when there is no input constraint (p, = x), both the interstorý drift x, - x. 

and the acceleration are reduced to zero. The peak voltage is 26.83 volts. This is the 
control effort needed by the actuator, in order to make the response zero 

From table 5.4 it is clear that the response is governed by the penalty on the control 
rather than that on displacement. There are three different cases: When the controller 
penalty is oo, the accelerations and displacements are similar to those in the uncontrolled 
case, irrespective of the penalty on the displacement. When the control penalty is zero, 
which means that the control signal is unconstrained, the inter-storey drift is almost 
zero, although small fluctuations exist. In this case the controller tries to stop the higher 
floors from moving and therefore keeps the drifts to zero, but is unable to minimise the 
first floor acceleration because it is placed below the actuator. Finally, when the control 

effort penalty is set to one there is some change in the interstorey drift, which ranges, 
from 0.45 mm to 3.3 mm, a significant difference. Obviously by increasing the inter- 

storey drift acceleration levels also increase. 

In a realistic problem the maximum force applied by the system would be set by the 

type of actuator used (in terms of a constraint) and the system would have to minimise 

the objective function without exceeding this maximum force. This is not directly 

possible in the formulation of the LQR problem which penalises energy rather than peak 

levels, although, by adjusting the penalty factor this can be achieved indirectly via an 

iterative design-simulation procedure. 

5.3.1. Sinusoidal input As stated earlier in the case where the input is a sine wave the 

steady-state response is governed by the frequency of the sine wave. The following two 

Bode plots show the gain of the open and closed loop systems with respect to the 

angular frequency co, for the relative displacement x, - x, and the acceleration signal. ý,. 

The horizontal axis is logarithmically spaced and the gain is given in dBs. 

The gain drop at the frequencies corresponding to the three modes of vibration in the 

displacement graph are 18 dB's for the first two modes and 24 dB's 
4--) 

where gain in dB's = 20 log, O 
(linear gain) for the third mode. In all other frequencies 

in the ran(-, e displayed, the gain is about 5 dBs, \\hile for ver,, high frequencies, e. g. 

12 33 



5. LQG Control Panniotis Renuos 

above 100 ruds1s, the gain rolls-off at a rate of 20 dB's /decade, a typical characteristic 

of LQR designs. 

, rd For the input v= sin 20t the controller stabilises the system and reduces the peak- ) 
floor displacement from 0.597 to 0.31 mm. Since the force is now constantly acting, the I 
response remains at constant levels for all time. In the case where the period of the input 

is the same as the natural period of the building v= sin 15.52t the closed-loop response 
is reduced to IA mm and the response is stable. 

Acceleration frequency response 
30 
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0' 
Sinusoidal response: nu->x 2- x1 
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Figure 5.20 Displacement responses for sinusoidal input i,,, = sin 70t (mode 

Earthquake signal: Figure 5.12 shows the normalised east-west acceleration applied at 

the base of the building, mo. The disadvantages of the impulse and sine-input case are 

no longer present because the earthquake starts slowly before building up to its 

maximum amplitude and therefore the controller has more time to respond; in addition 

the signal contains several frequencies so the natural frequencies are excited by a 

reduced amount of energy. The maximum inter-storey drift x, -xl is reduced from 2 mm 

to 0.83 mm, whereas the acceleration 3ý, remains at similar levels (as noticed in the 

previous examples). Apart from the maximum values the root- mean-square values of all 

variables have been calculated to gain a further insight into the system. The controller 

minimises the RMS closed loop inter-storey drift from 0.46 mm to 0.11 mm and the 

First floor acceleration (OL and CL) 
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Figure 5.21 First floor uncontrolled and closed loop accelerations 
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Comparison between LQR design with and without filter p, =, o. =I 

Peak value RMS 

Uncont 

rolled 
LQR % change 

Uncontro 

Iled 
LQR % change 

(MIS2 
6.38 1.65 74.2 0.90 0.182 79.7 

X, -XI (MM) 2.20 0.83 62.6 0.438 0.107 75.6 

X(, (MM) 1.93 1.79 7.5 0.233 0.2 13) 8A 

X, (MM) 1.59 0.89 43.9 0.565 "' 2 0.1) 76.6 

X, (MM) 3.62 1.09 69.9 0.743 0.169 77.3 3 

X3 
(MM) 

3.89 1.33 65.9 0.931 0.21 77 

Voltage (P) 2.78 0.3 

Force (N) 3.58 0.38 

Table 5.5 

acceleration from 6.38 to 1.65 MIS2 
. The LQR controller succeeds in its goal to 

minimise the RMS value of the regulated variables and indirectly reduces the peak- 

value as well to a smaller degree. The peak acceleration in the closed loop is 74% lower 

whereas the RMS values are 80% lower. Also the inter-storey drift peak is reduced by 

63% and the RMS by 76%. These results indicate that there is scope in developing 

control algorithms that can directly minimise the peak levels of the regulated variables. 

5.3.3 Linear Quadratic Gaussian (LQG) Control: 

Kalman filter: The linear Quadratic Gaussian (LQG) control scheme is a linear 

quadratic regulator (LQR) combined with an optimal state estimator. Linear quadratic tn 

control is a powerful design tool, but has some restrictive assumptions for real case 

problems, mainly that all states are measurable and can be used directly for control 

action. In the case of a building it is too expensive to have sensors at every floor that 

measure both the displacement and the velocity of the floor. Therefore a filter is added 

to the system that estimates the states and uses the estimates as if they were the -true- 
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measured variables. There are several methods and algorithms for state estimation. the 
most commonly used method being the Kalman-Bucy filter [Davis and Vinter 19851. 

The Kalman filter is an exact replica of the system. Since information is not kno, ývn 
about all the states, the information from the known measurements together with the 

replicated dynamics helps to estimate all states. The estimated and measured outputs are 
compared and the Kalman filter iterates until the estimated state -i matches the real state 

x. The aim of the Kalman filter is to minimise the error 

e(t) = (5.20) 

in the mean squared sense. The full structure of the Kalman filter is shown in Figure 

5.22. The state space equations are assumed to be of the form: 

,ý= Ax+ Bu +Fw 

u= Cx+ Du+ v 

(5.21) 

(5.22) 

where co and v are unknown disturbance signals modelled as white noise signals (zero- 

mean, stochastic processes uncorrelated in time), i. e. 

E [,,,, (t)] -0 Vt (5.23) 

E[v(t)]=O Vt (5.24) 

E 
(O)OT) 

= Wg (t 
_ S) 0 (5.25) 

E 
(VVT) 

= Vg (t 
_ S) 0 (5.26) 

E 
(WVT) 

= Ng (t - s) (5.27) 

where 

, 5(t-s)=l t=s 
(5.28) 

, 5(t-s)=o t#s 

The Kalman filter constructs a state estimate ý that minimises the steady-state error 

covariance: 
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Figure 5.22 Block diagram of Kalman filter 

P= lim E(ýIx -. ýI ýx - ýI') (5.29) 
1 ---> x 

The optimal solution to this problem is the Kalman filter with state equations 

ý= Aý + Bu + H(Cý - Cx) (5. -3) 
0) 

ý= Cý + Du (5. ' ) 1) 
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where the filter gain H is determined by solving an algebraic Riccati equation 
[Maciejowski 1989]. It may be shown that Kalman filter is optimal among all H 4: ) inear 

state- esti m ators. If the noise has Gaussian distribution the Kalman filter is optimal 

among the class of all non-linear filters as well. 

Impulse response: The parameters W, V, N where chosen as ff'2, V=0.0 I and . %'--0, i. e. 

v and co were assumed to be uncorrelated with each other. The estimated value of the rd 

floor horizontal displacement is larger in the first peak but then is almost identical to the 

measured value after one cycle, i. e. the estimate converges to the true state in the limit 

as t -ý oc . In the second case where inter-storey drift is measured, the difference 

between LQR and the estimated LQG is less in the first peak but converges slower to 

zero. This is because the inter-storey drift is a function of two states (x,, x, ) as opposed 

to one state in the third floor displacement. The speed of convergence depends on the 

parameters W, V representing process and measurement noise covariances, respectively. 
In real applications the appropriate values of both Wand V values can easily be obtained 
by experimentation and manufacturers data for the sensors used. Thus, LQG design is 

very similar to LQR and in our simulations produces very similar results 
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X 10,3 Real and estimated (LQR and LQG) 
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Figure 5.24 Comparison between real (LQR) and estimated (LQG) x. - x, 

5.3.4. LQR with identification filter 

5.3.4. Identification filter design: The next design is an LQR controller with the addition 

of a shaping filter. The filter forces the controller to place more emphasis to the 

frequencies of the input. When the input is the earthquake signal, its Fourier transform 

can be calculated from which the distribution of the signal's energy with frequency can 

be obtained. An identification filter is designed by approximating the spectral plot of the 

signal, by placing emphasis in those frequency ranges where the energy is concentrated 

and less emphasis at other frequency ranges. By increasing the order of the filter the 

accuracy is increased, but so is the order and complexity of the controller. Diagram 5.25 

shows the Fourier transform plot of the Loma Prieta Earthquake. 

The (discretised) signal y(t) is fitted by an AR-model of the form: 
t: ý 

A (q)y(t) = e(t) (5.32) 

using Matlab's Identification Toolbox. The white noise signal e(t) is filtered through 
I 

the discrete filter I/A (q) and produces an output, say n (t) which corresponds to the 
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(sampled) earthquake signal and is interpreted as a random process. The coefficients of 

the polynomial A (q) need to be selected (e. g. by a lea-st squares fit or another 

optimisation method) so that the spectral density of n(t) matches closely the spectral 

density of the (true) earthquake signal. The order of the polynomial .4 
(q) can vary unti I 

a close match is achieved (optimal order selection techniques can also be applied). The 

optimal fit obtained using a first- and second-order filter is shown below. This spectral 
distribution shown is common among earthquakes but has a strong energy concentration 
in a low frequency interval. The fit obtained using the second-order filter was judged to 

be adequate. 

To make use of the spectral information of the real earthquake signal (captured by the 

filter) the following procedure is used. First the filter was transformed to continuous 

time (using a bilinear transform) and its transfer function was obtained in the form 

F(s) = (sI - A)-' B. Next the dynamics of the filter were absorbed to the dynamics of 

the plant, as shown in Figure 5.26. Denoting by v(t) the state (and output) of the filter, 

the combined state-space realisation of the structure and filter can be written as: 

[)ý]=[A F][x]+[B]u+ 0 ]e 
(5.33) 

1ý 0 Af v0 Bf 

[y]=[C 0][x]+[D]u (5.34) 
v 

1. ) 
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Simulation results: The filter has heavily improved the performance of the control 

scheme. By using only one-fifth of the peak voltage the acceleration was 5 times lower 

and so were most other RMS values. The peaks were of the order of 4 times lower. Only 

a second order filter was used here which is sufficient as can be seen from the Fast 

Fourier transform plot (figure 5.25). The I st order filter is not adequate as it does not 

approximate accurate the shape of the signal's spectrum, whereas the improvement of 
fit with second order filter is significant. A higher order filter still improves the 

performance but not to a significant extent. By using the second order filter, the degree 

of the controller increases by two additional poles - and zeros. 
Designing for such an earthquake is a very idealistic scenario because it assumes that 

the input is the known EQ. Different EQ would have a different FFR response therefore 

the controller designed from a filter obtained from a particular earthquake signal may be 

less optimal or even inadequate. If several "standard" earthquake signals are analysed 

then an average FFR can be obtained, typical of earthquakes in a certain geographical 

region. This would result in the best LQR design for this class of inputs. 

Comparison between LQR design with and without filter o, =, o, =I 

Peak value RMS 

No 

control 

Closed 

loop 

Filter 

LQR 

No control Closed 

loop 

Filter 

LQR 

ýMIS2 
6.38 1.65 0.42 0.9 0.18 0.042 

X,, -XI 
(MM) 2.20 0.83 0.14 0.44 0.11 0.019 

X, ) 
(MM) 1.93 1.79 0.43 3 0.23 0.21 0.049 

X, (MM) 1.59 0.89 0.18 0.56 0.13 0.02 

X, (MM) 3.62 1.09 0.16 0.74 0.17 0.021 

x3 
(MM) 3.89 0.16 0.93 0.21 0.021 

Voltage (Volts) 2.78 0.6 
0. 0.069 

Force 3.58 0.77 0.3 8 0.088 

i ame D. o 

1 
I )) 
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Acceleration response spectra have been developed, appropriate for specific 

geographical regions. The use of this information is very important in designing 

controllers. As has been shown by the previous example, the use of any possible 
information about the input is vital. 

LQR with earthquake filter 
C\I 1.5 

LQR 
-- 1 --------- --------- E 

0 01 
a) 1 
(3) -- -------- 0-------------------- 
<8 

10 12 14 16 18 20 22 24 26 28 30 

C\j 1.5 
U) 

1--------- -- ---- E 

0 
1; _- 

0 
cz 
CD 
(D -1 C-) 
C. ) 
<r 1.5 

8 10 12 14 16 18 20 22 24 26 28 30 

time (s) 
Figure 27 Acceleration responses with and without identification filter 
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T 
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>0 
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> 
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Cz 
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Figure 28 Control input with and without identification filter 
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5.4. Summary 

In this chapter a building was modelled employing active control. This is a 3) storey 
regular building which includes base dynamics. The structure was modelled as a lumped 

parameter mass- spring-dam per model. An active tendon control was chosen, producin', 
equal and opposite forces between the base and first floor. The response of the building 
for three different kind of loadings impulse, sinusoidal and an earthquake signal was 
simulated and analysed extensively. Several metrics were used to validate the designed 

controllers, like maximum peak response, RMS values, settling time (i. e. time to reach 
the steady state) and resistance to inputs of several harmful frequencies. The controller 

objective was to minimise the first floor acceleration and the relative displacement 

between the first and second floor subject to realistic control effort levels. 

All the designs obtained were stable and by tuning the performance penalties the 

response was further optimised. When a Kalman filter was used the design was still 

optimal and matched the initial LQR design with acceptable accuracy. The only 
limitation of the method is its inability to minimise the first peak for impulsive loads. 

This is because the controller does not have enough time to respond to this sudden load. 

Furthermore, the penalty coefficients used in the formulation of the performance index 

which is optimised can not impose direct constraints on the maximum control signal 

magnitude allowable for the specific actuator used. 

The last part of the design incorporated an identification filter which was augmented to 

the model. Here the spectral content of an earthquake signal was obtained from recorded 

data and assumed fixed. The controller used around 5 times less effort to achieve a5 

times lower peak responses and RMS values. This is a large improvement and shows 

that any known information about an input is heavily improving the performance of the 

controller. However, this design is too ambitious since in real cases it is not possible to 

know the spectral content of the disturbance signal with this accuracy and thus this level 

of performance improvement cannot be achieved in practice. In the case of earthquakes, 

if a multiple of characteristic earthquake signals are recorded in a certain geographical 

region, then an average frequency content characteristic of the region can be obtained 
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with some accuracy. Using this information for control design could then prove useful 
for additional protection of a building in this geographical region. 

Overall, LQG is effective, stable and flexible design method. One slight drawback is the 
inability of the method to reduce directly peak levels. From the definition of the 

problem, LQR is penalising energy levels, not peak responses. In structural engineering 
failure occurs when maximum deformation or force level is exceeded and thus tuning of 
the method or alternative optimisation techniques may be appropriate. 
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CHAPTER 6 

H, ROBUST CONTROL 

6.1. Introduction 

This chapter is a continuation of the work presented in the previous one. The same 

structure is designed and evaluated, this time using H, control methods. H,, controllers 

are less common than their LQG counterparts but are also widely used in control design. 

As opposed to LQG, H,, ý is considered a "robust control" method. Robust control aims 

primarily at designing controllers that keep the system stable despite the presence of 

model uncertainty and external disturbances. H, control is a strong tool when various 

types of uncertainties, unknown external perturbations and errors in the system exist. 

The control design follows a "worst-case" methodology and can result in conservative 

designs if the set of uncertainty is too large. This is however, closer to real life 

applications because physical systems can never be exactly modelled, especially as LTI 

models. In structures model uncertainties are common in terms of stiffness and damping 

parameters or high- frequency unmodelled dynamics. In this chapter no uncertainties are 

considered explicitly and H,, controllers are assessed in terms of their nominal 

performance, mainly in comparison to LQG-based design. 

The Euclidean norm of a vector denotes the square root of the sum of squares of all its 

elements, i. e. jjxjj = 
Fý 

X 
-I, 

- The largest singular value of a matrix A is an induced 

norm defined as: 

o-(A) = max_,,, o 
1"4x" 

114 

and thus defines the largest -gain- between the input and output space. In the dynamic 

case when A(s) is a function of the complex variable s, the infinity-norm of A(s) Is 

defined as: 
A(s)II = max,,., a-[. A(jo))] 
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and thus denotes the maximum energy transfer between the input and output spaces 

along all frequencies and directions. The aim of H, control is to minimise the maximum 

singular value of an appropriate closed-loop transfer function over all frequencies, while 

making the closed-loop transfer function stable (all poles in the left half plane). A large 

mathematical background is involved in the theory of H, control relative to the simpler 

theory involved in the solution of the LQG problem. Here, only those aspects needed 
for the design of H-, controllers are considered. 

6.2. H,, Control design 

The H,, design problem is extensively described in chapter 3.6.4. The main points are 

surnmarised below. The problem is often posed in the framework of a generalised plant 

in feedback connection with the controller, as shown in figure 6.1. The plant is 

connected to a controller K whose aim is to stabilise the closed loop system and 

minimise the infinity norm of the transfer function from the disturbance v to the 

regulated output z. The generalised plant is partitioned into PI II PI 29 1ý1 11 1ý12 
. where P,, 

is the true plant and the other three transfer functions are defined by the type of 

optimisation problem which is formulated. First define the generalised plant: 

Figure 6.1 Generalised Plant 

The four signals in figure 6.1 are v, z, v and u where. 
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* is the external disturbance 

* is the regulated output 

y is the measurement, and 

u is the control input. 

For our purposes we define v to be the earthquake signal force acting on mo. The 

regulated signals are defined as: 

[Z]= pl(X, -xl) 
)o2U 

where pl and P2 are weighting (penalty) terms, initially taken to be frequency 

independent. These terms have a similar meaning as in LQR, and emphasise each 

objective against the others. Both were initially set to one, for direct comparison with 

the LQR design. 

The generalised regulator P (s) has a state space realisation: 

Ax + Bu + Fv, 

zi xi C, D, 0 

z1 = Pi (Xi - X") = C, x+0u+01, (6.2) 

-Z3 -- 
P2U 

--0- -JD2- -0- 

where 

kl +k2 k2 kf ke el + C2 kf ke el 
ci = 

L, 
-- () -ý_, ++-0 

IMI 

mi mi mi mIR mi mR mi 

1 

c, = [0 -110000 0] 
and 

D 
[() kf 1,0, 

mIR 

The measured output is: 

Yl cl [Dl]u 
(6.3 )) 

Y2 C, 

10 
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the two measurements yl, Y2 being the first floor acceleration 3ý1 . and the inter-storey 

drift X2-XI, respectively. The generalised plant is represented in state-space form in 

figure 6.2 as: 

Z, =. ý 4 
A 
ci 

Fi 1 
0 Di 11 

Z2 = Pl (X2 
_XI) 

'4 C2 010 

Z3 
102U 

C3 01 P2 

--- 
c 

------------- ------ 
0D i I -4 

-C2 
0 D2 

Kf, 
y 

Figure 6.2 System partitioning 

Here, 

: measured output 

regulated output (Zi A 
(XI 

- XI ) Z3 = P2U) 

control signals 

v Aisturbance 

K, : H, -controller 

U 

The objective is to design a controller K (s) that stabilises the system and minimises the 

infinity norm of the transfer function between v and the regulated output vector, i. e: 

min min max 
VIT 222 

(6.4) T 

. 
ý, 

Jjw)j +17ý, 
-XI), 

Jjw) 
I 

KES (x, -X, ), v KES ýýER 

+ý 
P2 

I T,,,,,,, 
iI... 

where S is the set of all (internally) stabilising controllers, or equivalently 
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min MaX (jýz»ý2 + 0� (j4 (6.5) +102 
KeS ; ER 12 j_ 

which represents the weighted sum of the energy of the three regulated signals. Note 

that the H, is a dynamic output feedback controller and not state-feedback based, as in 

LQR. Thus it is more directly comparable to LQG designs and can be thought to consist 

of two parts, a dynamic estimator (similar to the Kalman filter) and a state-feedback 

gain vector operating on the state-estimate. 

Simulation results: The method used in Matlab to design the controller was based on the 

Glover-Doyle algorithm [Glover and Doyle 1988] involving the solution of two Riccati 

equations (see chapter 3.5.4, page 24). The peak inter-storey drift was reduced from 

12.6mm in the uncontrolled response to 5mm and the peak acceleration was also reduced 
M/ 

2 
M/S2 from 29.3 S to 7.5 . The response was similar to the LQR case with the 

acceleration being suppressed more with H, control than with LQR control. However, it 

takes longer for the response to settle to its steady-state (zero). A sine wave and an 

earthquake signal were also tested as external disturbances. The responses were similar 

to the LQR case and therefore are not included here. The uncontrolled and H, responses 

for an impulsive disturbance input are shown in the figure below: 

30 

(N 

10 

H., Acceleration im pulse response 

20 

0 

cz 

a) -10 

-20 

-30 0 0.2 0.4 0.6 0.8 11 .21.4 1.6 1.8 2 

time (s) 
Figure 6.3 H,, I" floor acceleration impulse response 
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0.015 
H., interstorey displacement impulse response 

0.01 

E 
- 0.005 

C\l 

E 
(1) 0 cz -E -0.005 
U) 

a 
0.01 

Open-loop 

0.015 111j 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

tim e (S) 

Figure 6.4 H, Relative displacement (x., - x, ) impulse response 

6.3 H,, -control design with frequency weights 

In optimal H, design, weighting functions are typically used to improve performance. 

The main reason is to emphasise components of regulated signals in frequency ranges 

that are more important than others. In simple terms, this means that some frequencies 

contribute significantly to the energy of the disturbance or regulated signals while 

others do not. Usually it is either low or high frequencies that are important for each 

signal, so weightings are used to make the controller more "sensitive" in the relevant 

range. Weights are also important if there are uncertainties present. For example the 

performance criteria for a scalar system may be specified by requiring different levels of 

sensitivity S in different frequency ranges [Zhou and Doyle 1998]. A typical 

requirement for S is: 

S (jo»l :5E, V co: ýý Co� 

S (jo)1: 5 M, V 0) > a)o 
(6.6) 
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_ 

where 

S(jco) =I I+ P(jco)K(jco) 
(6.7) 

The reason for setting different specifications at low and high frequencies is the 

following. Low sensitivity at low frequencies is related to the system's performance, i. e. 

good tracking of reference inputs or the rejection of disturbances entering at the output 

of the plant. Since these signals typically have their energy concentrated in the low 

frequency range, it is typically required to keep sensitivity low at low frequencies. 

Making the sensitivity small at frequencies larger than those actually required by the 

performance specifications may result in over-design of the system, i. e. an unnecessarily 
high closed-loop bandwidth, which may have adverse effects on the design, e. g. sensor 

noise amplification, loss of stability due to unmodelled fast dynamics, etc. In addition, 

for certain types of systems (non-minimum phase) it is simply impossible to make the 

sensitivity small over all frequencies [Zhou and Doyle 1998]. At high frequencies, 

however, although it is not required to make the sensitivity of the system small, its 

magnitude should be bounded in order for the design to have good stability margins 

(high values of sensitivity means that the Nyquist plot of the system is near to the -1 

point). 

This objective can be imposed using frequency -weighting terms as [Zhou and Doyle 

1998]: 

W(jco)j:! ýl, Vcq 
1 

, VW: 5 Co, (6.8) 
W, (jo)1 Im 

, Vco > wo 

In the structure examined here there are three distinct modes with three corresponding 

natural frequencies, which must not be excited excessively by the controller. After a few 

iterations, the following three weighting functions were chosen for the three regulated 

signals, respectively: 
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w, (s) = 0.5 1+ (6.9) 

W2 
(S) 

= 0-0001 I+S/z 2 

1 +S I P2 

W, (s) 
1+S /P3 

where Z, =Z21 =P3 =10000, P] =P2 =Z3 =0.01. The weighting functions were obtained 
iteratively. The diagram below shows the magnitude frequency response of the three 

weighting functions and the acceleration Bode plots. 

Note that the control effort weight does not need to emphasise any particular frequency 

and is set at a low level. The other two functions emphasise the frequencies in the 

region between 10 to 100 rads1s and essentially correspond to first-order low-pass and 
high-pass filters. 

The first function, corresponding to first-floor acceleration emphasises the frequencies 

in the interval between 10 and 100 rads1s which contains the building's natural 

frequencies. The gain of the control frequency weight is progressively diminishing, 

crossing the acceleration weight at about 70 rads1s which is roughly the frequency of 

the third and last mode, after which the natural modes of the structure are no longer in 

danger of being excessively excited. Hence, the control input weight increases because 

the remaining frequencies are no longer important. These two weighting functions 

essentially correspond to a low pass and high pass filter respectively. The third weight 

does not need to emphasise any particular frequency and is set at a low level and is 

therefore practically inactive. Since the two objectives (inter-storey drift and 

acceleration) are of the same importance and are both excited by the same frequencies, 

it is irrelevant which of the two is set at a low level. 
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Figure 6.5 H,,, Bode frequency responses and frequency weights 

H,, design with weivhts:. By introducing the three weights the performance of the design 
2 

r n1 is significantly improved. The maximum acceleration is reduced from 7.5 to 5.9 S 

relative to the unweighted design and the maximum inter-storey drift reduces from 5 

mm to 3.6 mm. The main difference is that apart from the first maximum, which is 

always high, the system is stabilised very quickly. After three cycles (0.7 seconds) the 

displacement is lower than the one achieved after 3 seconds for the unweighted case, 

and a similar characteristic is observed in the acceleration response. When considering 

the 3 rd floor displacement, the maximum peak is almost the same with both methods but 

the weighted H, design reaches its steady state almost immediately after that. Note that 

it is difficult to draw any firm conclusion on maximum signal reduction from the 

impulse response because the first oscillatory peak of the response is the highest, since 

the controller does not have time to respond fast enough. 

A drawback of the method is that although the wei hting functions significantly 1.71 9 

improve the performance, they cannot directly affect the peak value of the applied 

control (voltage). For example in the LQG design the peak of the control signal is quite : -n 17, CI 

sensitive to the control penalty term, which is not the case for the H, design, even by 

adjusting the frequency weights -w(s). The reason for this behaviour needs further 

examination. 
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The maximum control effort used was marginally higher in the weighted H, design. 

The control effort remained significant high until the vibrations were almost completely 

suppressed, as opposed to the unweighted H, design, where the applied voltage was low 

after the first maximum peak. The displacement frequency responses show that for the 

weighted H, design the peak gain is lower at the resonant frequencies and higher at 
intermediate frequencies, which is in agreement with the results obtained from the time 

domain simulations and shows that frequency weighting makes the controller more 

effective at the required frequencies where it is most needed. 

The large improvement of the weighted response compared to the unweighted response 

shows that any known information about the input or the required frequency content of 

the regulated signal, appropriately reflected in the choice of the frequency weights, can 

have a significant impact on the system's responses. 
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Figure 6.6 H,, with frequency weights I't floor acceleration impulse response 
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Figure 6.7. H, with frequency weights 3rd floor displacement impulse response 
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Figure 6.9 H, with and without weights control voltage 

6.4. Simulation results 

6.4.1. Comparison LQR- H., Control 

Impulse response simulations: Figures 6.10 and 6.11 show the acceleration and 
displacement responses of the three-storey structure for an impulsive input when an 

optimal LQR and an H, controller were used. The responses are similar, with the LQR 

design exhibiting slightly smaller amplitude in the inter-storey drift (X2-XI) and the 

absolute floors displacements. The acceleration responses appear to be less linear. The 

first peak is larger for the LQR design, but for the remaining time the H, response is 

larger, as expected. Once again the first peak in the acceleration response is larger in the 

LQR case. Another difference for the displacement and acceleration responses between 

the two designs is that the response from the two controllers is almost constant for all 

times in the inter-storey drift, whereas for the acceleration signal the response is out of 

phase and more oscillatory. This is another sign that the inter-storey drift is a better 
I 

indicator for the controller evaluation than the first floor absolute acceleration response. 

The input (voltage) signal of the controller was almost identical for the two control I tý 
designs, which makes the comparison meaningful. It is difficult to compare directly the 
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effectiveness of the two controllers as the H, design exhibits lower acceleration levels 

while the LQR design exhibits lower displacements. 
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Figure 6.10 H, I" floor acceleration impulse response (LQR and H, ) 
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Figure 6.11 H, relative displacement impulse response (LQR and H,, ) 
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Earthquake signal rf-.,, nc)nses: The two control design methods were also tested with the 
Loma Prieta earthquake signal, and the corresponding peak and root- mean -square 
values were compared. As mentioned earlier, the peak acceleration with LQR was 
higher than for the uncontrolled case, whereas the peak H, value was lm'ý-er (1.65 and 
1.56 m/ s' respectively). The RMS values were lower in the H, case as well (0.182 and 
0.148 MIS2 respectively. ). The inter-storey drifts were different, the LQR response 
being lower than the one obtained by the H, design. The H-, controller reduced the peak 
inter-storey drift from 2 mm to 1.05 mm, whereas the LQR controller reduced it to 
0.83mm. The RMS values were almost the same with either controller. The absolute 
displacements of each floor were also calculated, the second and third floor 

displacements being lower in the LQR design, both in terms of maximum peak and 
RMS values. Finally, the LQR peak levels were always lower than the corresponding 
RMS values. The controller input peak and RMS value (measured in volts) was higher 

in the H,, case than in the LQR case (about 50% higher). 

The above results indicate that LQR design produced better overall results than H, 

since it managed to reduce absolute displacements in excess to the reduction achieved 
by the H,, controller by using less energy (with the exception of first floor acceleration). 
Such a significant difference between acceleration and displacement was not expected 

and is difficult to explain. The reason for the difference could be attributed to the fact 

that the highest floor exhibits much smaller displacements (X3)with LQR control than 

with H, whereas the lower floors have similar responses for the two methods. Overall, 

LQR control tends to minimise the higher floors displacements by a larger factor 

relative to the displacements of lower floors. 

By comparing the theory underlying the two methods, it is expected that LQR would 

produce better results in terms of the time-domain responses than H, control. LQR 

minimises the RMS value of the regulated signals rather than the peak value of their 

frequency response. In addition, impulsive simulations clearly favour LQR designs. as 

the spectrum of an impulse is equally spread-out over all frequencies, which is in tune 

with the white-noise assumptions on disturbances made by this theory. H, control is a 

powerful design method when uncertainties are present in the plant model. In this 

design, the model was assumed -perfect" with no perturbations or uncertain parameters. 

The responses obtained from the H,, controller exhibited higher damping. which 1. - 
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indicates that establishing good stability margins is an important aspect of this design 

method. In contrast, the LQR formulation of the problem does not necessarily cause fast 

decays in the system's response, since by keeping the regulated signals oscillating at 

small amplitude over a longer time may not contribute significantly to its minimisation 
index. 
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Comparison between Open- and closed-loop Peak and RMS values (for 

A -=: 02 

Peak value RMS 

No 

control 
LQR 

No 

control 
LQR H, 

, 
ýI ( 

MIS2 6.38 1.65 1.56 0.897 0.182 0.148 

X2 - XI 
(MM) 

2.204 0.83 1.05 0.438 0.107 0.106 

Xý (MM) 1.933 1.79 1.93 0.233 0.213 0.22 

X, (MM) 1.59 0.89 1.28 0.565 0.132 0.132 

X, (MM) 3.62 1.09 1.72 0.743 0.169 0.273 

X, (MM) 3.89 1.33 2.2 0.931 0.214 0.356 
I 
Voltage (Volts) 1 1 2.78 1 3.72 1 1 0.296 1 0.423 

11 

Table 6.1 

Developing the systematic procedures for comparing the responses resulting from two 

different optimal design methods is an important issue for which no standard 

methodology exists. One possible way for achieving this is to choose the appropriate 

penalty coefficients p, and P2 and iterate until the voltage resulting by both methods is 

approximately equal (either in peak or R-MS value). This method however, is not exact 

because "optimality" is defined differently for the two methods. 

6.4.2. Comparison LQR- frequency weighted H, Control 

The response of the weighted H, design for an impulsive input was still worse than the 

LQR response. The maximum inter-storey drift (x-, -xj) was 33.6mm as opposed to 

3.3mm for LQR. A similar result was obtained for the acceleration signal, with LQR 

producing superior results since this is below the H., response at all tImes. This time the 
*_n 

applied voltage was almost the same for the two cases, and therefore the results are 

directly comparable. 
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In the case of an earthquake signal the weighted H, method produced better results 

compared to the unweighted H, design, as shown in table 6.1. The RMS values were 
lower for the H,, controller than the LQR controller, but the peak inter-storey drift was 
lower in the LQR design relative to the H, design. The reason for this difference is that 
from definition the LQR minimises the total (weighted) power of the response, to which 
the peak contributes significantly. Surprisingly, LQG also exhibited improved 

performance in terms of peak response attenuation compared to H,,. This was not 

expected since by definition, LQR penalises total power and hence indirectly RMS 

values. This result may be explained by the fact that as H,, is a more robust 

methodology it tends to produce smoother control signals and thus cannot generate 

sharp voltage peaks, which would tend to increase the control bandwidth and may thus 

reduce the stability margins. LQG control has also reduced the 2 nd and 3d floor 

displacements significantly compared to H,, despite the fact that this was not included 

directly in the optimisation index, which means that the overall design is good. The 

voltage used by both controllers had different waveforms, which makes the direct 

comparison between the two designs difficult to assess. The maximum weighted H., 

voltage was 5.15 volts, almost double the one obtained from LQR (2.78 volts). 

Uncontrolled and closed-loop Peak and RMS values (for p, = p2 

Peak value RMS 

No 

control 

LQR H Fw H, No 

control 

LQR H, Fw H, 

(MIS 2 
6.38 1.65 1.56 1.23 3 0.897 0.182 0.148 0.11295 

X,, - X, (Mm) 2.204 0.83) 1.05 0.972 0.438 0.107 0.106 0.073 

XO (MM) 1.933 1.79 1.93 2 0.233 0.213 0.21 0.218 

X, (MM) 1.59 0.89 1.28 0.99 0.565 0.1332 0.132 0.0817 

X, (MM) 3.62 1.09 1.72 0.98 0.743 0.169 0.273 0.139 

X3 
(MM) 

). 89 3 _3 L' 2.2 1.6-) 0.9", 1 0.214 0.3356 0.196 

Volta,, e 
(volts) 

2.78 33.72 5.15 0.296 0.4 2 33 0.466 

I dole (). - 
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H, and LQR acceleration impulse response 
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H and LQR displacement, earthquake response ,,, 
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LQR and H, control for earthquake signal response 

PEAK RMS 

No H, LQR ' ', ' i H, ý LQR 
, , o 

control LQR H, FW -IF control LQR H, FW -IF 
M/S2 

0.897 0.182 0.148 0.1133 0.42 6.38 1.64 0.412 1.56 1. 

X, -X, (mm) 
3 0.4 

_3 8 0.107 0.144 0.105 0.02 2.204 0.84 1.047 0.97 3 0.144 

x0 (mm) 
3 0.233 0.213 0.22 0.219 0.048 1.9 33 1.79 1.9 3) 2 0.4 14 

xI (mm) 
0.565 0.133) 0.175 0.111 0.02 1.59 0.89 1.28 0.99 0.178 

X, ) 
(mm) 

0.743 0.169 0.273 0.134 0.021 3.62 1.09 1.716 0.986 0.156 

X3 (MM) 

1 1 0.931 0.214 0.356 0.195 0.021 3.89 1.33 . 1.63 0.16 

Voltage 

IL 
(Volts) 

- 
2.783 3.724 5.154 0.599 02) 96 0.42 3 0.466 0.069 

I 
Table 6.3 

6.5 Summary 

In this chapter the structure modelled in Chapter 5 was designed with an H, active 

vibration controller. The design was simulated for three separate loading cases, an Z: 5 
impulsive load, a sinusoldal load and a real earthquake signal. The design included the 

introduction of frequency weights to emphasise important frequency ranges for the 

design objectives. A generalised regulator was used to formulate the problem, resulting 

in a stable controller with good performance. Primarily H, controllers are effective 

when dealing with uncertainties, perturbations and model errors, which were not 

considered here, but the results showed good nominal performance, perhaps inferior in 
I 

some aspects to LQG- 

Two desion methods, LQR optimal control and H,, robust control were directly 
:n 

compared and many features were included to improve the performance of the designs. 

The main Simulation results show that although both designs produced effective control 

schemes, the LQR controller had marginally better performance. This is expected from 
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theory because LQR is designed to improve performance for the type of excitation 
considered, whereas H, is more concerned with robust stability and maý thus be more 
conservative. Nevertheless, H., has shown improved acceleration responses than LQG 
and in certain cases equally good RMS values as LQG. 

Several ways were used to improve the overall design performance, such as the 
introduction of penalty terms and frequency weights. Also the designer has a choice of 
adding estimators for unknown states to finally get a robust design which can be 
implemented in practice. The best design by far was the one where the frequencies of 
the input disturbance were assumed known and were reflected in the design of a filter 

augmented to the generalised plant. 

The control schemes employed were based on Linear Quadratic Regulator (LQR) 

theory, Linear Quadratic Gaussian (LQG) theory and H,, optimal control. The most 

powerful controller in terms of minimising the response for the given specifications was 
LQR, as expected from the problem formulation and the choice of loading. Direct 

comparison between the different methods was difficult, due to the nature of the 

problem. Overall, the weighted H, controller performed better compared to the un- 

weighted LQR design, but it is expected that a weighted LQR will be even more 

powerful, especially for typical seismic signals whose energy is concentrated in the low- 

frequency range. The main conclusion that can be drawn from the simulations is that all 

the examined methods cannot directly minimise the time-domain peak response 

(displacement or acceleration). H, control typically results in higher damping and LQR 

emphasises RMS response minimisation; in the case of active control of buildings, 

however, the most important objective is to minimise the peak response, to prevent the 

structure from entering the inelastic region. In the case of an impulsive loading, the 

controller was not able to act on time, as expected due to bandwidth constraints, and the 

first peak has similar magnitude for both the uncontrolled and active control case, \ý hich 

means that the controller cannot provide protection in this case. Clearly, an impulse is 

the most severe type of loading, but also in the case of real earthquake data it was 

noticed that the controllers could reduce the peak response by only a limited amount. 

Therefore it is of primary importance to develop a design method and algorithms which 

directly address this issue. 
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CHAPTER 7 

7. LINEAR PROGRAMMING 

OPTIMISATION-BASED CONTROL (LPOC) 

7.1. Introduction 

The most important consideration when dealing with structural failure is not exceeding 

the maximum deformation capacity. Structural members fail when a maximum 

displacement (or force) is exceeded. A constant load below the yield strength is not 

harmful to a structure. Only if the yield point of a member has been reached, then a 

large constant load, like a cyclic load present in earthquakes, is slowly degrading the 

structure. Therefore, reducing peak responses is the most crucial aspect in structural 

control. 

Current control algorithms do not address this issue since most of them have been 

developed for purposes other than civil engineering. LQR minimises the power (RMS 

value) of the signals selected for regulation, not their peak levels. In the example of the 

previous chapter where the structure is excited with an impulse, a very large peak was 

observed followed by a much lower one and very soon the steady state was reached. 

This maximum level of the first peak could be diminished by control action, but as a 

consequence the subsequent peaks would need to increase, although at levels not 

exceeding the first. As consequence the total energy of the response would be larger, but 

the maximum peak would be reduced. Hence, in this case LQR is not equipped to 

minimise peak responses, although from inspecting the impulse responses it is clear that 

there is plenty of room for improvement. 

Other control methods rely on more sophisticated background theory and thus their 

behaviour cannot be explained in simple terms like in the example mentioned above. 

Some directly minimise maximum peaks to some extend and some do not. Most modem 

control methods involve the minimisation of a norm like the H2 or H, norin of a closed- 

loop transfer function between an input (typically disturbance) signal and a regulated 
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output. The H2 norm measures the expected power energy of the output signal (mean- 

square value). Normally the input signal is assumed to be a random kýhite-noise signal 
(flat spectrum). 

Alternative control design methods aiming to minimise the peak response of the 
regulated signal have recently been reported both in the area of active vibration control 
[Lim et al. 2003] and also in general control literature [Sznaier et al. 20031, [Sznaier 
1995], [Dahleh and Bobill 1995]. [Lim et al. 2003] is based on an adaptive bang-bang 

methodology, which clearly offers advantages when the disturbance-signal is uncertain, 
but is also difficult to apply in practice and could easily cause instability. A systematic 
general approach is the 11 optimal control theory, which attempts to minimise the peak 
amplification gain between disturbance input and regulated output, assuming bounded 

inputs [Dahleh and Bobill 1995] [Pearson n. d. ]. Interestingly, the method results in a 
Linear Programming optimisation framework also used here. However, as 11 is an 
induced norm, all bounded disturbance signals are taken into account in the formulation 

of the optimisation problem. As a result, the design may be excessively conservative, 

unless the method can be restricted to specific models of disturbances that are likely to 

arise in practice, i. e. signal classes whose spectral content is similar to those observed in 

typical seismic acceleration signals. 

In this section a design method is proposed that directly minimises the maximum peak 

response of an actively controlled structure. It involves the use of linear programming, a 

strong optimisation tool with a wide range of applicability. All closed-loop controllers 

are parametrised in terms of a free stable parameter Q that is subsequently optimised for 

a discrete impulse acting as an input. After imposing some appropriate constraints on 

the maximum control signal applied and its maximum rate of change, an optimal 

controller is designed that directly minimises the maximum peak acceleration of the 

controlled structure. 

Overview of control design methods 

Consider the diagram in figure I where 77 (t) represents a zero-mean white noise vector 

signal and e (t) is the system's output. 
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77 (t) -0. e(t) 

Figure 7.1. System with white noise input and output 

Assuming that T (s) is stable with T(oo) = 0, its H., norm can be defined as: 

T 11 
2 

"": E flle(t)112 dt 
x 

0 

(see section 5.3.3. a) where 11-11 denotes the Euclidean-norm of e (t), i. e. 

(7.2) 

Normally T(s)is an implicit function of a controller and the H2 optimal control 

problem is to choose a controller so that T(s) is stable and minimises (7.1). The 

regulated (vector) signal typically includes the control input as one of its components. 

Thus the H2-problem involves the minimisation of 

JIZI12 
+ )OIIU112 2 

(7.3) 

where z is a linear function of the state vector x. This can be expressed equivalently in 

the more familiar Linear Quadratic Gaussian (LQG) form involving matrix weighting 

terms Q and R, written as: 

x 
MinimiseJ(u)=E ffx'Qx+u"Rull (7.4) 

0 
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It is well known [Maciejowski 1989] that the above minimisation can be split into tývo 

sub-problems. The first is to optimally estimate the state-vector (in the means-square 

sense), whose solution is provided by Kalm an- filtering theory. The second sub-problem 
is to find the control signal which minimises the deterministic version of the cost 
function of (7.4), subject to constraints of the systems dynamics,, ý = Ax + Bu. 

The solution is to let the control signal u(t) be a linear function of the state: 

Kx (t) (7.5) 

where K, is the optimal state-feedback matrix that minimises J(u) (with the 

expectation operator removed and assuming that all state variables are accessible). Then 

the so-called separation principle (or certainty equivalence principle) guarantees that the 

overall optimal solution of (7.4) is still obtained when the optimal state-feedback is 

applied on the state estimates, rather than the states themselves. 

The H,, problem assumes bounded-energy for both input and output signals and 

minimises the maximum input-output energy transfer, which is given by the infinity- 

norm of their transfer function, i. e., 

minlIT11 =minmaxýý[T(jo))] (7.6) 
x lorE'R 

where the minimisation is again carried out over the set of all stabilising controllers. H, 

control models systems in the frequency domain and is especially powerful in dealing 

with uncertainties in the model's inputs or parameters. It is more robust than H2-control 

but could be conservative if the disturbances are modelled naturally as white-noise 

signals. In this section, we are interested to minimise the peak value of the regulated 

signal over the class of bounded input disturbances, which, as was concluded in the 

previous chapter, is more relevant for active vibration control of civil engineering 

structures. This leads to a minimisation of the 1,, -norm of the impulse response of the 

system between the disturbance input and the regulated output. A novel approach is 

developed for solvinIg. this problem in discrete time (subject to peak magnitude and rate 
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constraints on the control signal), using a dead-beat parametrisation of all discrete-time 

stabilising controllers, which leads to a linear-programming optimisation framework. 

7.2. Design of I-storey model 

As explained in earlier chapters, the main objective of active vibration control for civil 

engineering structures is to minimise the peak-magnitude of displacements during 

earthquake excitation, so that, if possibly, the structure does not enter into the inelastic 

region. 

The structure described in chapter 5.2.1 will be examined here, but in order to simplify 

the analysis only the base and first floor are taken into account as shown in diagram 7.2. 

This allows the analysis by means of single-input single-output (scalar) techniques. 

Extensions to the multivariable case are more complex and will be investigated at a later 

point. 

Specifications of Structure 

Floor M (kg) C (N. s/m) K (N/m) 

Base 5 100 16000 

I St 1.72 0.078 2600 

Table 7.1 

%a 0 

Figure 7.2. Idealisation of a2 storey building as a spring mass damper model 
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By following the same procedure as in chapter 4.2, the following state space equations 

are obtained for the passive system: 

i= Ax+Fv+Bu 

y=Cx+Du 

The passive state-space matrices are: 

0 0 1 

0 0 0 

k� + k, k, ei +Co ei 
mo mo mo mo 
k, k, ei ei 
mi mi mi mi 

T 
I , 

B= 0 
I 

0 - 

i 

mo mo 

F=[0 01 of 

k,, +k, k, C, +Co C, ] 

mo mo mo mo 

and 

ml 

When linear actuator dynamics are included in the model, the state-space matrices are 

modified as: 

0 0 1 0 

0 0 0 1 

ko +k, kl ei + Co kl ke 
--+-- 

ei + 
kf k, 

A= - mo mo mo m. R m. m. R 

kl kl ei kf ke kf ke 

1 
mi mi m, mIR m, mIR 
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kf kf 
B, 00 -- 

moR mjR 

F=[O 01 O]T 

Cl k,, + k, k-I cl + CO kf k, 

mo mo mo moR 

and 

kf ] 

m, R 

ci +Co 
+ 

kf k, 

mo moR 

] 

Note that the only measured output in this case is the acceleration signal 3ý, * 

7.3. LPOC control design algorithm 

An optimisation method is developed here, whose aim is to minimise the maximum 

peak output of one regulated signal (subject to magnitude and rate constraints of a 

second regulated signal) for a particular class of disturbances (to be specified later). The 

method is called Linear Programming Optimal Controller (LPOC) throughout this 

thesis. The procedure for solving the problem is as follows: 

STEP 1: Define the 2eneralised plant 

The generalised plant is depicted in Figure 7.3. 

ZI 

Z) 

V 

165 

Figure 7.3. Generalised plant I 



8. Linear Programming Optimisation-Based Control (LPOC) 
_ 

Pana, -, Iotl> R,: r,, /, - 

where, 

u is the control input 

y is the measured output (first floor acceleration) 

v is the external disturbance 

z is the regulated output vector 

In our case, we take the two regulated signals to be the first-floor acceleration and the 

control signal. It is required that the controller should stabilise the system and 

min max 15ý, (t)l subject to I u(t)l :! ý un. for all t ý! 0 
1>0 

Additionally, to avoid highly discontinuous signals we may impose constraints of the 

derivative of the control, e. g. 
jzý(t)j :! ý for all t>0 

Choosing z= (Jýj U)T where 3ý, is first-floor acceleration and u is the actuator voltage, 

the generalised plant has a state-space description. 

i=Ax+Fv+Bu 

z 
=[Cý]X+[D, 

]u+[O] 
v 

yC 
D2 0 

(7.7) 

where A, B, C, D are as defined above. Note that there is no direct feedthrough term from 

the disturbance v to z or y. The systems state-space realisation can be partitioned as 

shown below: 

A B, B,, 

P(S) = 

C2 0 D12 

00 

C, 0 D22 

Rows I and 2 of the C matrix correspond to the two regulated outputs, in this case the 

first floor acceleration, ý 1 and the control input effort u. The last row defines the 

measured output, in this case also. ý 1. 
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STEP 2: System discretisation. 

The solution to the problem will be obtained in discrete-time. This means that ý, ýe need 
to discretise the system using an appropriate sampling interval of T seconds. The zero- 

order hold discrete-time equivalent of the system can be employed using the standard 

procedure for transforming between continuous and discrete times [Antsaklis and 
Mitchell 1998]: At time tk, the ZOH maintains the value of its input analog signal u(t) 

constant until the next sampling time tk+1 . Discrete-time systems are described by the Z- 

transform. In the z-domain a system is stable if all its poles are inside the unit circle 
(within a distance of one from the origin). The period of the system is chosen as 

T=O. Olms. The corresponding sampling frequency f, =I OOHz is significantly larger 

than the highest frequency of interest (frequency of the first mode). 

STEP 3: Youla parametrisation of all stabilisina controllers. 

The procedure is outlined in section 3.6.5 but the main results are summarised below: 

The controller and closed-loop systems are defined in terms of two matrices F and H 

(state-feedback and output injection). F and H can be any two matrices such that 

A+B2F and A+HC2 are asymptotically stable (all eigenvalues inside unit circle). The 

aim of Youla parametrisation is to obtain a parametrisation of all stabilising controllers 

and the corresponding closed-loop systems between the disturbance and the regulated 

signals. The parametrisation proceeds by first expressing the plant G (z) as the ratio of 

two stable, relatively prime transfer functions. The procedure is identical in continuous 

and discrete domains, with the exception that "stability" is defined appropriately in each 

domain. In addition, we have complete freedom in the choice of state-feedback (F) and 

output injection (H) matrices, as long as A+B2F and A+HC2 are asymptotically 

stable; here F and H will be chosen so that all eigenvalues of A+B, F and A+ HC2 are 

placed at the origin; this is always possible under appropriate controllability and 

observability assumptions (which are satisfied in this case). 

The set of stabilising controllers is parametrised in bilinear (I i near- fractional) form, 

while the set of closed-loop systems in linear (more precisely affine) form, i. e. 
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T(z) = T, (z) - 7ý (z)Q(z)T3(z) ý7.8) 

where Q(z) is a free stable matrix parameter; the functions T, (z), T, (--) and T (z) 

have been defined in an earlier chapter and depend solely on the state space matrices . 4, 

F, C, D and the choice of F and H. We will also make use of the sli-htl\ different 

parametrisation 

T(z-') = T, (z-') - 7ý (z-')Q(z-')T3 (z-' ) (7.9) 

in which all terms have been redefined as functions of z-' rather than z. This will be 

useful in describing recursive relations between the input and output discretised signals 

used later. 

STEP 4: Pole placement at the orillin 

The problem here is stated as follows: Given that the pair (A, B) is controllable, find F 

such that all eigenvalues of A+ BF are placed at the origin. This can be achieved by the 

following steps: 
1. Define characteristic polynomial of A 

det(sI - A) = Sn + an_lSn-I + an--, St7-2 +... + ao 

2. Define A, B, which are in canonical controllable form: 

-an-I -an-2 -al -ao 
000 

0 
0 

0 

Note that the first row of. A,, contains the coefficients of the characteristic pol, -, 'nomial in 

descending order with negative signs. Z-: ) 
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3. Define F, F, T where 

F=[B AB A2B... A n-1 B] (7.11) 

F, =[B, AB, A, 2B, 
... An-lB, (7.12) 

T F, 
ý'F 

(7.13) 

4. Obtain the state-feedback matrix F 

an-2 
,,, L70 

1 (7.14) 

The algorithm described above is developed in order to comply with the standard pole 

placement design approach involving Ackermann's formula. Initially, a transformation 

T is required such that the controllable canonical form of the pair (A, B) is obtained 

(7.10). This form is favourable since the characteristic polynomial of A is known and . 4, 

and B, are sparse. A state feedback matrix F is required such that 

-an-I -an-2 -al _ao I 
0000 

A, + BF, 0+ fl f2 fn 

0 
00100 

fl - an-I f2 - an-2 ... 
fn-I - a] f- - aO 

000 

0 

0 

so that 

0 
010 

I= 
Sn -) Sn-I (7.15) det IsI -AC- BcF + (an-I fl + (an-2 

- f, +++ fn ) 

which is the closed-loop characteristic polynomial. Setting this equal to s' gives: 

I a, -, ... a (7.16) F If 
LI '/_ --- f" I= Ice, 

-, ol 
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Now that F, is determined, the inverse transformation T-' is required to obtain F. If \ý e 

assume that F, = FT-' is the inverse transformation, then using -4. = T4 T-' and 

B, = TB gives: 

A, + BF, = TAT-'+ TBFT-' =T [A + BF] T_' (7.17) 

so that A, + BF, and A+ BF have the same characterictic polynomial s. The original I 
transform T is known to be equation (7.13) [Antsaklis and Mitchell 1998]. The problem 

of selecting H so that A+ HC has all eigenvalues at the origin is dual to the state 

feedback problem described above. 

STEP 5: Formulation of optimisation problem in terms of linear constraints 

First partition the closed-loop equations by using the Youla parametrisation as: 

Tl( ZI y 
T21 (z I 

ul= T2 -1) 
- 

7, ý 2 (Z-1) Q(z-')T3 (z-') v (z-') I 

-1=1 -I 
(Z 

where y and u are the regulated outputs. Since in this case T, (z-') is stable, this can be 

alternatively written as: 

-1) T -1) - 3 
(1 

(7.19) - 
-2 1 Q(z ')v(z 

Tl' (z j7, -JT 

[YI '( 

(7 

2 

Hence the transfer function between v and y for the first regulated output y can be 

written as: 

-TI -JT (7.20) l+T 1 , 
(7 

The following terms have been replaced accordingly in order to simplify equation (7.20): 

b(')=T (-). (1)T 
(-1)T(-1) 

q(: ')=Q(z1) 
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to get: 

b(z-') + c(z-')q(z-') 

Here, a(z-') is the denominator and q (z-') is the free parameter. i. e. any H-, function. 

It is up to the designer to choose q (z-') to optimise T(z-') . Note also that under the 

assumption made earlier (all eigenvalues of A+ B2F and A+HC2 placed at the origin), 

a(z-') =I. This choice is only made for convenience (since it simplifies the exposition) 

and the problem can be solved for arbitrary pole locations (inside the unit circle). 

Now assume that v is a (discrete) impulse, so that v(z-') = 1. The degree of both 

b(z-') and c(z-') will be r, where r is the number of state variables. Also, a(Z-1) =I 

because the eigenvalues of A+ B2F and A+ HC are placed at the origin. Parametrise 

q (z-') as af inite-impulse-response (FIR) filter of arbitrary degree p, i. e. 

q(z-') = qo + qlz-1 +q2 Z-2 +---+q,, z-P (7.22) 

Also write 

b(z-') = b� + b, z-' +b2 Z-2 +---+ bz-" 
C(Z-') = Co +c1 Z- 

1 +C, Z-2 +** *crz-r 

Y(z + Y, Z Yo + Ylz, 

Then, in equation (7.2 1): 

y(z-') =+ 

=k+b, z - +... + bz-' + (co + c, -7-' +... + cz -")(qo + q, z-' +... +qp --P) 

=bý + b, z '+ br Z-r + coqo + (c, ql + clqo ) z- 1+ (coq2+ c1q, + C2 qo) z-1 ++ Crql, z 
-r-p 

(7.23) 

The multiplication of polynomials c( : -I) and q( Z- 1) can be implemented in matrix 

form as a multiplication by a Toeplitz matrix. Thus, the order of v(--') in equation 

(7.23) is -ý-p, 
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deg[y(z-')] =N=r+p and yk =0 for k>N=r+p. 

Equation (7.21) can be written in matrix form as: 

Yo 

Yi 

Y, 

Y, 

Yp+r 

b,, 

0 

0 

1 +1 

cý 0 0 0 ... 0 0 0 

ci Co 0 0 ... 0 0 0 0 q, > 
0 0 0 0 q, 

c c ... c C 0 0 
r r-1 ... ... i o 

e', 
ci 

c,. c�-, 
-qp 0 cr- 

(7.24) 

Note that the response is forced to be deadbeat, Le yp,, is the last non zero value of the 

regulated output. This means that the controller makes the output zero after p+r 

samples. This is due to the restriction on q (z-') which was taken to be an FIR filter and 

may lead to a conservative solution unless r is taken to be large. Ideally r should be 

selected to make NT, a reasonable transient before the structure is fully stabilised. It is 

expected (but need to be established formally) that for large N the deviation from 

optimality can be made arbitrarily small. The equations can be written compactly in 

matrix form y=b+ Cq where q contains the coefficients of q (z-') and C is a Toeplitz 

matrix. The same procedure is followed for the second regulated output. 

STEP 6: Formulation into a linear programming problem 

Since all constraints are linear, the minimisation of the peak response of the regulated 

signal can be formulated as a linear programming problem of the form: 

min Cx subject to Ax! ýb (7.25) 

Let 6 be the maximum output of the regulated signal (acceleration) that we wish to 

minimise. Then: 
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-, 5:! ýy(k)! ý, 5 forall 0:! ýk:! ýA, ' (7.26) 

Now, Yk = Ck 
TX+ k 

'where 
Ck 

T denotes the k-th row of the C-matrix of equation (7.24). 

and k is defined as: 
bk 

= 
bk for 0:! ýk:! ýr and bk 

=0 for k>r (7.27) 

Thus, separating the two equations we can write: 

-Ck 
Tq ýk 

and Ck 
Tq-, 5:! ý 4k for all 0:! ý k:! ý N 

The optimal solution is the minimum value of 5 =1 yn,,,, I for which equation (7.2 1) is 

valid. The constraints can be represented compactly in matrix form as: 

1C 6 ri [ ] [ ] 
I 

-- 1C q L] 
(7.28) 

where I represents a column-vector of p ones, C is the (p + r) xp matrix of equation 

(7.24), b is the vector of p terms of equation (7.24), q is an n-dimensional vector 

containing the unknown coefficients q, and 6 is a scalar. Setting 

(8 
x=l 

the problem is now in the standard linear-programme form: 

min (5 = [1 0 ... OIX 

subject to: 

1C 
x (7.29) 

-b 
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The solution to the problem will result in the optimal peak-value of the regulated signal II 
and the coefficients of the optimal q(z-'), from which the optimal controller can be 

recovered via a bilinear transformation corresponding to the Youla parametrisation (see 

section 3.6.5). Note that the optimal 6 is the variable to be minimised, i. e the maximum 

absolute value of the acceleration signal. 

LPOC acceleration impulse response 
0.25 

0.2 

0.15 

0.1 
E 

0.05 
x 
C: 0 
0 
-4-- cz L- 0.05 
(1) 
(D 

-0.1 

-0.15 

-0.2 

-0.251 0 0.5 1 1.5 2 2.5 

time (s) 

Figure 7.4 LPOC acceleration impulse response 

LPOC voltage 
20 

---------------------- 15 --------------------------- 

---------- ---------- ---------- ----------- 10 

5------------------------------: ---------------------- 

01---- 

-5 ---------------------------------------------------- 

-lo --- ---------------------------------------- --- ---------- 

----------- -------------------------------- -15 -------- 

---------- , ----------- ---------- 
-20 ----------------- 

-25 0 0.5 1 1.5 2 2.5 

tim e (s) 

Figure 7.5 LPOC control effort for impulse load 
I 
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Comparison between LPOC and LQR 

2 
x Inax 

(Mzs U,,, 
-, 

(Volts) 

LPOC 0.21 22 

LQR 
1 FI 16.15 

Table 7.2. 

The LPOC design method was first applied to the structure without any control 
constraints with a filter length of r=200 samples, corresponding to a deadbeat 

response of approximately 2 seconds. The two regulated signals (Ist floor acceleration 

and actuator voltage) are shown in Figures 7.4 and 7.5 respectively. 

The unconstrained LPOC method yields excellent results in terms of optimising the 
IM/ 2 peak signal level. The maximum acceleration is extremely low, 0.2 S (about 100 

times smaller than the peak acceleration resulting from the LQR design, while the peak 4-: ) 

voltage control level increased by a factor of 1.25). However, the resulting acceleration 

profile (Figure 7.4) clearly indicates that the response is unrealistic for practical 

implementation. The acceleration reaches its peak positive value of 0.21 mls-' extremely 

fast and swings to its minimum negative value 0.21 mls 2 almost 10 ms later, requiring a 

huge slew-rate from the actuator. Subsequently, the acceleration fluctuates between the 

two extreme values for a few cycles of progressively increasing frequency before 

decaying to zero after about 1.5 seconds, (half a second earlier than the set deadbeat 

horizon) exhibiting highly-damped oscillations. This behaviour can be explained as 

follows: The maximum acceleration is reached very fast (first peak-) because the 

disturbance is an impulse. To counter the acceleration increasing excessively, the 

controller produces a large negative force, followed by a large positive force a few 

milliseconds later, to limit acceleration increase in the opposite direction. After the 

maximum acceleration is reached, the controller's primary goal is to keep it at the same 

level and thus gradually reduces the applied forces. Finally, the acceleration reaches Zn 

zero as the system settles to its equilibrium. Thus the method works theoretically in the 

sense that it succeeds to minimise peak acceleration, as indicated by the flat regions of 

the acceleration signal at positive and negative peaks of the same magnitude. However, 
I- 

the response is clearly unrealistic and thus the controller cannot be implemented in 

practice. The high rate of the control signal (especially in the early part of the response) 
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means that even if this control profile could be generated bý the actuator, the resulting 

closed-loop system would have an unrealistically large bandwidth, and hence the 

system would have poor stability margins and would be highly susceptible to model 

uncertainties. 

STEP 7: Imposing Constraints 

In the above formulation, the peak value of the regulated output is minimised for an 

impulsive loading without any constraints on the size or rate of the control input. This is 

unrealistic and may result in highly discontinuous control signals that would be difficult 

to implement or could cause stability problems, especially in the presence of model 

uncertainty, due to the potentially excessive bandwidth of the closed-loop system. Thus, 

some constraints need to be added in order to make the design more realistic. The first 

constraint limits the magnitude of the control signal, i. e. we require that: 

for all k>0 

Now note that from the Youla parametrisation with u (z-') as the second regulated 

output we can write: 
(Z-1) = 

T2 
I 

(Z-' 7ý, 2(z-')T3(z-')q(z-') 

which may be written in the more convenient form: 

(7.30) 

Note again that fl(z-'), )I(z-') and q(z-') are polynomials in z-1 (the first two due to 

special type of parametrisation, and the third due to restriction of q(z-') in the class of 

FIR filters). Similarly to the last section, the equation can be written in matrix form: 
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uo )6() 
Ul 

Ur 

-Up-r 

Yo 0 0 0 ... 0 0 0 0 

71 70 0 0 ... 0 0 0 0 qo 
0 0 0 0 q, 

/ 0 0 ; , 70 

0 
0 

70 

71 

7, V, -, qp 

- 
0 v, 

(7.3) 1) 

where the 8, and y, are the coefficients of the polynomials 8(z-') and ; V(z-') of 

equation (7.30), respectively. Writing the equation in compact form U=P+Fq as 

before, and its k-th row as Uk = )6k+ yk'q , the constraints I 14k lýý Umax for all k, may be 

expressed by a pair of linear inequalities: 

- )lk"q <- u,,,,, x+ 
A an d )lk'-q <- u,,, ax -, 

Bk for all k 

or in matrix form as: 

-F ö< u', ' a-x 
1+ 

Fq u�ax 1- 
(7.32) 

These can be augmented with the inequalities of the previous section (7.29) and solved 

via a standard linear programme to minimise 5. 

When the system was optimised and simulated with the above constraints, the voltage 

showed a non-linear profile with very large accelerations rates. Therefore, in order to 

make the response more realistic an extra constraint needs to be added in the change of 

voltage, Au (slew-rate constraint). Now, 

AUk Uk 
-I 

Uk A- 
+I+k- 

184- + (7 k-I -7 k )q 

and we require 
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1 AUk 1: 2ý (AU)max for all k>0 

This may be written as a pair of linear inequalities: 

(; VT k+I -7Tk )q :5 (AU). - 
Ok+I 

-A) 

and 

-(7k+l 
T_ 

7k 
T )q :! ý (A+1 

-A)+ 
GýU)niax 

for all samples k, or, in matrix form as: 

0 -(F - F) 5 
:, ý 

(Au)max 1- (fl 
- 

ý) 

(7.33) 
0 F-f q (AU)�. 1+ (ß - 

ý) 

where F and fl denote the matrix Fand the vector fl with the first row eliminated 

(respectively), while f and ft denote the matrix IF and vector fl with the last row 

eliminated (respectively). The inequalities can now be augmented to the previous set of 

linear inequalities, and solved in a linear programme to impose additional rate 

constraints on the control signal. 

1 C 

-1 -C 
O F [81 I 1< 
O -F q] 
O -(r-f') 
0 

b 
A 

-b 
Umax + 

Umax 

(Au) 
axl -(P 

OýU)max 1+ (P 

(7.34) 

An LQR design was first carried out for comparison purposes. The design involves a 

quadratic cost-function consisting of two penalty terms, acceleration and control effort. 

Both weighting factors were set to 1, penalising equally the two terms. The design was 

carried out both in continuous and discrete-time (with a sampling rate of 100 Hz), 

producing almost identical results. 
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Subsequently, the LPOC design was carried out with control constraints on the peak 
control signal and its rate. The peak-magnitude control signal constraint was set at 16 
Volts, similar to the peak LQR and the maximum control rate at of 40 Volts/s. The two 

regulated signals resulting from the two designs (LQR and constrained LP) are shown in 
Fig 7.6 and 7.7. The main results of all simulations are also summarised in Table 7.33. 
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Figure 7.6 Constrained LPOC and LQR (acceleration) 

LPOC voltage 

-20 ' 
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Figure 7.7 Constrained LPOC and LQR (voltage) 

0.6 

Setting an acceptable limit in the rate of change of the control sional Au,,,,. = 40 Volts/s 

which is about ten tirnes less than the fast rates of the early response observed in Fi(Ture 
It) 

7.4, the response of the systern to the impulsive loadinal becomes acceptable. The 

i-naximurn acceleration for the constrained LP design is almost 2.5 times less than the 
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peak value obtained by LQR, while the controller peak signal (16 Volts) is slightly less 4n 
than the peak value obtained from the LQR design (16.15 Volts). This improvement is 

made despite the fact that the LQR controller is based on state-feedback (all four states 

assumed measurable), whereas the LPOC uses output feedback only (first-floor 

acceleration being the only measurement). 

Comparison between constrained LPOC and LQR 

M. 
(M/S 2 

Uinax (VOItS) 

LPOC 5.5 16 

LQR 13 16.15 

Table 7.3 

The simulations have been repeated several times for different set of parameters. The 

aim was to observe if the performance improves or not by changing the design 

variables, the number N of time steps, the sample time (T, ), the maximum allowable 

voltage Umax and the maximum allowable change in voltage Auna, The result are 

surnmarised in the tables 7.4 to 7.6. 

The minimisation is very sensitive to the parameters used and if it is over-constrained, 

or the number of samples is too high or too low, the linear programming may either fail 

or may not reach an optimum solution. In the first table the number of samples used is 

varied. For more than 100 samples the solution is the same, signifying that 100 samples 

(or Is) is the minimum time required for the minimisation horizon to reduce the 

maximum peak and settle to zero. For 50 samples the maximum acceleration increases 

from 10 to 17 n1/S2' indicating that this settling-time requirement is too stringent. The 

second and third tables show the maximum acceleration and control effort as a function 

of the constraint on un,,, and AUmax , respectively. As the maximum permissible voltage 

and rate of change of voltage increases the maximum acceleration reduces. At some 

point no further reduction of peak response is possible; this is the minimum possible 

acceleration that this system can have. 

Observing the i-naximurn acceleration and voltage while the parameters vary is 

.. 
is used for a different disturbance input, i. e., important at later phases when the design 
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an earthquake signal. Furthermore, the design is very sensitive even to minor changes in 

the parameters. If the sampling time is changed from 10 ms to 20 ms, by setting 

constraints unax = 30 Volts and AU,, 
ax = 100 Vo'tS/Sl the maximum acceleration is 2 

M/S 
2; by doubling Umax and AU,, 

ax the maximum acceleration becomes 0.4 mls 
2. In 

previous examples by relaxing the constraints, i. e., for larger values of um,,, and AU,, 
ax 

there was no difference in the outcome 

I LPOC results as a function of number of samples 

Samples (N) 500 400 200 100 50 20 

Permissible u,,, 1000 1000 1000 1000 1000 1000 

Permissible A" 
max 30 10 10 10 30 -110 

Ymax 10.22 10.21 10.233 10.2 -33 17.18 95.48 

Uinax 59.56 5 9. 
-') 1 58.65 59.833 60 102.75 

Table 7.4 

LPOC results as a function of constraint on Umax 

Samples (N) 200 200 200 200 200 200 200 200 200 200 

Permissible u,,,,, 1000 500 200 100 60 50 40 30 20 15 

Permissible Au,,,,, 30 30 30 30 30 30 30 30 30 30 

Qax 10.2 10.2 10.2 10.2 10.2 10.2 14.3 20.6 26.8 35.6 

MnM 1 58.6 1 59.6 1 59.8 1 59.1 1 59.7 1 49.6 1 40.3 1 32.1 20 15 

Table 7.5 

I LPOC results as a function of constraint on Auý,,,, 
x 

Samples (N) 200 200 200 200 200 200 200 200 

Permissible u,,,,, 100 1000 1000 1000 1000 1000 1000 1000 

Permissible Au,,,, 1000 1000 500 200 100 50 30 10 

Yniax 2.46 2.7 3 2.66 2.84 2.66 2.68 10.23 32.26 

54.14 53.86 9 53.74 53.92 1 53.91 58.65 1 31.01 

II able 7.6 
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7.4. LPOC controller design 

The preceding section derives and describes the optimisation algorithm. From the 
formulation of the problem the solution is obtained and simulated but without having 

directly obtained the controller. Here, the controller is derived. From [Francis 1987] the 

set of all (proper real-rational) controllers K stabilising G is parametrised by: 

K= (Y - MQ)(X - NQ)-'= (, 'ý -- QICI), QE ýRH,, (7.35) 

The state space realisations of all functions is given in section 3.6.5, (page 68). The 

controller is of the form: 

K =J(K, Q) = K,, +K12Q(I-K,, Q)-'K,,, (7.36) 

with state-space realisation [Francis 1987] 

A+B, F+HC, +HD�, F -H B, +HD� 
K= F01 (7.37) 

- (C, + D� F) I -D� 
- 

The LPOC optimal controller is obtained by substituting Q,,, into (7.36) where Q,,,, is 

the FIR filter obtained form the solution of the linear programme. 

50 

x 

c 
0 

cz 

LPOC Acceleration impulse response 
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Figure 7.8 Passive and LPOC frequency responses 
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The frequency response in figure 7.8 shows that the closed-loop system reduces 

significantly the gain over all frequencies. This suggests that the controller will be 

effective for arbitrary disturbance inputs, not just an impulse. 

7.5. Model reduction 

The order of the controller is equal to the number of time steps N, in this case 204. This, 

results to computational difficulties and complex models and should be reduced for 

practical purposes. A model reduction technique was used, (balanced truncation 

method, [Zhou and Doyle 1998]). The model reduced responses were similar to the 

original ones, but with larger peaks, i. e. the method was unable to keep the peak 

responses low. By removing the high order parts of the controller the performance was 

significantly reduced. This suggests that more complex model reduction techniques 

emphasising approximation over a sufficientl large bandwidth should be investigated. y 4: ) 

7.6. Design with alternative disturbance models 

Apart form impulsive loadings different types of disturbance inputs can be incorporated 

in the design. Here, the necessary modifications in the LPOC design procedure are 

outlined when the disturbance signal has a general z-transform of the form: 

60 + plz +z (7.38) 
I+alz- +... +alz- 

In this case, equation (7.21), can be modified to: 

, 7-1 +... +a zy 
()go 

+ )yj +)6,,, -, ). 
b(7, -') + c(z-')q(z-') 0+ al (7.39) 

where the denominator of (7.38) has been moved to the left hand side of the equation, 

while the nurnerator can be absorbed into polynomials b W') and c(z-') (thereby 
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increasing their order). By placing the poles at the origin we still have 
Transforming to the time domain by inverting the transform gives: 

(yk +)6lYk-I +---+, 6, yk-, )y(z-') = (7.40) 

which can be written in matrix fonn as: 

Yl b, cl 
al Y2 

q (7.41) 
al 

al cl 

or, in more compact form, as: 

Ay = b+Cq (7.42) 

On noting that matrix A has full column rank for 1<n, this can be solved as: 

y =(A 
T A)-'A T b+(A T A)-'A TCq (7.43) 

The same procedure is followed for the second regulated output. The problem is now 

formulated in its original form and the design procedure can be resumed from step 4. 

Note here, that this modification increases the complexity of the model, thus reducing 

the ability of the linear programming solver. 

7. Three-storey building simulations with LPOC and LQR 

The LPOC technique was applied to the design of the 3 storey building described in 

Chapter 5, the objective being to minimise the I st floor accelerations which is assumed 

to be the only measurement. The following values were used for the simulation: 

T=0.0 1 5s., u,,., =0.2 T olts, =0.2Volts / s, A' = 200 The responses compare 

favourably with those obtained by LQR and are shown in Figure 7.9 and 7.10. Note that 
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LPOC is capable of achieving significant reduction in peak acceleration levels usincy a 

significantly reduced (peak) level voltage. 

20 

15 

10 L 
cq 

C) 
-6. - U 
1-. 

-5 

10 

-15 

LPOC 
LQR 

-20 0 0.5 11 1 .52.5 
time (s) 

Figure 7.9 Acceleration of 3-storey building (LPOC and LQR) 
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7.8. Earthquake-signal response 

The LPOC controller was tested for an earthquake signal disturbance on the one-storey 

building and the results were compared with those obtained by LQR. Note that the 

spectral characteristics of the earthquake were initially assumed unknown and were not 

used for design purposes, i. e. the LPOC controller was designed for an impulsive load. 

The parameters chosen in this design are: T, = 0.0 15 s, Umax = 0.2 Volts, 

Au -": 0.3 Volts1s and N= 200 samples. The control penalty of the LQR design was max 1171 

set to p=0 to impose no direct penalty on the control energy. With these design 

parameters similar peak levels of the control signal are obtained and therefore the two 

methods can be compared in a meaningful way. 

The results are summarised in Figures 7.11 and 7.12 and in Table 7.7. 

LPOC and LQR responses for earthquake 

,ý inax 
(M/S 2 

Umax (VOItS) 

LPOC 56 145 

LQR 106 137 

Table 7., 
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Figure 7.11 Earthquake response (LPOC and LQR) 
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Figure 7.12 Voltage for earthquake response (LPOC and LQR) 

The Matlab simulations show that the LPOC algorithm is still very effective, since it 

achieves lower peak acceleration levels for similar levels of control input. Note that in 

this example it is not possible to impose direct constrains on the maximum control 

effort and its slew rate, because these are valid only for the designed input, i. e. an 
impulse. The two constraints here are similar to the penalty terms used in LQR and are 

used as indirect means of shaping the controller. Note also that the design is very 

sensitive, i. e. small changes in the constraints or sample time can significantly change 

the output response, which makes it difficult to draw safe conclusions about the 

performance of LPOC- 

7.9. Earthquake identification filter 

In this section a procedure is outlined for designing an LPOC controller using a 

disturbance signal model which is more realistic than an impulse. It is hoped that this 

Willi produce a less conservative design (assuming that the spectral characteristics of the 

disturbance are known) similar to those achieved in LQR. As it was not numerically 

feasible to use the earthquake signal itself (Loma Prieta) as the design input in place of 1. C, 
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an impulse, a signal containing the dominant frequency and damping of the earthquake 

signal was used instead. 

The following signal was assumed as a disturbance input: 

uf (n) =e-, 
Tn 

sin (coTn) (7.44) 

where, 

(o is the radial frequency of the signal, 

T is the sampling interval used, and S 

a is a constant controlling exponential decay (darnping). 

The form of the signal was decided by considering the spectrum of the Loma-Prieta 

earthquake. The constants a and o) are chosen such that the filter has an attenuation rate 

and dominant frequency similar to this spectrum. The filter is of low order and is a 

rather crude representation of the z-transfon-n of the earthquake signal: 

Z[uf (n)] =Ze 
-aTn sin (coTn)] -- 

ze -aT, sin (o)T, ) Iz2- 
2e-'T, cos (coT, ) -7+ e -2crTý 

The block diagram of the combined system is shown below. 

r------------------------- 

A B, B2 
Zk Vk 

Cl DI I 
D12 4- 

C, D21 4 22 

Yk ------------------------- Uk 

--ý 
KLPOC 

Generalised plant 

Filter 

Figure 7.1 -3 ) Block diagram of system ký ith filter 

(7.45) 

Wk 
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whereWk is the external disturbance (which can be assumed to be an impulse) and v, is 

the disturbance representing uf (n); the remaining terms have their usual meaning. The 

state space model of the generalised plant, including the filter dynamics is: 

Xk 

1]=[A 
Xký 0 

Zk 
]= [Cl 

Yk C2 

BIC f 
][ 

Xk BI 

f 

]+[BlDf]Wk+[ 

-]Uk 
Af Xk+ Bf 0 

DI, Cf ][Xk ]+ DI, Df ] 

Wk + 
[D, 

2 
]uk 

D2, Cf xkf 

[ 

D21Df D, 

Corresponding to a new generalised plant: 

A B, Cf B, Df B, 

Pf (Z) = 
0 Af Bf 0 

---------- 1------------ C, DI, Cf: DIDf DI2 
1 

_C-1 
D2lCf :a AllDf D22 

(7.46) 

Under the standard assumptions the pair (A, B2) must be controllable and the pair 

(A, C, ) observable. Considering the state-space realisation of the new generalised plant 

it can be seen that the modes of the filter, Aj (Af ) are now uncontrollable from the 

second input uk . Thus, it is impossible to reproduce the previous design method (which 

requires that all eigenvalues of the A-matrix are moved to the origin via an appropriate 

state-feedback matrix F), unless the eigenvalues of Af are already located at zero, 

which can simply be accommodated by approximating the filter by a Moving Average 

(MA) model. The following parameters were used for the design: T, = 0.0 1 5s, 
Z: ) 

Umax : -- 
0.3 Volts, AUmax =0.5 Volts / s, N= 200, o) = 25, a= 10. The LPOC problem was 

formulated and solved for an impulsive disturbance; since, however, the filter has been 

absorbed inside the generalised plant, the optimisation is performed for uf (n). The 

resulting acceleration profile had a peak value of 0.19 mls 2 (similar to the acceleration 

of the original problem) and low damping, decaying to zero in about 2 seconds. 
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The design was subsequently tested for a SDOF system using', an earthquake signal as an 
input. The design incorporating the filter was found to have slightly superior 

performance compared to the simple LPOC. Thus, the general LPOC method can still 
be improved by taking into account infori-nation related to the expected spectrum of the 
disturbance. The design was carried out with the following parameters: T=0.0 1 5s, 

Umax ý0.3 Volts, Au,,, 
ax =1 Volts / s, N= 200, a) =35 rads /s and a= 10 . Because the 

order of the problem is further increased a SDOF system is used. Here the disturbance is 

the Loma-prieta earthquake signal. The simulation results of the two designs are shown 
in Figures 7.14 and 7.15. 

Comparison of LPOC and LPOC with filter for earthquake signal 

-ý,, ax 

( 
M/S2 UMUX (Volts) 

LPOC 2.86 2.64 

LPOC with filter 1.81 3. 
-3) 

2 

Table 7.8 

c'J 
C, ) 

E 

>( 
C 
0 

ca 
a) 
a) 
0 
0 

(\J 
0) 

>( 
C 
0 

ca 
a) 
a) 
0 
0 

LPOC and LPOC with filter 

L'P 0C 

,s1--------------- 

300 

200 

100 

0 

-100 

-200 
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Figure 7.14 Earthquake acceleration response for LPOC and LPOC with filter 
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U) 

0 

cz 

0 

cm 

L and L with filter 
300 - 
200 ----------------------- LPOC 

------------ 
100 - 

0 okk , Jit 

-100 ----------- 
-200 --rI 

-300 
11 

L- 

I 

10 12 14 16 18 20 22 24 26 28 30 

300 

200 

100 

0 

-100 

-200 

-300 10 

Figure 7.15 Earthquake response for LPOC and LPOC with filter (voltage) 

7.10. Summary 

The purpose of this chapter was to develop an algorithm aiming to minimise the 

maximum output peak responses of a system. The proposed method minimises the 1. 
" 

norm of the impulse response of the system, i. e. the maximum peak of the regulated 

output. A modification of the Youla parametrisation was used in a discrete-time 

framework to characterise all deadbeat stable closed-loop systems via a free stable 

matrix FIR parameter, Q(z). This allows the problem to be solved via finite- 

dimensional Linear Programming. To make the design more realistic linear constraints 

have been added involving the maximum value of the control signal and its rate. 

Simulation results show that the method compares favourably with LQR when 

minimisation of peak acceleration response is the main objective, for similar peak 

voltage levels. Similar results were obtained for different simulation studies, e. g. real 

earthquake signals and higher-order (three-storey) models. The method was extended to 

address a number of issues related to the design including controller model reduction, 

design for general disturbance models (rather than impulsive loading) and filter- 

augmentation techniques. Overall the desi n approach is promising although a number 9 'In 
of issues related to robustness and numerical tractability need further investigation. 
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CHAPTER 8 

STRUCTURAL STIFFNESS ESTIMATION 

1. Introduction 

An open problem in civil engineering is the estimation of the stiffness matrix of existing 

structures. This is important in old structures or monuments where no structural 
information is known, or structures requiring strengthening after earthquakes, blasts or 

other kind of loadings. The stiffness matrix depends on the geometry of a structure and 

the individual stiffness of each member. Obtaining the stiffness matrix of a new 

structure is normally a straightforward task because the member stiffness and geometry 

is known. This is not the case in existing structures where the exact geometry and 

member strengths are unknown. Measuring experimentally the stiffness matrix of a 

building is a very complicated task. The stiffness of a particular member can be 

estimated by testing the strength of this element via non-destructive methods, but the 

exact geometry is typically not known. Even if the geometry of a building and the 

stiffness of each member is known, the overall stiffness matrix may still be unknown 

due to model non-linearities and interconnections between members. Experimental 

stiffness estimation requires the use of a vibration generator attached to the structure. 

Firstly, the frequencies and modes of vibration need to be determined and then forced 

vibration response data are taken by exciting the structure at various locations, which 

are subsequently analysed in the time or frequency domains. 

An experimental method of estimating the stiffness matrix of a structure that does not 

require any knowledge about the structural geometry is to apply a known force (or set of 

forces) F and measure the displacement vector X. Then the stiffness matrix can be 

obtained from F- KA'= 0, where KG R"'. The stiffness matrix K can be computed if 

at least n different forces are applied and the corresponding displacements measured. If 

the structure is not perfectly linear. or if there are errors in the measurements of F orX 
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then the estimates may not be accurate. Noise is always present in natural systems, and 

errors in measurement are unavoidable, especially when the system is very stiff and 
large forces are required to produce small displacements. Here the positive semi-definite 
Procrustes Problem (PSDPP) is used which is valid for versions of the problem with 

positive (semi-)definite stiffness matrices. The advantages that this method offers is that 

it takes into account the special form of the matrix K and that it gives good estimates 

when model uncertainties and errors are present. 

Histoa: Originally, the problem was used in the area of statistics and economics in 

estimation problems relating to covariance matrices [Gower and Dijksterhuis 20041. 

Later, the general Procrustes problem was used as a least-squares approximation 

problem and [Allwright 1988] introduced the Positive Semi-Definite Procrustes 

problem by using convex analysis. The solution has also been employed in the area of 

optimisation as the means of approximating inverse Hessian matrices in quasi-Newton 

algorithms. 

Outline: The first part of this chapter briefly describes the Procrustes problem and 

explains its application to civil engineering, namely stiffness matrix estimation. The 

mathematical background behind the problem is outlined, the original Procrustes 

algorithm formally defined and its solution is derived analytically. Two different 

algorithms are used for solving the Procrustes problem. The second part shows 

applications of the method for the main structural engineering stiffness matrix form. It 

includes the standard problem when the stiffness matrix is positive definite, when it has 

a special tridiagonal form common among buildings and when it is tridiagonal and 

positive-semi definite where the alternating projection method is used. The Procrustes 

problem is solved both for static and dynamic loadings; in the latter case an earthquake 

signal is assumed to excite the structure and all measurements at regular time samples 

are recorded. Finally, a case study is presented where the stiffness matrix of a building 

undergoing structural control is not accurately known. An adaptive control scheme is 

used, in which the on-line stiffness coefficient estimates are used to tune an on-line 

LQR controller. 
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8.2. Background theory and definitions 

Here, some definitions required for the Procrustes solutions are stated. Some basic 

concepts of convex sets and cone theory are also described for better understanding of 
the techniques described in subsequent chapters. 

1. Frobenious norm 

The Frobenious norm of a matrix A c- 93"' is defined as: 

All, ýa, ý2= tr ( ATA ) 
1/2 

This is the square root of the sum of the squares of all elements. 

2. Trace function 

The trace of a square matrix Ac 9R"' is the sum of the diagonal elements i. e. 

a,, ... ain 
n 

If A= then tr(A) a, = al I+ a", ++ ann 

Lanl ... ann I 

3. Positive semi-definite, positive definite matrices 

Let A be a square matrix and xa vector with at least I non-zero entry, then 

If XT Ax: > 0 Vx A is positive definite (8.2) 

If x" Ax ý! 0 Vx A is positive semi-definite (8.3) 

By definition, any stiffness matrix is positive definite. 

4. The vc operator 
2 

If ý4 (= 93,,, n than the i, ec operator makes the matrix into a vector of n elements by 

placing each column (or row) below the other. i. e. 
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all ... ain 

IfA then vec (A) = (a, a,,, a,,, a 

-ani 
... ann 

If A is symmetric, then vec(A) denotes the vector of coordinates of vec(A) with 

respect to a basis set I w,, w2,..., w,, I where wi are all orthononnal. Also the following 
I- 

identities hold true: 

vec(A) = Wvec(A) 

and 

vec(A) = 
WT vec(A) 

where W is the matrix comprising of all the basis vectors w,. Here r=n (n + 1) / 2. 

(8.4) 

(8.5) 

5. Kronecker product 

The Kronecker product of two matrices A and B is obtained by multiplying each 

element of matrix A by matrix B. The result will be a "large" matrix. The Kronecker 

product is defined for any two matrices of any dimensions, i. e. 

C: - If A= aY c 93"' and B= blj : 
qq pxq then, 

allB a,. )B ... aInB 

a21B a,, B ... a,, B 
AOB= 

an, B an, B ... ann B 

where A OBE Rmpxnq (8.6) 

An important property of the vec operator involving the Kronecker product is that: 

[Allwright 19881 

vec(ABC) = (A (& CT )vec(B) (8.7) 

6,12osition 

Singular value decomposition (SVD) is a useful tool in linear algebra. Singular values 

are similar to eigenvalues and provide significant information about the matrix gain 
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along various directions. The matrix is decomposed into a product of three neýN 
matrices, one of which is sparse and gives the singular values in descending order along 
the diagonal. A singular value of a matrix A is the square root of the eigenvalue of .4 
times its complex conjugate transpose denoted by A*. Thus, all singular values are non- 
negative. 

VA(AA*) 

Let AE C"", then there exist two unitary matrices U and V such that 
u= [UPU2ý'-Un] 

Cz- Cnxn 

v= [VI 
9 V29, ,, ýv-Icc 

mxm 

such that A can be written as: 
0-1 0 10 

(8.8) 

UYS V *, where 10 
O-r 

(8.9) 

10 

Here, the vectors f u, I and Ivi I are orthonormal, r is the rank of A, [ul 
, u,,..., u,, ] is an 

orthonormal basis of Range (A) and 
[V, 

+, I 
Vr+21 ***9 Vn] is an orthonormal basis of 

Ker (A). 

7. Convex sets 

Consider the two diagrams of figure 8.1. The first represents a convex set and the 

second a non-convex set. Geometrically, a convex set is one in which the straight line 

segment joining any two points of the set lies inside this set. 

If x and y are different points in ! R', the set of points of the form 

(I - A)x + Ay =x+ A(y - X) A E! R (8.10) 

defines a line through x and y. If 0- A)x + Ay E=- C for all X, E=- 93 and all x, yE 93", then 

the equation defines an affine set [Rockafellar 1970]. A simple test for convexity also 

exists: If, 
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A)x + Ay EC for 0:! ý ; L:! ý 1 (8.11) 

whenever xEC and yGC, then the set C (--- 91' is convex. 

Figure 8. La) Convex set b) Non-convex set 

Convex hull. A convex hull of a set is the smallest possible set that is convex and 

contains the set. The non-convex set of figure 8.2. a) can become convex by enlarging it. 

Subsequently, the figure in diagram 8.2. b) is its convex hull, i. e. the smallest convex set 

containing the original (non-convex) set. 

N 

Figure 8.2 a) Non-convex set b) Convex hull 

8. Cone theoa 

A set K (-- ýV is a cone if it is closed under positive scalar multiplication, i. e. ). X E-= K 

when Ax (=- K and A>0. Geometrically, cones contain all half lines through the points 

emanating from the origin. A set F in 93' is a convex cone if F is a proper, convex 

subset of 93' that is not a singleton set and there exists a point V in F such that 

, property Ray[ V, A) CF for all XEF, A' ; -- V. Each point V in F with this ray is a 
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vertex of the cone. Cones are closely related to convex sets since they appear very often 
in optimisation, including the Procrustes problem. Not all cones are convex, as shown in 

Figure 8.3. a) Convex cone (line) b) Convex cone 

in figure 8.3 where all three are cones but only the first two are convex cones. 

Formally, a set is a convex cone if 

1-1, F2 cF => ý; F, + ýý, cF for all ý, ý>0 

8.3. Positive Semi Definite Procrustes Problem (PSDP) 

The original Procrustes OPtimisat'on problem is formulated as: 

minlIF-AGIIF (8.13) 
A c= S, " 

where Ac 91"', F, G E=- 93"" and A is positive semi-definite. It is normally assumed that 

m>n and that Rank(G) = n. Then: 

min JIF - AGIIF = min Ilvec(F) - vec(AG)112 
,4 's ,, 

A, S, " 

min 
ýývec(F) 

- 
(10 G") vec(A from (8.7) 

AE S", 

)112 

min ýývec(F) 
- (I &G T)UWT 

vec(A)L (8.14) 
AcS, ' 
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Here, W is the orthogonal matrix obtained from r basis vectors f wrl and S" denotes the 

set of all nxn positive semi-definite matrices. To illustrate let A be: 

a, a, 2 
a13 

A=A T 
a, a,, a23 (8.15) 
a13 a23 a33 

Note that because A is symmetric aj aj, . Here, if Anxn, A is defined by exactly 

r= n(n + 1) /2 elements. By using the vec operator for a3x3 matrix: 

al I 1 0 0 0 0 0 

a, 2 0 1 0 0 0 0 
a13 0 0 0 1 0 0 

a2l o 
l 

I ol ol ol o 

vec(A) = a22 =a,, 0+a, 2 0+ a22 I+ a13 0+ a13 0+ a33 0 

a23 000010 

a13 000100 

a23 000010 

a33 ] 101 101 101 [01 [01 [1 

If now the vectors are normalised to unit length, 

al 1 
0 0 0 

a12 0 IIV2 0 0 

a13 0 0 0 1/-, r2 

a, l 0 IIV2 0 0 

vec(A) = a22 a,, 0 + a12 '12 0 + a, I + al 3 '\12 0 

a. 3 
0 0 0 0 

a13 0 0 0 IIV2 

a.. 3 0 0 0 0 

-a33 

01 0 01 0 

a23 V2 

(8.16) 

0 0 

0 0 

0 0 

0 0 

0 + a33 0 

1/, 12- 0 
0 0 

1/ J2 0 

0 1. 

(8.1 7) 
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The r vectors fwj are now orthonormal and can be used to define matrix 

W= IWI 
W2 W3 *" Wr 1. Note that W"W = Ir since the columns of W are orthonormal. 

Further WW'projects orthogonally any n2 -dimensional vector onto vee(S'), so in 

particular WTý =ý for every ýe vec(S) . 

Now, the terms of equation (8.14) can be replaced accordingly: 

vec(F) H= (1 (9 G T)W WT vec(A) = vec(A) 

Apply singular value decomposition, to matrix H; this gives: 

H= [Ul U21 

][VT] 

here U, E=- R"', U, E=- R""-', Y- c R"" 
0 

E 
H=[ Ul U21 

VT 101 

=E NowletP=[Ul U, ]andL ýVT . Then, 

r[L] 
0 

andf can be factored accordingly to get: 

u pT f=Pj 
I 

iT 
f 

By substituting equation (8.18) back to (8.14) we obtain: 

min JIF - AGIIF = min ýý vec(F) -(I(& G T)UWT 
vec(A)L 

AES, " AES, " 

=min H-vec(A) (from (8.20) 
AcS, " 

L 

pTf _ p7'p 
[L] 

min vec(A) 
A, S'! 0 

(8.18) 

(8.19) 

(8.20) 

(8.21) 
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= min 
[u]_[L] 

(A) (from (8.21) 
AESI' 0 vec 

2 

min 
u- Lvec(A) 

AcS, " 1 

hence, 

minlIF-AG =(minýýu-L-vec(A) 
2+ 

11,112 
1/2 

(8.22) 
AES2 

IIF 

2 A (z S, " F 

Now, if we define Lvec(A) =k the minimisation problem is reduced to: 

minlIF-AG =minllu-k +minlllll' (8.23) 
AcS, " 

IIF 

k(=K 

IIF 
2 

Here, K is the convex cone: 

K= cone [L WTQ] (8.24) 

where 

Q= convjTý IIJ=Ivec(B 2) 
: Bc Uý (-- R2 

and, I is a constant, which does not affect the minimisation and represents a "fixed" 

cost. Graphically, the minimisation problem is equivalent to finding the distance of u to 

the cone K. 

8.4. Algorithms for Solving the Procrustes Problem 

The solution of the Procrustes problem is not straightforward and several algorithms 

have been developed for its implementation. Two methods will be used here, one 

developed by Allwright (1988) called the proximal point algorithm for conical cones 

and the steepest descent method based on Woodgate (2006). 

Proximal point aigorithm for conical hulls [Allwright 1988] Recall that the Procrustes 

minimisation problem has been reduced to: 
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min ýýu -k T- =L 
WT Q, K=cone[r] 

kEK 

IIF' 

where K, u, L and W are as defined previously. An acceptable approximation k 

(arbitrarily close to the exact optimal) can be found using the following facts: 

- There exists a 7r G R, such that for any point x in F there is a point yEr which 

is in the ray through 0 and x for which Ilyll >7r 

- For each gE R' a member of arg min Ig T -Y: -r GI can be found. 

The algorithm follows the steps as given in [Allwright 1988]: 

1. Select parameters by choosing: 
(0,00) 

k, 
) E=- cone [F], 

2. Initialise variables: 

an initial estimate of k 

ko := minpoint 
lulcone[jkoý]] 

b-, : =O 

i= 

3. Decide when to stop the iteration: 

Find a y, e arg minVu (k, )T (yi 
-kj, j, cs 

by finding 

y, E=- arg min Vu (k, )TY 

YES 

and setting 

77, V, if Vu(k, )TY 

yl = k, otherwise 

I 

Compute a lower bound b, for u(k): 

b, := u(k, ) + Vu(k, )'- (y, - k, ) 

Compute &: 
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max ýb, 
-,, b, 

if 

(ki) 111112 ] 
:! ý (I + 6)2 

[& 
+ 11,112 ] 

Then set k=k, and stop, else continue. 

4. Choose next iterand 

k, := minpoint[u, cone [line jk, yj J]] 

i=i+l 

The algorithm is proved to converge (see [Allwright 1988]). 

Steepest descent alp-orithm 

The steepest descent algorithm finds the nearest local minimum of a function. It starts at 

a point Po and moves along the direction of the negative gradient of the function i. e. 

-Vf (Pi) until reaching points P,,,. The steepest descent method is valid only when the 

gradient can be computed. Recall the original Procrustes problem of (8.13); this is 

minimised for those symmetric matrices A that satisfy: 

AGG T+ GG T A=Q 

where 
Q=FGT +GFT 

(8.25) 

(8.26) 

A solution is suggested by [Woodgate 2006], in which A is factored in the 

form A=ETE, which characterises all symmetric positive semi-definite matrices. Thus 

the problem becomes: 

min ýýF 
-ET EG (8.27) 

and solved over a "free" E. Although the cost function is not convex in terms of E and 

in fact possesses many local minima, it is shown in [Woodgate 2006] that any local 

minimum is actually also global, a fact which is assumed here xýithout proof. Thus the 
I 
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algorithm will solve the problem if it succeeds to converge to any local minimum. This 

can be guaranteed by careful choice of step-length. The steepest-de scent algorithm is 

used based on the following iteration for computing matrix E: 

coiDi (8.28) 

where D, is the search direction, given by the negative gradient, 

D, ::::::::: VEf(E, ) (8.29) 

-, 
) <f (Ej for all c For co >0 (sufficient small), f (E,, q, c (0, co) 'ff VEf (E, )#- 0. The 

gradient can be calculated as [Woodgate 2006], 

D, = EL (Lý) = EE Ti EjGG T 
+GG 

TE 
I 
TE 

I _Q (8.30) 

and 

(Ej -I tr F"F + (E 
I 
TEI)2 GG T 

_E I 
TE 

I 2ý 

The steepest descent algorithm will converge if co, is chosen sufficiently small. 

However, if co, is chosen too small, this can make convergence to the optimum solution 

slow. Standard techniques exist for adapting the step-length according to the (estimated) 

distance from the optimal point, so that large step-lengths are initially used and 

progressively reduced as the optimal point is approached. In the present implementation 

the step-length was chosen by an "Armijo"-type rule which minimises the cost function 

along the descent direction, and, although not necessarily most efficient in terms of 

computation time, performed well in practice. 

8. S. Stiffness Matrix 

Assemb_ The kj coordinate of a stiffness matrix of a structural 

system, represents the force corresponding to coordinate i due to a unit displacement of 

coordinatej. Consider for instance the simplest form of a structure, a uniform prismatic 
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bar of length L, elastic Modulus E and cross-sectional area A. The bar has one node at 

each end (figure 8.4). In order to find the first entry K11, a unit displacement is applied 

at one end of the bar, and the load applied at that end is calculated. 

Fil F12 

Figure 8.4 Forcer on a bar 

The elementary formula for stretching a bar an amount 6 is: 

t5 = 
FL 

=> F= 
AE 

5 
AE L 

(8.32) 

Now, F,,, is the force at node i associated with a displacement at node j, and u, is the 

displacement of node i. Assume as a sign convention that loads and displacements are 

positive to the right. Here a negative force is applied at node 2 to produce a positive 

displacement at node 1. Hence, 

F, , : -- , -= 
AE 

ul and F12 
= -F, >� = 

AE 
LL 

(8.33) 

By taking a unit displacement u, = u., = 1, we can write the above equations in matrix 

form: 
[Fll F12 ]= 

AE [11 

F, , F�� L- 
-ii ri -i lxl=kI 
1_i L-i 

(8.34) 

because the stiffness of a bar is k= AE /L. Therefore the stiffness matrix of the bar in 

figure 8.4 is: 

-1 ] (8.35) 

Consider now a more complicated structural system with m elements and n nodes 

(figure 8.5. a). This is a typical lumped mass representation of a buildin(). Assume that Z- 
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there is only one degree of freedom per node, in the horizontal direction. The stiffness 

matrix will be an n by n matrix generated by the individual stiffness matrices of the 

member elements. The stiffness matrix of any element of uniforrn stiffness ki between 

any two nodes i andj as obtained for the bar above, is: 

4; 

Figure 8.5 a) Building b) building idealisation c) SDOF system 

k, -kl (8.36) 
-k, k, 

The stiffness matrix of the lowest element of figure (8.5. c. ), between the lowest node 

and the support is different. The kl,,, kl, 2 and k2,1 terms are as above but the k2,2 term 

changes. The force required to displace it is also restricted by the support between the 

element and the ground of stiffness k, Therefore its stiffness matrix is: 

KI, 
2 : -ý 

[ k, 

-k, ký + k, 

Hence, the stiffness of the whole structure of n floors is: 

K, + K, +... 

or, 

(8.37) 
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ki -ki 
-ký k, 

K= 

and so, 

K, -K, 
-K, KI+K2 

-K2 

K=l 

k,, -k2 
-k,, k, k, -k, 

-k, k, 

K2 

K2+ K3 K3 

- 
K3 

Ki 
Ki K, + Kj+j - K, j 

Kn 

Kn Kn+ Ks 

with those elements not explicitly shown being equal to zero. 

-k,, 
k, + k5 

1(8.38) 

Characteristics of lumped mass structural building stiffness matrix: The k-,,, coordinate 

of a stiffness matrix of a structural system, represents the force corresponding to 

coordinate i due to a unit displacement ofj. Therefore, by definition, 

1. If node i and node j are not connected by any element of some stiffness k, then 

k,, 
j = 0. 

2. The main diagonal of the stiffness matrix is always positive, since a negative value 

would mean that a force at a point produces a displacement of that point in the 

opposite direction, which is unreasonable. 

3. The stiffness matrix is always symmetric if the relationship between applied loads 

and resulting deformation is linear. This means that a force at i has the same effect 

(produces the exact same deflection) onj as a force onj has on i. 

4. An unsupported or inadequately supported structure has a sinoular stiffness matrix 

and is positive semi-definite. This is a mechanism in civil Engineering terms 
ltý 

because the structure is not connected to any supports. Hence. aný external force 
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will make the whole structure move. If supports are sufficient to prevent all possible 

rigid body motion the stiffness matrix is non-singular and positive-definite. 
5. Finally, if each node is connected only to at most two consecutive members, then 

k,, 
j = 0, for ji 

- jj > 1. This means that between two members i and j that are not 

adjacent, as in the case of a building, the k,, j component is zero. 

8.6. Solution for the Building Structural Stiffness Problem 

Consider now the stiffness matrix of an n storey building without any bracing, and the 

members being connected vertically one on top of the other like the one of figure (8.5). 

The stiffness matrix can be decomposed as shown below: 

ký -k, 
-k, k, +k2 -k2 

-k2 
kn-2 +kn-I -kll-l 

-kn-, k,, 
-, 

+ kn 

or 

+ k,, + k, (8.39) 

Here, K is the overall stiffness matrix and k, the stiffness of the i-th element. The 

stiffness matrix is split into a sum of n simpler matrices containing only ones, each 

multiplied by k, . These coefficient matrices will be denoted by C, . Now, 

I _y ýF 'X112 = JIF - k, CX - k, C, X k,, C,, Xll 
2 

FF 

= trace 
I (F - k, C, A' - k, C, A' _... _ 

knCn X)T (F 
- kCIX - k,, C,, X -... - k,, CnX)ý 

For simplicity def me P, = kC, ; expanding the above equation ýý e have: 

n 
T ýppT), p pT 

F- KX112 = tracefF Fj+j]k, trjF"P, +P, 'Fj-jk, 2tr +j]k, ktrýPPT 
F 

1=1 
" 

1=1 1. 
.j, i 
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This can be written in matrix form as: 

kl 

T Tp, Tp F- KX112 --IraceýF FI-[trýF'P, 1 t« ... t« nl] 

k2 
' 

,1 F 

k 

IIp 
t ýpTp Tp ýpTp r tr 

... 
tr 

k, 
trjP2TPIj trjlýP21 tr f IýP 

k2 
... 

kn k, 

trýPTP 
k 

n 11 trýPTP 
... 

TP 
n n 21 

trýP 

which can be written in compact form as: 

JIF - KXII' = Ct + gT k+k T 
(Dk: = J (k) F 

where we have defined: 

trace fFT Fl, 

Tp Tp Tp IIT, [trýF trýF 
_ --. trfF n 1111 

Tp 
1 tr f pTp trýpTp tr ý P, 11 

21 1n1 

GD = 

trýzýp, 
1 

trýlýp21 ... tr 
1 

tr 
ý zT pl 1 tr f PT 1, ý ý 

... tr 
f P"T iý 

and 

kT= 

(8.40) 

The aim now is to find k that minimises the above function. There are two types of 

solution available. 

Assume that the problem is unconstrained, i. e. that the positive definiteness assumption 

ký >0 is automatically satisfied. Then: 
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U (k) 
_ ak - VJ (k) =)6 + 2(Dk =0 (8.41) 

=: > =-I (D-1 '8 2 
(8.42) 

For a realistic solution k, ý! 0 for all i, i. e. all the entries of the k vector must be non- 

negative. This cannot always be guaranteed by the unconstrained solution above, e.,,. if 

the stiffness of one member is significantly lower than the stiffness of the other 
members and the error measurement in X (orF) is large. 

The second solution takes account of the constraints and involves quadratic 

programming, which is a very powerful tool for solving quadratic optimisation 

problems. Here, the only constraint is that all k, values are positive. The problem is 

stated as: 

min J (k) =OT k+k T 
(Dk subject to k, >0 (8.43) 

Several examples have been tested with Matlab using quadratic programming and 

estimation by simple matrix inversion, i. e. K= FX-' (for square X only, i. e. for a fixed 

number of measurements equal to the number of stiffness parameters). First, valid F and 

X vectors were generated for a given "true" stiffness matrix K. The K matrix was 

estimated exactly with both methods. Next, random error terms were introduced in X, 

(or, F) and K was estimated. The estimated stiffness matrix was close to the original K as 

the error size was reduced and/or the number of measurements was increased. For large 

error terms negative estimates of K could be obtained via the first method but not when 

quadratic programming was used. 

8.7 Solution for the Positive Definite Case 

To test the effectiveness of the Procrustes algorithm two matrices K Cz 93"", and 

F c= 93""' were generated with K s,,,, mmetric positive definite and m ý! n. The force 

matrix F was calculated by the equation F= Lk and then the stiffness matrix %ý as 

estimated using the F and X matrices. Both algorithms ýN ere tested (proximal point and 

steepest descent). The stiffness matrix K \vas estimated \vith high accuracý (99.96%) 
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with both methods. Next, error terms in the displacement matrix X were introduced in 

the order of 10%. The results produced by the Procrustes algorithm were compared with 
those from simple matrix inversion K= FX-' (for m=n only). 

The Procrustes algorithm produced significantly better estimates than estimation via 
matrix inversion. Furthermore, the matrix obtained was always positive (serni-) definite 

as opposed to the matrix obtained by matrix inversion, which in some cases was not. 
Finally, by adding more measurements, i. e. increasing the number of columns of the 
displacement matrix X, the stiffness matrix estimation error consistently reduced. The 

results are summarised below for both algorithms. It was not clear (and beyond the 

scope of this work) to compare which method converged faster and with higher 

precision, a task that could have been undertaken via statistical analysis of the results. 
[Woodgate 2006], suggests a third method, the modified Newton algorithm, which in 

theory converges faster than either of the two methods used; however, because the two 

algorithms showed fast convergence rates and a satisfactory precision, the modified 
Newton algorithm was not implemented. 

Convergence rate of Procrustes algorithm compared to matrix inversion 

Method Original K K= FX-' Procrustes Procrustes 

(3 measurements) (10 measurements) 

Proximal 1.5 1.2 1.1 1.68 1.49 0.65 1.53 1.19 1.1 1.49 1.24 1.07 

point 1.2 1.2 0.9 0.92 0.67 1.82 1.19 1.21 1.01 1.24 132 0.82 

1.1 0.9 0.9 1.30 1 . 36 0-339 1.1 1.01 0.93 1.07 0.82 0.99 

Steepest 1.5 1.2 1.1 1.60 1.26 1.16 1.64 1.15 1.21 1.50 1.14 1.12 

descent 1.2 1.2 0.9 1.12 1.14 0.79 1.15 1.27 0.67 1.14 1.22 0.84 

1 
1.1 0.9 

- 
0.9 

I 
1.26 0.56 1.07 

I 
1.21 0.67 1.01 

I 
1.12 0.84 0.90 

I 
Table 8.1 
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8.8. The Tridiagonal Positive Definite Case - Alternating 

Projections 

The third case of structural stiffness matrix form is that of a symmetric. positive semi- 
definite and tridiagonal matrix but without any special dependencies between its 

elements. This stiffness matrix form is common in elastic structures. If the original 

Procrustes algorithm is used, the estimated matrix will not be tridiagonal in general. In 

order to employ this additional information the alternating projection algorithm will be 

used. 

Let S, ' be the convex cone of all positive semi-definite matrices and T the subspace of 

all tridiagonal matrices. Then the optimisation problem described in the previous 

paragraph can be formulated as: 

inf JIF-AGI IF 

AES, "r-)T 

The objective is to find the projection onto the intersection of the two convex sets 

S, 'and T, which will give the optimal positive semi-definite and tridiagonal stiffness 

matrix K. This can be achieved by the alternating projection algorithm, where at first a 

positive semi-definite matrix is obtained followed by a tridiagonal matrix, followed 

again by a positive semi-definite, matrix etc. until the solution converges. The algorithm 

is shown graphically in figure 8.6. The cone represents the set of positive semi-definite 

matrices and the oval shape is the set of the tridiagonal matrices (which is in fact a 

subspace). The solution will alternate from PSD to Tridiagonal until the intersection is 

reached, which is the solution of the problem. 

Alternating projection algorithm 

The method of alternating projection is a powerful tool for determining best 

approximations from a closed convex set K, if it is the intersection of two or more 

closed convex sets. Although this is difficult to achieve in detail, calculatinc', the two 

individual projections is straightforward. The algorithm was originally developed to 

calculate projections onto the intersection of (closed) convex sets. For mo subspaces, 
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the rate of convergence of the algorithm depends on the -angle- between the two 

subspaces. The proof of this result is given in [Deutsch, 2001]. The important points are 

summarised below for the case of two subspaces: 

Von Neumann's Theorem. Let M, and M2 be closed subspaces in the Hilbert space X. 

Then for each x c: X, 

lim (P, PO, (x) = P, nm, 
(x) (8.44) 

n --> rxD - 

Anv_le between two subspaces 

The rate of convergence of the alternating projection algorithms depends solely on the 

angle between the two subspaces. If the angle is large the rate of convergence is fast as 

well. 

Figure 8.7 Alternating projection 

M1 

11 

Theorem [Deutsch, 2001]: Let M, and M, be closed subspaces in the Hilbert space X 

and c =c(M,, M, ). Then foreach xE X, 

< C2n-1 
ýýX 

_ 
(X)ýý < C2n-1 

>II (8.45) 

for n=1,2,3 ),... Moreover, the constant c is the smallest possible constant in the above 

inequality indePendent of x. 
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Dykstra's aljZorithm: [Deutsch, 20011 

In this section the Dykstra algorithm is used. This result proves that best approximations 

can be computed via an iterative procedure, if an algorithm exists to project onto 
individual subspace or closed convex set. Here, the set of all PSD matrices is a convex 

cone as explained in an earlier section while the set of symmetric matrices with a 

triangular structure is a subspace of the vector space of all symmetric matrices (and thus 

also closed and convex). 

The algorithm proceeds in cycles. Let Pk (x) be projection onto the intersection of the 

n-th convex set K,, n=1,2,..., r, where r is the total number of convex sets. Now 

assume that [n] =n mod (r) ,x depends on Pk, (x) and on an error term e,, generated as 

the algorithm proceeds, i. e. 

=P xi k� (xý�j, 1 +e�-, ) (8.46) 

and 
en «z x. -, 

+ en-r - Xn (8.47) 

Also, e_l and eo are initially set to 0. The first few steps are shown for the case on two 

convex sets: 

n=O xo =0 

e-I = 

n=Ix, =Pk, (xo +e-, ) 

e, =x,, +e- , -xl 

2 x, =Pk, (x, +e0) 

e, =x, +e, -x, 

=P (x +e n=3 X3 kl 2, 
) 

e3 =x, +el - X3 

etc. 

The algorithm is shown graphically below for the case of two convex sets: 
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X3+e2 

X--.,: Xo 

Figure 8.8 Dykstra algorithm 

The Procrustes problem has been solved with Dykstra's algorithm. The two convex sets 

in this case correspond to, (i) SI", the convex cone of symmetric positive semi-definite 

matrices and, (ii) the set of all symmetric matrices with triangular structure (actually a 

subspace). The first projection can be performed using either the proximal point 

algorithm described earlier or via steepest descent. The second projection is 

straightforward and can be performed using the projection operator W defined 

earlier followed by setting to zero all elements a,, with Ii-j 1> I. 

To test the results, positive definite triangular stiffness matrices K were generated 

randomly, together with corresponding force and displacement matrices F and X (either 

error free or corrupted by measurement noise error terms) and subsequently it was 

attempted to estimate the stiffness matrix from the data using the two algorithms 

described earlier. The alterriating projection algorithm was terminated after either a :1 zn 

fixed number of iterations or when a tolerance criterion involving a norm of the 

difference between two consecutive estimates aenerated during the algorithm was 

satisfied. The matrices produced at the odd iteration steps were positive semi-definite 

but not necessarily triangular, while the opposite conditions were satisfied at the even- 

numbered steps. However, as the algorithm converged to the optimal solution both sets 
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of conditions were satisfied. The positive semi-definite condition was monitored by 

displaying the smallest eigenvalue of the estimated stiffness matrix which needs to be 

non-negative. 

Minimum eigenvalug 0 

-0 1 

-0 2, 

r 

-0 
3- 

-0,4 - 

-0 5- 

-0 6- 

-0 7 

-0 81 
05 10 15 20 25 30 35 40 45 

Figure 8.9 Minimum eigenvalue for proximal point and steepest descent 

Maximum absolute off-diagonal element 

vo 

07- 

06- 

05- 

04- 

03- 

02- 

01 

0 
05 10 15 20 25 30 35 40 45 

Figure 8.10: Maximum absolute value of estimated element I KU 1,1 i-j 1> 

for proximal point and steepest descent 

Figures 8.9 and Figure 8.10 display the minimum eigenvalue and the maximum 
tý Z: ) 

absolute value of the entries in the (ij)-th positions with Ii-j 1> I, generated during a 

typical aloorithm (using both methods). It can be seen that the both al(Torithms converge 
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towards a solution which is both positive semi-definite and triangular. The force and 
displacement vectors used in the example were chosen as: 

0.1326 -1.5804 -1.0246 -0.4293 
F= 1.5929 -0.0787 -1.2344 0.0558 

1.0184 
L- -0.6817 0.2888 -0.3679 -i 

and 

-0.4650 2.1122 1.0378 0.. ) 155 
X 0.3710 -1.357-33 -0.3898 1.5532 

0.7283 -1.0226 -1.3813 0.7079_ 

respectively. Although in this case the method using the proximity algorithm (deemed 

to have converged when the norm between the estimate and the solution is smaller than 

10-') appears to converge slightly faster than steepest descent (i. e. in 15 rather than 

about 20 iterations) the overall results were mixed and thus no finn conclusions could 
be drawn in general concerning the convergence rates of the two methods, either in 

terms of iterations or computation time. It was noted, however, that unless the 
n 

projection onto S,,, (using either method) was calculated reasonably accurately, the 

alternating projection algorithm could exhibit small oscillations and a non-monotonic 

behaviour. 

8.9 Dynamic Stiffness Matrix Estimation 

Making real scale experiments on existing buildings in order to measure the 

displacement and hence calculate the stiffness matrix is difficult in practise. Let us 

assume that a building, or a part of a structure is damaged due to an earthquake, a blast 

or a fire that has resulted in failure of a member or weakness of a part of the structure. 

Alternatively, assume that there is an ancient building or monument whose stiffness 

matrix is not known or that it has degraded through time. Performing actual experiments 

on site is very difficult and transporting the building at a different location is either not 

possible or too expensive. Typically, it is easy to apply a force on a member and 

measure its displacement, but in order to measure the displacement of all the nodes of a 

structure a very large force has to be applied. Furthermore, typical stiffness ýalues of 
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buildings are at least in the order of 106 Nlm, which means that a force of lKA' will 

produce displacements in the order of I mm. Therefore, in order to obtain realistic data. 

large forces are needed to provide reasonable displacements and reduce the error in 

measurement. One alternative way to overcome this practical obstacle is to let nature 

provide the forces. If the structure is in a region of frequent earthquakes or large winds 
then if the structure is provided with sensors, during the earthquake many recordings 

can be taken, and an estimate of the stiffness matrix can be obtained. A further 

advantage of this method is that from a dynamic response many more measurements 

can be recorded and more accurate estimates can therefore be obtained. Here. the 

measurements are dynamic but this does not change significantly the stiffness matrix 

calculation, provided the developed stresses do not exceed the elastic limit. 

Let us assume that the stiffness matrix of a building is required. The acceleration of the 

earthquake, the epicentre and hypocentre and hence distance to the site are all known. 

Also the energy lost from the earthquake until it reaches the site is known as well. 

Finally assume that accelerometers are placed on every floor, together with 

displacement and velocity sensors (alternatively acceleration data may be used to obtain 

velocity and displacement data). 

Now, the force on the building from the earthquake is F, 

Alfi + Cý + Kx 

and hence 

(8.48) 

(F - AIÜ - Cý) - Kx =0 (8.49) 

Assume that the only unknown in this equation is K. The above equation can be 

formulated as a Procrustes problem used to estimate K. An example was performed in 

Matlab where the exact stiffness was obtained from the Procrustes algorithm and direct 

matrix inversion, from only a few measurements matching the order of the system but 

without injecting any measurement noise. 
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Figure 8.11: Percentage estimation error vs number of measurements 

25000 1 

20000 

U) 15000 d 

10000 

5000 

0 
0 50 100 150 200 

Number of measurements 

Figure 8.12: Total stiffness estimation vs number of measurements 

Next, errors in the measurements were introduced of the order of ±1%. Now, the 

estimated stiffness matrix was quite inaccurate when direct matrix inversion was used. 

In order to estimate the stiffness parameters accurately, several measurements were 

obtained and thus F and X become matrices with many more columns than rows. The 

accuracy of the method depends laragely on the number of measurements taken. Graph 
I 

8.12 shows the total stiffness error as a function of the number of measurements. The 
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estimate of the sum of the stiffness of all floors is also shown (true value is 233800 X/m)- 

From these two graphs it is clear that a minimum of 40 measurements are required to 

give an accurate estimate of the total stiffness. For 25 measurements there is a 20% 

error measurement, which is unacceptable. 

8.10 Real-time Stiffness Estimation Example 

This section extends the work of the previous section in the area of stiffness estimation 

via an adaptive control example. Consider for example that part of a structure has failed 

due to a large earthquake and as a consequence the structure is weaker. The new 

stiffness matrix is not known, although it is required for any kind of control design. In 

order to reinforce the structure an active controller is employed. The controller's dual 

purpose is to protect the structure and also to help estimate the new stiffness matrix. 

Because the exact stiffness is unknown, an initial stiffness matrix is assumed, which is 

also used for controller design purposes. The structure is the 3-storey building 

considered in chapters 5 and 6 and uses an LQR controller. The initial stiffness matrix 

Ki used for the design and the real stiffness matrix (K, ) are shown below. The real floor 

stiffness is 40% less than the one initially assumed. 

18600 -2600 00 

-2600 5200 -2600 0 
K, 

0 -2600 5200 -2600 

23960 -1560 00 

Kr =ý 
-1560 3120 -1560 0 

0 -1560 3120 -1560 
00 -2600 2600 00 -1560 1560 

Graph 8.13 shows the results of four different simulations. The first one is the response 

of the structure to an impulsive loading without any controller (passive response). The 

second one shows the "expected" response, i. e. the response we expect to observe if the 

structure had the initially assumed stiffness matrix. The third response is the -real- 

response of the active system, which is unstable. Thus, by using incorrect parameters 

for the design an unstable closed-loop system is produced. The fourth simulation shows 
4D 

the "ideal" response. which is what we would get if the correct stiffness was known at 
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the design stage (and the LQR controller was designed with the same weighting 1.1 
matrices). The "real" control input (figure 8.14) is also constantly increasing which is an 
indication of an unstable design. 

40 
Impulse response 
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X- 
10 ------ 

0 
2 Or- 1ý --IVý; V V" VV 
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- real 
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Figure 8.13 Acceleration (passive, expected real and ideal) 
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Figure 8.15 Frequency bode plots (passive, expected real and ideal) 

Next, an online stiffness matrix estimation scheme was employed, as described in 

section 10. In order to obtain an accurate estimate of the stiffness matrix, at least 30-50 

measurements are required (see section 8.9), corresponding to a period of 0.5 seconds 

for a sampling period of lOms used here. Using this time the system operates in closed 

loop with the controller designed on the basis of the wrong (initial) stiffness estimates 

and thus the response starts to show increasing amplitudes of oscillation as the closed- 

loop is unstable. At time t=0.5s. the controller is switched to the one redesigned using 

the stiffness matrix estimates. The simulations of the responses of the displacements of 

the four floors are shown in figure 8.16. 

An alternative method is to use an adaptive control scheme where after each 

measurement is taken, the stiffness is estimated and an online LQR controller is re- 

designed and the corresponding control signal applied for the next sampling interval. 

The drawback of this method is that each sampling interval a new estimation and an 

LQR control design are needed, tasks which are both time-consuming (although 

possibly feasible for the sampling rate used). Since a number of measurements are Z: ) 

required before an accurate estimate can be obtained, a -forgett in g- factor" type estimate 

of the form: 

1) 1) 1) 
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Figure 8.16 Floor displacements using adaptive control scheme 

20Ký + nKý, 
20+n 

(8.50) 

can be used. This combines the initial estimate with the new estimates obtained in real 

time. As the sampling index increases, the initial estimates are progressively discounted 

and replaced with the more accurate estimates, based on the real-time response of the 

system. 

8.11 Summary 

This chapter considers the estimation of stiffness matrices by using the Procrustes 

approximation method. When the stiffness matrix is unknown, by applying a force F 

and measuring the resulting displacement vector X, the stiffness matrix K can be 

obtained. The Procrustes method is a strong optimisation tool when uncertainty in 

measurements is present and when a-priori knowledge of the stiffness matrix form is 

available. Three forms of structural stiffness matrices common among structures have 

been considered. The simplest one is a special form present in buildings where the 

stiffness rnatrix is tridiagonal with only as many variables as the number of floors. Here, 
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the Procrustes algorithm was not required; since the solution can be obtained 

analytically or via quadratic programming. The second form is the most I! -eneral among 

structures where the matrix is positive definite. The Procrustes method was used by 

choosing two optimisation algorithms, namely the proximal point [Allwright 1988] and 

steepest descent [Woodgate 2006] algorithms. Both methods were successful for 

estimating K with satisfactory accuracy, especially as the number of measurements was 
increased. The third form is one that is positive semi-definite and tridiagonal. Here, the 

alternating projection method was applied for solving the estimation problem. This 

algorithm proceeds in cycles by successive projections onto the cone of positive semi- 
definite matrices and the subspace of tri-diagonal matrices, respectively, until 

convergence to the optimal estimate is obtained. The main advantage of the method is 

that its theory guarantees convergence to the global optimum and also provides 

estimates of the convergence rate. 

In the last part of the chapter, the estimation scheme was expanded from the static to the 

dynamic loading case. Instead of applying a set of static forces and measuring the set of 

corresponding displacements, during an earthquake sensors can be used to measure 

these forces and displacements continuously. Thus, a much larger number of 

measurements can be obtained and a better stiffness estimate results. The work of the 

chapter concludes with an adaptive controller design example. Here, active control is 

applied to a structure with poorly known stiffness properties. A fixed LQR controller 

designed with the wrong parameters is shown to be unstable. However, if on-line 

estimation is used and the estimates are used to re-design the controller, stability and 

performance (vibration suppression) of the design can be recovered. 
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CHAPTER 9 

BENCHMARK PROBLEM CASE STUDY 

9.1. Introduction 

The last part of the thesis is a case study. The previous examined control design 

methods, LQG, H., LPOC and passive control are applied and verified into a realistic 
full-scale structure. Certain aspects relevant to controller implementation are discussed 

in detail. In the previous chapters emphasis was given into the optimality of a controller 
in terms of reducing structural deflections and accelerations or control effort. Here, the 

main objective is to determine if a design method is applicable to a real life problem, e. g 

when time-delays, large scale-models or multi -objectives are taken into account. A 

more sophisticated finite-element structural model was obtained for the structure used in 

this chapter. Finally, the chapter contains a more complete set of results related to 

comparison of different design methods than those presented in previous chapters. 

Benchmark problems: The structure chosen for control design is a benchmark problem. 

It was introduced by a committee of researchers with the objective of having a common 

set of criteria under consideration when testing different design techniques or 

algorithms. There have been three generations of benchmark structures so far: The first 

generation was a three-storey regular building implementing an AMD or an ATC 

system. The 2d generation of benchmark problems included an Earthquake- excited 20- 

storey building and a 76-story building subject to wind loading. The first building 

required apart from controller design the specification of the best type of actuators along 

with the number and location of actuators and sensors used and the latter had a TMD or 

AMD at the top floor. The third generation of benchmark problems includes bridges and 

non-linear buildings models. They are 3), 9 or 20-storey non-linear building, a wind 

excited 76-storey building, a cable stayed bridge and a smart base isolation problem. 

The complexity of the benchmark problems increases and although the first ,, eneration 

problems were set mainly for comparison of various schemes, the purpose of the last 

two generation problems is to verify the stability of control algorithms. 
11-1) 11 
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For this study two benchmark problems were used, the first for the 3-storey building 

using AMD. Then an active control scheme for a 76-storey building with wind loading 

was designed, to investigate issues arising in large and complex structures. 

Benchmark problems have been extensively used by many researchers since their 

introduction in 1998. They have been widely accepted by the scientific community and 

they constitute an official method of measuring the performance of various design 

methods for structural control. There are special Benchmark sessions in structural 

control conferences and special Benchmark issues in journals (e. g. the special issue in 

Journal of Earthquake Engineering and Structural Dynamics, Volume 27, issue 11). 

The advantage that benchmark problems offer is that the models usually correspond to 

real or designed buildings. Furthermore the assessment criteria are realistic because they 

are applied in the way they would be applied in a real problem, e. g. by including 

saturation actuation levels, time delays and any other limiting factors arising in real- 

time active structural control. Also, the state space models used are typically obtained 

from extensive finite element analysis, or from experimental data. 

The benchmark problem in structural control was introduced in 1998 by [Spencer et al. 

1998] It represents a structural control problem that can be used to evaluate several 

control algorithms. The structural model used was one that had been fully designed but 

not built [Chung et al. 1989], [Chung et al. 1988], [Dyke et al. 1994b]. The evaluation 

model was derived by using experimental data at the structural dynamics and control 

earthquake engineering laboratory at Notre Dame University. 

The aim of Benchmark problems was to have a unique/common model and design 

framework for researchers so that valid comparisons between proposed new design 

methods or algorithms can be made. Several issues such as model reduction, time 

delays, saturation, multi objective design, limit sensors, noise are taken into account. 

The researcher needs to design a suitable controller, which is simulated for real 

earthquake measurements and random signals of certain type. The results are evaluated 

by several criteria, including peak and RMS values of displacement. velocities and 

accelerations of the building floors and the actuator. 
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9.2. lst Benchmark problem-3 storey AMD 

9.1-1. Model description 

Experimental model: The structure is a regular 3-storey, single bay steel model subject 
to I-dimensional motion. The structural frame has a mass of 77 Kg and the floors 227 

Kg distributed evenly. The height of the frame is 158 cm. A scale time factor of 0.2 was 

used, which means that the modes have 5 times lower periods than the full-scale 

structure. The other model quantities have been reduced accordingly: F=1: 60, 

mass = 1: 200, T=1: 2, displacement = 4: 29, acceleration = 7: 2. 

The control scheme used was an AMD placed on the 3 rd floor. It consists of a servo- 

actuated hydraulic cylinder of 3.8 cm diameter and maximum displacement (stroke) of 

30.5 cm. The mass of the AMD was 5.2 Kg, 1.7% of the total mass of the structure. 

Sensors are placed on each floor measuring the acceleration of the ground, every floor 

and the acceleration and displacement of the AMD device. Note that the designer has 

the option of measuring displacements and velocities as well, or to assume any 

combination of the above measurements. 

Evaluation model. - 

The State space description of the model is given by: 

)ý = Ax + Bu + EYg (9.1) 

y=C, x+D.,, u + Fý, ýg +v (9.2) 

- =C -x + D, u + Fj 
. 

where, x is the state vector 

-V3'Xm "Y9 is the measured output vector 

(9.3) 

[x,, 
X, X, X21 X3 -ýP-ým'3ýg 

] 
is the regulated output vector 

.4 
is the system dynamic matrix reduced by model reduction 
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B is the control input matrix 
E is the exogenous ground excitation matrix 
C is the measurement matrix 
D is the control input feedthrough matrix 
F is the exogenous feedthrough matrix 

-ýg is the exogenous input (disturbance) 

The full model has 28 states but it is reduced to 10 states after appropriate model 

reduction. Note that the 10 states do not directly correspond to physical states, e. g. the 

4 th state does not correspond to the floors' acceleration, velocity or displacement of a 

certain floor. Therefore the designer cannot obtain the physical state-variables from the 

A matrix. The only known information is the measured and regulated output signal. 

Stationarv random process iny2ut. - The excitation inputs are two historic earthquake 

records and a random input. The random signal is a stationary random process with a 

spectral density defined by the following Kanai-Tajimi spectrum 

s 
o(4 

2 2C02 + 4) ;g og 
S, 

ýg, ý 9 
(Co) =2 

olg- 

"üJ2 
(9.4) (CO 

- 019 + 4; 
g2 ü19- 

where cog and Cg are within the following ranges: 20rad /s:! ý cog :! ý 120rad /s and 

0.3:! ý 4g :! ý 0.75. For comparison purposes the spectral intensity is chosen such that the 

RMS value of the ground acceleration takes a constant value of u.,, = 0.12g. 

0.03 
g - (4ý; 2 

+ I)g 
S' 

"Cog 
9 

(9.5) 
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Evaluation criteria This Benchmark problem has 10 evaluation criteria, which include 

RMS and peak responses, for the 2 real earthquake and the one random excitation 

signal. They include accelerations, displacements and velocities of the floors and the 

mass driver. Therefore the design methods are evaluated for all possible aspects. The 

five first evaluation criteria are for RMS responses for the random excitation signal. 

The first criterion is the non-dimensional measure of- 

O-d, 07d, 07d3 

Mýx (9.6) 
')91119 07" ()7X; ()7"3 

It measures the ability of the system to minimise the interstorey drifts relative to the 3 rd 

floor displacement of the uncontrolled structure. Here, Ud, is the interstorey drift 

between two adjacent floors, where usually the maximum displacement occurs at the 

lower floor. (7, is the worst-case stationary RMS 3 rd floor displacement of the 

uncontrolled structure, occurring when a), = 37.3 radls and ;g=0.3. 

The second criterion is the maximum absolute floor acceleration divided by the worst- 

case stationary RMS 3 rd floor acceleration of the uncontrolled building (occurring again 

when co,, =37.3 rad/s and ý; g = 0.3 ). 

max 
ax ax, 

07 0-_ 
(9.7) 

The next three evaluation criteria involve the actuator, and are given by the ratio of its 

displacement, velocity and acceleration to the uncontrolled building's 3 rd floor 

displacement, velocity and acceleration, respectively. The actuator displacement 

provides a measure of the physical size of the control device. The actuator velocity 

provides a measure of the control power required and the absolute acceleration is a 

measure of the magnitude of the forces required for the actuator to execute the 

commanded control action. The evaluation criteria can be expressed as: 
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J3 :- MýX 
07X" 

(9.8) 
og "g 07, 

J4 
::::::: max 

(9.9) 

g, ý"g 

J5 
=max 

ý7xýl (9.10) 
og, jg 07X; 

The other five evaluation criteria involve peak responses. Here, the input is a historic 

earthquake record. The records used are the NS record of the 1940 El Centro and the NS 

1968 Hachinohe earthquake. The time scale for the earthquakes is increased by a factor 

of 5 and the magnitude decreased by a factor of 3.5 because the building is small-scale. 

Both earthquakes are considered and the performance index is always the worst case 

scenario of the two responses. The evaluation criteria are similar to the 5 first ones but 

now involve peak responses rather than RMS responses. The first index is the ratio of 

the maximum interstorey drift relative to the 3 rd floor displacement of the uncontrolled 

building: 

J6 
-'::::: max Max 

xi 
AlCentro X 
Hachinoh, 

[ 

3 

X, - xi X3 - X' 

X3 X3 

11 

(9.11) 

The next performance index is the maximum peak acceleration of the three floors 

normalised by the third floor acceleration of the uncontrolled building, i. e: 

3 J7 --": max, 
[max 

ALCenfro x 
Hachmoh 333 

The last three evaluation criteria are given by the ratio of the actuators' displacement, 

,, rd 
velocity and acceleration normalised by the .3 

floor uncontrolled displacement, 

velocity and acceleration respectively: 

max max 
xM 

(9.13) 
ELCouro Hachinoh, 

l 

X3 

I 
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Jq = max max ELCentro X 
Huchinoh, 

l 

3 

JIO = max max (9.15) 
ELCeniro 
Hachinoh, 

l 

3 

Simulation modek The input passes through a multiplexer to the plant, specified as a 

continuous state space LTI model given in equation (9.1). Out of the 13 regulated states, 

equation (9.3) (displacement velocities or accelerations of each floor and AMD and 

acceleration of ground excitation) only 6 are taken as measurements: 
( 

-ýI 1 
3ý2 

ý 'ý3 ý -ýrn 1 
Xm 

ý 
3ýg ), 

of which only the 4 accelerations are measured from sensors, i. e. 

( 
-ýl ý 

3ý2 
1 -ý3 ý Note that the designer has the choice of using different measurements by 

connecting the appropriate states to be measured to the multiplexer. Sensor noise is 

added, with the user having the ability to specify the noise level. Next, the signal is 

limited in amplitude, discretised and quantised. Thus, the designer needs simply to input 

the state space form of a discrete controller. A saturation level of maximum control 

voltage is specified and a unit delay of I sample period is imposed to make the design 

more realistic. The signal is then fed back to the plant. 

(in Volts, time scaled) 
= Bu 

--7 yj 
ý+ 

Du 
nurneq(ýs) 

+Z 
Vector to mu 

LF Plant Workspace 

E] 

(Evaluation Wdel) 
Band-Lirnited Kanai-Tajim 
White Noise Filter I 

iVV 
Sensor 

F-00- usignal 
Noises 

Corninand Signal 
to Workspace 

Clock Time Vector 
to Workspace Dernux 

Mux 

/Z y(n)--Cx(n)+Du(n) 

L; iitýlay x(n+1)=Ax(n)+Bu(n) 
du-antizer Saturation Quantizer Saturation 

Discrete Controller 

FiLyure 9.1 1 "Benchmark problem, Simulink model 
1: 1 
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9.2.2. Control design 

LOR design 

A sample controller has been designed for this benchmark problem by S. Dyke. The 

objective of the LQR is to minimise the following performance index: 

T- 
j(u) 

= 
f(X TQX + UTRu + 2XT Nuýt 
0 

subject to plant dynamic constraints )ý = Ax + Bu + EYg 
, 

Here, u is the control effort 

measured in terms of actuator displacement. x includes 3 regulated outputs which are 

the accelerations of each floor( 3ý1 
9 
3ý2 

5 
3ý3 ), In the above equation the first term 

represents the states whose weighted energy is to be optimised, the second term the 

control effort and the last term represents various cross-terms between state and control 

variables. The appropriate Q, R and N matrices are chosen such that the given control 

problem can be formulated in the standard LQR problem formulation. 

In our case the 4 quadratic optimisation terms are: 

. 
ýl 

-= 
CI TX+ 

p, DI u z* 12=pI 
2XTCIC 

I 
TX+ 

pI 
22X T CID, u +, o 12D12u2 

D _ý2 = )02XTC,, 
CTX +)02 2XT C, D, u +)02 D 2U2 TX + 

102 2U 222222 )02C2 (9.17) 
CTX +D2=, 02XT CTX+ 2 

XT + )02 
2U2 

-ý3 
A3A3U33 C3 

3 P3 2 CAU 
3D3 

.ý=cTX 
+)04D4 U2= 

10 
2x TC CTX+, 02 2XT D 

'02 
D 2U2 

m 
P4 4m4444 

C4 
4U 

+44 

where Ci and A are obtained from the known measurement and feedthrough matrices. 

Here, the LQR does not take the F,, matrix into account which is an acceptable 

assumption. Finally, P, is the penalty term of each objective. 

By summing the 4 objective functions we have: 

PI 
2 X7'(, 02CIC7'+ ýO'CCT +)02CCl + P2 x+ Z2T 

I124 
C4C4 

X, I+ 
P2 

-ý 
+A 

-ý-f 
+ A'ý' 

i=l 
2c + 

(P2 2 )U2 
+ (9.18) +2x'(, o, Dl+p2-C, D, + 

"C 'C4D4)U D+ Dý2 +, o., Lý. 2 
+p2 D42 

10; loý I14 
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from which the matrices Q, R and N can be obtained as 

)012CICIT 
2TT+ 

)02 
T 2C3C3 

4C4C4 
+ )02 

C2 C2 A 

2c 
+, 02 

2 
+, 02 R =, o, 1D, 2C2D,, +A CA 

4C, D4 (9.19) 

N=pl 2 
D, 

2 
+, 02 D2+, 02 D2+, 02 D2 213141 

The penalty terms p, = p2= p3 =I were initially assumed for the design, placing equal 

emphasis to all three acceleration minimisation objectives. The penalty term on the 

control effort is set to P4 = 50. This is the minimum penalty for a valid solution of the 

LQR problem. This is because for a lower value of p4 the standard LQR assumptions are 

not satisfied and the closed-loop system is unstable. The results obtained are identical to 

the ones from the sample controller designed by Dyke. Note that for a stabilising 

controller, the standard assumptions of LQR theory must be satisfied: 

4 The pair (A, B) is stabilisable 

R>0 and Q-NR-'N T>0 

4 NR-'N", A- BR-'N T) has no unobservable modes on the imaginary axis 

LOG design 

Here, the state space equations are assumed to be of the form: 

-ý = Ax + Bu + Fco 

u= Cx+ Du+ v 

(9.20) 

(9.21) 

where (o and v are unknown errors and disturbances modelled as white noise signals 

(zero-mean, stochastic processes uncorrelated in time, see section 5.3.3). A state 

estimator was added at this point. This is an exact replica of the existing system. The 

sensors are accelerometers that measure the acceleration at each floor. The remaining 

states (displacement and velocity variables) are estimated. Covariance matrices are 

chosen as H' = 25, V=I, A, ' =0 for all sensors. The optimal Kalman filter has a state 

equations gi,,,, en as: 
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,ý= Aý + Bu + H(Ci - Cx) (9.22) 

ý= Cý + Du (9.2-3)) 

The 10 performance indices obtained with LQG control are summarised below in 
Figure 9.2 

1- 

0.8 

0.6 

0.4 

0.2 + 

o 

Figure 9.2 Benchmark I LQG performance indices 

H,, control 

The second design method uses an H,,,, controller. The method has been described in 

section 3.6.4 and applied in chapter 5. Here, only the important aspects for the design 

will be outlined. Recall equations (9.1) to (9.3) below, where (9.1) is the state vector, 

(9.2) is the measured output and (9.3) is the regulated output. Both the vector of 

regulated and measured variables are defined to be the three floor accelerations together 

with the actuator's acceleration. A penalty is included for the control effort, like in the 

LQR case, to account for the relative importance of each optimisation objective. Here, 

the meaning of the penalty is different then in LQR because the minimisation norm 

corresponds to a different quantity then in LQR. The penalty term is adjusted only for 

the control effort, assuming a unity penalty for the floor accelerations. The generalised 

plant is obtained by writing the state equations, driven by the vector of external 

disturbance and the control signal. The output variables are the vector of (appropriately 

weighted) regulated signals and the measured signals. Z: ) Z: ) 11: 1 
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xi lolci p, DI, P1F11 
)o2C2 P2D12 )o2F12 

'ý3 
A C3 P3D13 )o3F13 

0 
)04 

0 

. ýi = ci X+ D, , 
u+ F, , 

x9 

-ý 2 
C, D12 FI 

2 

'ý3 
C3 D13 FI 

3 
c� DI4 F14 

The objective is to design a controller, which minimises the infinity norm of the transfer 

function from the disturbance to the regulated outputs, i. e: 

Týl 

min 
T", 

min rnaxý Kcs Tý Kes ý, (-R 

Tý. 

2+2 
+ýT 

2+ 

min max ý102 T, (jw) 
2 

+10, (jýý)ý2 +, 0,, ý7ý 
", 

(jýo) ý2+ 
(jL, ) )ý2 1 (9.24) 

KE-s -, (-=R 
Iý X1, 

-1 7ý- 3M 

which, represents the weighted sum of the energy of the three regulated signals. A stable 

controller is obtained that stabilises the closed-loop system. It was discretised using 

Tustin's transformation and finally simulated. Several values of penalty on the control 

effort have been applied and the evaluation results for p= 20 are shown in figure 9.33. 
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Figure 9.3) Benchmark I H, performance indices 
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LOR with identification filter 

The next design is an LQR controller with the addition of an identification filter. The 

filter forces the controller to place more emphasis to the frequencies of the input where 

most of the energy is concentrated. When the input is the earthquake, the Fourier 

transform of the earthquake is obtained and so the distribution of frequencies is known. 

By increasing the order of the filter the accuracy is increased, but so is the order and 

complexity of the controller. Figures 9.4 and 9.5 show the spectral density of the two 

earthquakes, El Centro and Hachinohe. Some modifications in Simulink were needed 
before obtaining these responses. The El Centro earthquake record runs for 10 seconds 

and consists of 2500 uniform samples, thus T, =0.004 s which was the assumed 

sampling interval of the controller. Similarly, the Hachinohe earthquake record runs for 

7.2 seconds and consists of 3600 samples; thus the controller sampling time in this case 

was changed to T, ý0.002 s from the original value of T=0.001 s. A3 rd order filter was 

found adequate for capturing the spectrum of the two signals. If is was required to 

maintain the original sampling interval, interpolation of the data records would have 

been performed - however this was not done as the two new sampling rates are 

adeq uate. 

The controller designed using the filter reduced control effort but increased the 

accelerations, displacements and velocities of the each floors. As a consequence a 

higher control penalty of o= 80 was used. 
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Figure 9.4 Hachinohe earthquake signal Fourier transform 
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Figures 9.5 El Centro earthquake Fourier transform 

The performance indices have not been improved by the addition of the filter. To 

investigate further the reason for this all the peak and RMS values of the 12 measured 

indices for the two earthquake records with and without the filter were considered (table 

9.1 ). Clearly the fi Iter has almost no effect when considering the EL Centro EQ, but has 

improved the performance when considering the Hachinohe EQ. This can be explained 

because the Hachinohe Earthquake has a narrow frequency band and thus the filter 

considerably improves performance. In contrast, the EL Centro spectrum has a wide- 

band and therefore any kind of frequency weighted filter is of little use. The filtered 

LQR design cannot deteriorate compared to the simple LQR as suggested by the 

performance indices. This is because the perfon-nance indices are obtained by 

comparing each individual floor for both EQ records and taking the worst case. This 

combination leads the filtered LQG to be worse for some indices than the simple LQG 

design. 
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Figure 9.6 Benchmark I LQR with identification filter evaluation indices 
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LQR with and without filter, peak and RMS responses 

LQR LQR with Filter 

El Centro Hachinohe El Centro Hachinohe 

PEAK RMS PEAK RMS PEAK RMS PEAK RMS 

xi 1.355 0.507 0.756 0.269 1.37 0.528 0.847 0.321 

X, 2.164 0.78 1.195 0.417 2.193 0.814 1.368 0.503 

X3 
2.252 0.717 1.217 0.398 2.298 0.752 1.453 0.5 

xm 2.006 0.884 1.111 0.456 1.894 0.837 0.746 0.365 

50.42 18.51 27.78 9.672 52.12 19.29 33.59 11.61 

77.67 28.39 43.33 15.11 78.55 29.72 50.13 18.34 

)ý3 
78.2 26.38 44.16 14.25 79.38 27.58 49.51 17.94 

xm 79.36 32.82 45.49 16.88 74.58 31.04 30.35 13.47 

1.854 0.713 1.307 0.39 1.926 0.745 1.321 0.473 

2.879 1.076 1.635 0.582 2.898 1.127 1.845 0.704 

'ý3 3.275 1.007 1.866 0.551 3.458 1.054 2.196 0.694 

3ým 4.837 1.433 3.457 0.812 5.053 1.435 2.808 0.859 

Table 9.1 

LPOC control 

A LPOC was initially designed but is not included here because it cannot be fairly 

evaluated in this Benchmark problem. The LPOC has a high-order controller which 

cannot be accomodated by the Benchmark specifications. Furthermore, only one design 

objective can be included in the minimisation function and a minimum sampling time of 

0.1-0.2 s., while the other methods have 3 minimisation functions and 10 ms sampling 

time. The LPOC is designed for specific known disturbances but in the benchmark 

problem it will be evaluated for various different input signals. Finally, the evaluation 

criteria are based on "worst-case" of all indices as opposed to LPOC that targets mainly 

one objective function. 
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9.2.3 Summary of results 

A irst generation three storey benchmark structure was designed using several methods 

which are evaluated. The evaluation criteria were very broad and included as man\ 

aspects as possible. Peak and RMS responses subject to two different earthquakes and a 
filtered random excitation were included. The accelerations and displacement of all 
floors were included together with the acceleration, velocity and displacement of the 

controller as well. Finally, the model was made as realistic as possible by including time 
delay, controller saturation and sensor noise. The design methods used were LQG, H,, ý 
and frequency weighted LQG. 

The LQG and H,,, methods seem to produce the most effective controllers. They have 

very similar responses and hence evaluation indices. The RMS responses are broadly 

similar, slightly lower for the accelerations and displacement variables (evaluation 

indices J1 and J2) with H,,, , but also slightly larger control effort measures (evaluation 

indices B to J5). The peak responses are similar with H,,, requiring a larger control 

effort to achieve the same level of performance as LQG. On the whole LQG has a 

marginally better performance, but H,,, controllers are typically very effective when 

uncertainty is included in the model as they tend to sacrifice nominal for robust 

performance. No uncertainty was included in this study and therefore the nominal 

performance of the H,, controller is considered to be good. In both methods the designer 

has the choice of penalising further the control effort to improve the efficiency of the 

design. 

The weighted LQG evaluation criteria are different to simple LQG. A much lower 

control effort was initially achieved, thus resulting in much higher displacements and 

accelerations. By tuning the control penalty coefficients the two designs could be made 

to have similar evaluation indices for a more direct comparison of the results like with 

H,,,,. This was not done because by penalising the control effort in the weighted LQG 

design performance would deteriorate significantly and the comparison would not have 

been valid. In the two previous designs the building performance indices (JI, J2, J6 and 

J7) were roughly proportional as were the controller indices (J3-J5 and J8 to JIO). Here 

the controller displacements and velocities were low but the controller accelerations 
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were large which suggests some inconsistency in the objective function formulation, 

and a less robust design. 

Overall the two traditional design methods produced good and consistent results. The 

weighted LQG design produced the best performance for some indices but also the 

worst in others. This is because the latter controller was designed under strict 

assumptions and hence cannot perform as well when these fail to apply of when 

additional performance criteria are taken into account. As explained earlier, the 

weighted LQG is expected to perform better than LQG when the disturbance signal has 

spectral characteristics reflected accurately by the identification filter (which is 

absorbed in the plant dynamics) but its worst-case performance over many different 

evaluation criteria and disturbance signals can be inferior. The inability to design a 

LPOC proves that, in its current state of development, it cannot safely be used in real 

applications although it has the ability to minimise responses effectively in some 

circumstances as shown in chapter 7. 
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Figure 9.7. Benchmark I evaluation indices 
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9.3.76-storey benchmark wind excited building 

9.1-1. Model description 

The second model used is the 76-storey wind excited building representing an office 
tower in Melbourne. it was fully designed but finally not build due the economic 

recession. A control device was proposed because the building was slender and 
therefore wind sensitive. The controller should preferably be an AMD or a TMD at the 

top floor, but semi-active control schemes can also be included on other floors as well. 

Wind forces and earthquake forces are approximately represented in a similar way in 

civil engineering, i. e. as a horizontal force acting perpendicular to the face of the 

building. This representation can be an oversimplification for a realistic designs. 

Sometimes, only one side is assumed to need earthquake protection because the other 

side is less vulnerable due to the presence of shear walls or other means of protection. 

In case of wind loading there is the along and across wind excitation and as a result 

control systems in two directions are needed. For simplicity only one controller is used 

here, although the combined effect of both the along and across wind makes the design 

problem more challenging. Finally, the effects of torsion and of contro II er- structure 

interaction are not considered in this study. All background information related to this 

model is taken from [Yang et al. 1997b I]. 

Model-building description: The building is 306m tall and is made of reinforced 

concrete. It has a mass of 153,000 tons, volume 520,000 m3 and mass density 300 

Kg /M3 . The height to width ratio is 7: 3 and therefore it is wind sensitive. The building 

consists of a concrete core and concrete frame. The frame was designed to carry the 

static load and part of the wind load and the core to withstand the wind load. The axis of 

elastic centre coincides with the axis of mass centre to avoid coupled lateral-torsional 

motions. There are 24 columns at the perimeter building, spaced equafl. v at 6.5m. Each 

side is 42 m long. The columns are connected with beams of dimensions 400 mm by 900 

mm. On top of the beam is the liohtweight floor that uses steel beams with a metal deck 

and a 120 mm slab. The compressive strength of concrete used ýýas 60 Mpa and the 
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modulus of elasticity 40 Gpa. Finally, the concrete core is at the centre A ith width 21 m 
by 21 m. 

The building was modelled using finite element analysis as a vertical cantilever beam. It 
is assumed that the portion of building between 2 adjacent floors is a classical beam 

element of uniform thickness. The model consists of 76 translation and 76 rotation 
degrees of freedom, two per floor. The rotational DOF were removed leaving only the 

76 translation DOFs representing the displacements in the lateral direction of each floor. 

If the controller is included (AMD or TMD) one extra degree of freedom results. The 

damping ratios of the first 5 modes were assumed to be 1%, while the fundamental 

mode is 0.16 Hz. 

For design purposes a control system JMD or AMD) is added in the top floor 

producing one more DOF. The default mass of the TMD is 765 tons, which is 0.5% of 

the total mass of the building. Its frequency is tuned to that of the fundamental mode, 

0.16 Hz, and a large damping is assumed. In the case where the controller is included 

(AMD and TMD) the 77-DOF system is reduced to a 24-DOF system accordingly. The 

selected floors for model reduction are floors 3,6,10,13,16,20,23,26,30,33,36,40, 

43,46,50,53,56,60,63,66,70,73,76 and the controller mode of the active system. 

Evaluation model 

Numerically, it is very time consuming to work with the 76 DOF models and therefore 

model reduction was performed. A method described by [Karrem 198 1 ], [Wu et al. 

1998] was used where the eigen-properties of the selected states of the original system 

are represented in the reduced order system. The 76 DOF system is reduced to a 23 

DOF system whereby the first 46 complex modes are retained. When the control system 

is included (TMD or AMD) the 77 DOF system is reduced to a 24 DOF system. The SS 

model is given by: 

.ý= 
Ax + Bu + EW (9.25) 

y=C, x+ D, 
'u +F,, W+v (9.26) 

- =C -x+ 
D, u+F-W (9.27) 

where 

,ý 
is the state vector 
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u is the scalar control force 

W is the wind load vector 

y is the measured output with 
Y= 

kI 
ý )ý30 ý )ý50 9 )ý55 ý )ý60 1 )ý65 9 

'70 
ý )ý75 9 )ý76 5 Xm 

-ýI ý 'ý30 9 'ý50 ý 'ý55 ' -ý60 1 
ý65 

1 Jý70 ' -ý75 ' 'ý76 

z is the regulated output z= [x 
,xxI where 

x= 
[XI 

I X30 9 X50, X55 9 X60 ý X65 9 X70 9 X751 X76 x. and x- and x- are defined accordingly 

A is the system dynamic matrix reduced from 77 by 77, to 24 by 24. 

B is the control input matrix 
E is the exogenous ground excitation matrix 
C is the measurement matrix 
D is the control input feedthrough matrix 
F is the exogenous feedthrough matrix 

v is the noise 

Note that systems dynamics matrix A is substantially different when considering the 23 

DOF system and the 24 DOF system. In order to further reduce the computational time 

the wind load vector W is reduced. It is assumed to be a lumped load acting precisely on 

the floors used. Therefore the dimensions of E is reduced to 48 by 24 (or 46 by 23) for 

the passive model). The designer needs to decide the type of actuator used, the location 

and their number. The default program assumes an AMD or TMD on the top floor. If 

the designer wishes he can place the actuator at a different floor, or even use multiple 

TMD's or multiple semi-active devices placed at several floors, but the program needs 

to be altered appropriately. Finally, the designer can choose the number and location of 

sensors. A discrete controller needs to be designed of the form: 

xc (k + 1) fl [x., (k), ý (k), u (k), k (9.28) 

u(k) f2 [x, (k), ý (k), k1 (9.29) 

where x,. (k)j(k), u(k) are vectors corresponding to the states of the compensator, 

selected measurement Output vector and the control force. respectively. The maximum 

size of the compensator is limited to 12. 
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Win (model: An earthquake can be represented by a horizontal force on the basement of 

a building, even for models requiring great accuracy. In reality wind loads have a 

widely varying and complex behaviour. The simplest way is to represent it as a constant 

or linear varying horizontal force acting in the face of the building. The vvind load 

depends on the average wind velocity and a fluctuating component, which can be 

modelled as a stationary random process. The wind load is also related to the response 

of the structure, but this interaction can be ignored. The static load due to the average 

wind velocity can be ignored as well. In order to reduce the computation effort only the 

along-wind motion will be considered and not the across-wind motion. Finally, there is 

no coupled lateral torsional motion because the axis of elastic centres and axis of mass 

centre coincide. These assumptions allow for a realistic model without placing too much 

effort in computing more detailed wind excitation models. 

The along wind fluctuation component model used has the Davenport wind-load 

spectrum, used also in the Canadian design code. The (i, j) element of the 2-sided 

cross-power spectral density matrix S,,,,,, can be represented as [Simiu and Scanlan 

1986], 
2 

6 06 0 
OV2 

s 
ýw ikr /TV, exp 

clcol ýhj 
-hjý (9.30) 

'(6 24 
27r Vr V-j V-j 1 

0) 
600o) 

3 

L 
)Tvr 

where co is in rad/s 
V, is the reference mean wind velocity in mls at 10 meters above the ground 

cl is a constant, 

h, is the height of the i-th floor, 

k is a constant depending on the surface roughness of the ground and 

0.5pA_, CD j72 (9.31) Vi 

where p is the air density, 

CD is the drag coefficient 

. 41 is the tributary area for thej-th story unit and 

244 



9. Benchmark Problem Case Study Pana2iotis Rent7o,, 

Tý is the mean wind velocity which is assumed to follow a power law: 

v=v 
h, 

g hg 
(9.32) 

where hg is the gradient height, Vg being the average wind velocity at the gradient height 

[Simiu and Scanlan 1986] and a is a parameter taking values between 0.15 and 0.5. The 

parameters used for this benchmark problem are: K,, = 0.03, C, = 7.7, a=0.4, 

/ 3, 
p=1.25Kg, M CD= 1.2, hg = 300m. The tributary areas and heights of each wind load 

locations are shown in figure 9.8: 

300 
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Figure 9.8 Tributary areas as a function of building height 

Evaluation criteria: In this benchmark problem there are 12 performance evaluation 

criteria. As in the I" benchmark problem half of these are based on RMS response 

values and the other half on peak response values. The RMS responses are obtained 

from the stochastic analysis and the peak responses are obtained from a deterministic 

analysis. The stochastic analysis uses the cross-power spectral density matrix and 

random vibration analysis. The deterministic response analysis uses a set of 23 sample 

functions (time histories) of wind loads which was simulated by Yang et al [Yang et al. 

1997a]. 
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To reduce the computational time only the responses of some of the floors is calculated, 

namely the ones that are contained in the output vector Z. The performance indices are 

calculated from these measurements only. As the main objective of the control system is 

to reduce the occupant's discomfort, the first criterion is the ability to reduce the 

maximum floor accelerations: 

O-Jfl 07.00 0-. ý50 07. ý55 0--00 0-, 
V65 

0-x70 U, 75 J, = max 07jMo 
9 

O-jý75o O-jMo O. V75o 
9 

0-. 
ý75o 

I 
07jMo 

9 
O-jMo 

, 
O-J05o 

(9.33) 

The denominator is the RMS acceleration of the 75h floor without the controller. The 

numerator is the RMS acceleration of the i-th floor. This index does not have 

dimensions. The last floor is not considered in the index because there are no occupants 

in it. 

The second criterion is the average percentage reduction from the 500' floor and above: 

I Ob 0- O-xl 

6 Uilo 
for i= 50,55,60,65,70,75 (9.34) 

where o--ýiO is the uncontrolled RMS acceleration of the ith floor and u.,, is RMS 

acceleration of the i-th floor with control. The next two evaluation criteria measure the 

ability of the controller to minimise displacements. The dimensionless indices are the 

same ones used to define the first two indices but for displacements: 

J3 ""::::: max 
O-xl 

, 
O-x3O 

, 

07x50 

, 

07x55 

' 

O-x6O 

' 

O-x65 

' 

O-x7O 

9 

O-x75 

' 

O-x76 

(9.35) 
Orx76o O-x76o Ux76o O-x76o ax76o O-x76o ax76o O'x76o Cx76o 

J4 =I 
Y- OXto - axi for 50,55,60,65,70,75,76 (9.36) 

7 ano 
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Here o-.,, is the RMS displacement of the i-th floor and o-.,, o is the uncontrolled RMS 

displacement of the ith floor. 

The last two RMS evaluation criteria involve the controller's response. They measure 

the control effort in terms of actuator displacement and velocity. 

J5 = 
o-xm 

(9.37) 
Cx76o 

J6 O-)ým (9.38) 
0-. 06o 

where o-. ým is the RMS actuator velocity measured as the relative velocity between the 

ATMD and the top floor. These indices are also dimensionless. The maximum RMS 

force and stroke applied by the actuator are taken as: o-,, ý! I OOKN and o-. ý: I OOKN 

respectively. The displacement of the actuator corresponds to the physical size of the 

control device and its velocity to the control power it requires. 

The other evaluation criteria are based on the deterministic response analysis. The 

indices are the same but now involve peak responses. P and J8 are a measure of the 

ability of the controller to minimise building accelerations and J9 and JIO the ability of 

the controller to minimise building displacements: 

. 
ýl 3ý30 

50 
ý55 3ý60 

-ý65 -ý70 75 J7 
=max (9.39) 

-ý75o 
' ý75o ' ý75o ý75o 9 

-ý75o 
ý 

-ý75o -ý75o 

J8 =II 
3ýio - 3ý 

1 for i= 50,55,60,65,70,75 (9.40) 
6i 3ýio 

ig = max 
x' 

' 

X30 

' 

X50 

9 

X55 

' 

X60 

' 

X65 

9 

X70 

' 

X75 

' 

X76 
(9.41) 

X76o X76o X76o X76o X76o X76o X76o X76o X76o 

I 

J10 =I Y- Xio - X1 for 50,55,60,65,70,75,76 (9.42) 
7, Xto 
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where x, = peak displacement of ith floor 

xi = peak acceleration of ith floor 

peak displacement of ith floor without control 

x,. = peak acceleration of ith floor without control 

The last two evaluation criteria measure the displacement and velocity of the controller. 
They are an indication of the control effort required by the controller to achieve the 
buildings response minimisations. 

xpm 
ii 

I= (9.43) 
Xp76o 

JI 
2 :: - 

xpm 

(9.44) 
Xp76o 

where xPm is the peak stroke of the actuator and ýPm is the peak velocity of the actuator. 

The maximum control force and stroke allowed is: maxju(tý:! ý 300KN and 

max Ix. (t)j:! ý 75 cm respectively. 

Desio constraints for the A TMD 

Some implementation constraints are imposed on the control design in order to make 

the benchmark problem realistic. They are discussed below as given by the 2nd 

generation Benchmark problems authors [Yang et al. 1997b]. 

1. Theoretically, the acceleration and velocity of every floor can be measured and 

given to the feedback controller. As explained earlier only the accelerations and 

velocities of the 10 floors of the reduced order model of y are measurable. From 

these 20 measurable variables a maximum of 6 sensors are permitted. The 

designer has the choice of deciding the location of the sensors. 

2. Because the accuracy of measured velocity may be unsatisfactory, velocity 

feedback can be obtained by passing the measured acceleration feedback 

through a filter as described in [Spencer et al. 1998]. 

3. The controller is digital and has a sampling time of -At = 0.00 is 

A computational time-delay of Ims is assumed in the implementation of the 

imposed controller. It is considered only in the deterministic response analysis. 
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5. The measurement noise is modelled as Gaussian rectangular pulse process of 

Of 10-9M2 / S3 1H width 2ms and a two-sided spectral density z 
6. In order to limit computational resources, the compensator for the controller can 

have a maximum of 12 states. 
7. Every controller is evaluated using the reduced order evaluation model, i. e the 

24 DOF with W24 model. 
8. The controller is required to be stable 
9. The natural frequency and damping ratio of the ATMD or TMD are design 

parameters chosen by the designer. 

10. The robustness of the controller should be discussed. 

9.3.2. Control design 

Passive: The model reduction is performed such that the eigen properties of the original 

system are represented accurately. Hence, the first 46 complex modes are retained. Also 

the 5 first damping values are assumed to be one. From passive analysis the first 10 

frequencies and damping values are obtained (see table 9.2). When running the 

simulation the designer chooses the following parameters: Uncertainty in stiffness 

matrix, integration step and total integration time (and sampling time). The first ten 

frequencies and damping ratios are obtained, and the peak and RMS accelerations, 

velocities and displacements of the 10 selected floors (regulated output z) are 

calculated. The displacement of the building is shown in figure 9.9 

This 2d generation benchmark problem gives the designer the choice of implementing 

apart from active controllers, a TMD as well. It can be placed anywhere on the building 

but common practise is to put TMD's on the top floors. Hence, it is placed on the 76 1h 

storey. A design having a TMD is already included in the benchmark files where the 

TMD is in the 76th floor. The default values for the TMD are, mass 500 Kg, damping 

ratio 0.2 and tuning ratio 1. 

With the introduction of the damper an extra mode is included, of frequency similar to 

that of the Is' mode but with large damping (18%). As a consequence the damping 
I 
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ode frequencies and damping ratios 

Mode Frequency (Hz) Damping Ratio 

1 0.1600 1.0000 

2 0.7651 1.0000 

3 1.9921 1.0000 

4 3.7899 1.0000 

5 6.3945 1.0000 

6 9.4577 1.1410 

7 13.2481 1.3951 

8 17.5136 1.7231 

9 22.8172 2.1574 

10 28.2235 2.6147 

80 - 

70 - 

60 - 

50 - 

0 

40- 

30 - 

20 - 

10 - 

0- 

Table 9.2 Mode frequencies and damping ratios Figure 9.9 TMD building displacement 

values of the first mode is increased from I to 2.88. All other damping values for the 

remaining modes are increased as well by a small margin. 

The mass of the TMD is 3.3% of the total mass of the building. The peak displacement 

of the top floor was reduced by 21.4% and the peak acceleration of the top floor by 

34.2%. Larger reduction of the RMS values were recorded. 

LOR control 

A sample controller was designed by [Yang et al. 1997b] that used LQG control. The 

objective of the LQR is to minimise an index, equation (9.16) subject to plant dynamic 

constraints given in equations (9.25), (9.26), and (9.27). 

Here, subscript r denotes a model reduced to a 12 dimensional state vector Xr 

whereXr 
[XI 

oI 
X'30 

I 
X4(, 

I 
XoO 

IX 
X xm]. Reducing 7o, X,? 

j, 
XIO'X3C)'X4bIXOO' '7b, the number of 

states is necessary in order to comply with the sixth restriction on the maximum size of 
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the compensator being 12. The Linear Quadratic Gaussian controller will have as maný 
states as the state vector x and the state order reduction technique was used again where 
the first 12 complex modes were retained. The measured output y, has 3 terms, which is 
the number of sensors used. The measurement noise Vr is a three dimensional vector, z, 
is the 30-dimensional regulated output and matrices Cý, Dz,, C, Dy, and F, e ar 
defined accordingly. Here, the wind load W and the measurement noise v, are assumed 
to be uncorrelated Gaussian white noise vector processes but different components 

within the W matrix can be correlated. 
Returning to equation (9.16) u is the control effort and x includes 30 regulated outputs. 
The first term represents the states to be optimised, the second term the control effort 

and N is the cross-term. The appropriate Q, R and N matrices are chosen such that the 

given control problem can be put in the standard LQR problem formulation. A different 

path was chosen than the one selected by the benchmark problems authors. 

The quadratic optimisation terms are: 

xI= ýOjc I 
TX+ 

)o, D, u =: > -ý/ 
2= 

'o I 
2XTCiC 

I 
TX +, o i2 

2XT CDu+ '012 D, 2U2 (9.45) 

where xi is any regulated output, Ci and Di are obtained form the known measurement 

and feedthrough matrices. Here, it is assumed that the Fy matrix is zero, a valid 

assumptions because the input is white noise. Also p is the penalty term on each 

objective. A unity penalty factor was used for all floor displacements and for the first 

five floor velocities and accelerations. The four higher floors are less important and 

therefore a high penalty was used for velocity and acceleration (105 ). Finally, a low 

penalty (p=0.15) was used for the displacement acceleration and velocity of the 

actuator. 
By summing the 30 objective functions we have: 

22T( "CICI +, 02C, CI + 2(ý 
x CT +... + p2 C 

3()CT x, =X +X, +x 3 30 2-23 30 30) 

2(, 
IDI + P2(�D" + 'C3Dý +... + p32 C 

ODO +2x'(, DI p; 033)u 

+()02Dý' + P2D12 +2+... + 02 
2 )U2 'D, D (2) (9.46) 

12-' -j 3G 30 
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and therefore the matrices Q, R and N are obtained. By substituting them in equation 1. 
equation 2 is obtained. 

Here P, takes the 

Q=Y, 02CiCT 

R= Y)o, 2CiD, 

N=Y, 02 D2 i 

following values in 

(9.47) 

ascending order of i, i. e. 

p=[I IIIIII1 10.15 11111 105 105 105 10' 10' 0.15 11111 10' 10' 10' 10' 0.15] 
The values used are the ones suggested by the authors of the benchmarks problem. The 

results are the same as the ones by [Yang et al. 1997b] and they are shown in figure 

9.10. In addition, the standard assumptions of LQR theory must be satisfied: 

4 The pair (A, B) is stabilisable. 

R>O and Q-NR-'N T>0 

6 NR-'N T, A- BR-'N T) has no unobservable modes on the imaginary axis. 

LOG desiQn 

The state space equations is given by equations 9.20 and 9.2 1. The sensors are 

accelerometers that can measure the acceleration at every floor and controller, but here 

three measurements are used. The other displacement and velocities are estimated. The 

parameters are V=0.1 for all sensors, N=0 and W= 25, is a 24 by 24 matrix with 

values depending on the excitation power spectral density matrix and the frequency 

where the spectral peak occurs. The optimal Kalman filter equation with state equations 

is given by equation 9.22. The 12 performance indices are shown in figure 9.10. 
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Figure 9.10 Benchmark 2 evaluation indices (TMD, LQG) 

9.4. Summary 

The purpose of this chapter was to evaluate the various design methods in a more 

realistic design example. Two benchmark problems were used, one three storey building 

for earthquakes and wind-loads and a 76-storey wind excited tower. The models were 

obtained with more sophisticated finite element analysis and the design included aspects Z: ) 

such as time delays, saturation of control signals, quantisation effects in digital control, 

large-scale models and their approximation, multiple design objectives, etc. The designs 

were evaluated in terms of peak and RMS responses of several floors for various inputs. 

The main results obtained from the chapters 5 and 6 about LQR and H, ', control were 

confirmed here. This was not the case with the identification filter where the evaluation 

indices were of similar or lower level. This shows that althouah various techniques can 

be used to improve the performance of a system, when it comes to large models with 

several evaluation criteria robust designs are more effective. 
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CHAPTER 10 

CONCLUSIONS 

In this chapter the main results of the research work are summarised. 

In chapter 4a simplified passive energy dissipation mechanism was analysed using 

the popular TMD device. An idealised frame-pendulum model was used to examine 

the conditions under which this device can be effective for passive vibration control. 
It was shown that although the frequency of the additional mode introduced by the 

pendulum cannot coincide with the frequency of the frame's mode, judicious selection 

of the design parameters can achieve resonance and effective energy dissipation. In 

addition, the concept of inelastic deformations has also been analysed. TMD's target 

specific structural modes. Earthquake resistant structures are specifically designed to 

perform large inelastic deformations during earthquakes which in conjunction with 

cyclic loading can cause permanent stiffness degradation and an effective shift in the 

structure's characteristic frequencies, thus making TMD's less efficient. This concept 

was demonstrated by a simple example involving a non-linear simulation and the 

limitations of TMD's (and modal controllers in general) were discussed. 

In chapter 5 an LQR controller was designed, incorporating a model of a known 

earthquake signal into the plant dynamics, identified from its spectral characteristics. 

As expected, the controller performed considerably better for this particular 

earthquake signal compared to the standard LQR design, by reducing peak and RMS 

accelerations by a factor of five, with virtually no increase in control effort. This is a 

remarkable improvement and proves that there is potentially a significant 

improvement margin for active control algorithms, especially in cases where the class 

of disturbances is known, when controllers are designed for specific design objecti" es 

or when they target specific modes. This conclusion, however, is no Ionger valid 

when considering large-scale models with non-linearities, multiple objectives or 

disturbances with poorly known spectral content, as demonstrated by the benchmark 
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problems of Chapter 9. Thus, one of the most challenging design issues in this area is 

the derivation of realistic and accurate models of earthquake signals related to specific 

geological and regional conditions. 

The Linear Programming Optimal Controller of chapter 7 and the optimal controller 
involving an identification filter of chapter 5 had considerably better performance 

than LQR and H,., controllers when peak minimisation of regulated signals was the 

main objective. However, this was no longer the case when these controllers were 

evaluated in the benchmark problems presented in chapter 9, where performance was 

assessed by many different criteria and practical limitations of controller 

implementation were also taken into account (e. g. average and worst-case criteria, 

controller order, control signal saturation, time-delays, quantisation effects, etc); in 

contrast LQR or H., designs produced the best and most consistent results and 

exhibited roughly the same level of performance. Thus, robust designs provided by 

LQG or H,,, control methods are still central to general structural control problems, 

especially in the presence of model uncertainty or unknown disturbances. 

An algorithm (LPOC) was proposed which minimises the maximum peak response of 

regulated outputs, an objective which is highly relevant for structural engineering. 

The proposed method achieves this goal by placing direct time-domain constraints on 

the maximum control effort and on its slew-rate. The response is deadbeat and the 

finite minimisation horizon after which the steady-state is reached can also be 

determined by the designer. By placing the poles of the closed-loop system to zero in 

the z-plane, the stability of the system is automatically guaranteed. If the exact type of 

disturbance is known (and there is no plant uncertainty) the algorithm produces the 

optimal solution over all deadbeat controllers and in the limit (as the deadbeat horizon 

tends to infinity) over all discrete stabilising controllers. The disturbance input was 

initially assumed to be an impulse (which in a sense is the worst type of loading) 

although extensions to different types of input are possible. The optimisation problem 

is solved via linear programming subject to constraints on the control signal and its 

rate which can be used to produce smooth responses and limit the bandwidth of the 

closed-loop system. Potential problems with the method which need further 

investigation include computational limitations for problems of high complexity and 

the high degree of the resulting controller, although model reduction can often be 
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applied successfully. Enhancing the robustness properties of the design and the 

extension of the method to sets of disturbances (perhaps with known spectral 

characteristics) are two issues that require further investigation. 

One possible way for connecting the two approaches is to tune on-line a robust 

controller using information collected in real-time about the model's parameters or 
the characteristics of the disturbance signal. In this thesis, this approach is followed in 

Chapter 8, where the stiffness parameters of a structure (initially assumed to be highly 

uncertain) are estimated on-line using a novel estimation algorithm and subsequently 

used to re-design a discrete-time LQR controller at each sampling interval. The 

simulation results show that the adaptive scheme in this case is able to stabilise the 

structure (which would have been unstable if the initial stiffness parameters were used 
for designing a fixed LQR controller) and also to reduce the amplitude of vibrations. 
Conceivably, a similar approach can be followed for estimating the spectral 

characteristics of the disturbance signal as well, or other important characteristics. 

Although this general approach seems promising, more work is needed to ensure fast 

convergence of the estimation scheme and the stability of the resulting adaptive 

control system in the presence of noisy measurements and system-model 

discrepancies. 

Further work/future direction of research: 

e The LPOC designed in chapter 7 is only capable with dealing with small 

model sizes and stronger linear programming solvers are required for larger 

scale problems. A full robustness analysis of the method is also necessary. The 

designed controller is stable but has sharp peaks suggesting that it is sensitive 

to model uncertainties and non-linearities. This obstacle can be overcome by 

combining the LPOC with other design methods or by adding frequency 

weights. Specifically, a combination of the dead-beat parametrisation 

approach with both linear (for control magnitude and rate) and quadratic 

performance objectives (reminiscent of LQG) could prove promising, 

although it would require more complex computations based on quadratic 

programming. In its present form, the algorithm is generally very sensitive, i. e. 
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by slightly changing certain design parameters a substantialIN different 

response is obtained in some cases. Finally, large order controllers are 

obtained using the method and controller-model reduction is not always 

effective in maintaining the same performance levels. Thus, specialised 

model-reduction algorithms which approximate directly important time- 

domain characteristics can be investigated. 

9 In chapter 4a design involving a frame-pendulum model was analysed. When 

a simple non-linear stiffness model for the frame was considered, the energy 

dissipation by the pendulum was considerably lower because the period of the 

frame increased, thus deviating considerably from the period of the pendulum. 

During large or moderate earthquakes the non-linear behaviour of steel cannot 

be avoided. More accurate non-linear models should be considered to model 

the exact pendulum-frame behaviour. If precise conclusions can be drawn, the 

tuning of passive controllers can be re-assessed to include this characteristic. 

The non-linear stiffness model can also be included in the design and 

simulation of active control schemes. 

* The overall nominal performance of LQG methods was marginally better than 

that obtained by H. controllers. This was not surprising, as H,,, controllers are 

typically used due to their robust characteristics, i. e. to account for unmodelled 

dynamics and parametric uncertainty, often present in structural control 

applications. Thus, the design with H,,,, control can be conservative, and be 

outperformed by LQG controllers, as far as nominal performance is 

concerned. It is worth investigating whether, under model uncertainty, the 

robust performance of H, controllers can actually surpass that of LQG 

controllers. 

In chapter 5 an LQR controller incorporating an identification filter of a 

recorded earthquake signal was designed. As expected, the controller 

performed considerably better for this particular signal compared to simple 

LQR, by reducing peak and RMS accelerations ba factor of five. This is a 4-n 
y 

marked improvement and proves that there may be significant mar, -, ins 
I _n - 
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10. Conclusions Panagiotis Rentzos 

available in active control algorithms, when a-priori knowledge is taken into 

account. However, recorded earthquake signals often have different spectral 

characteristics, so a detailed modelling work is needed to define appropriate 
disturbance models (perhaps location specific) which are not too specialised 

and can thus be used in practice. 

An important assumption made throughout this work (with the exception of 

the two case studies) is that actuators can react instantaneously to a 

controller's command. This is not true in practice, especially when large levels 

of actuation power are needed. Typically, from the start of an earthquake at a 

remote location until the waves reach a structure, considerable time may pass. 

Thus, placing sensors at distant locations from the structure which is to be 

protected may provide valuable "pre-view" information on an incoming 

earthquake, which can be used to (partially) compensate the actuator's delay, 

or even pre-empt its response by means of feed-forward action. Provided 

practical implementation issues can be addressed, such a scheme could prove 

to be highly effective in the area of active vibration control of civil 

engineering structures. 
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