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Abstract

This thesis is in the area of active vibration control of Civil Engineering structures
subject to earthquake loading. Existing structural control methods and technologies
Including passive, active, semi-active and hybrid control are first introduced. An
extensive analysis of a frame-pendulum model is developed and analysed to
Investigate under what conditions effective energy dissipation is achieved in Tuned
Mass Damper systems and the limitation of these devices under stiffness degradation
when the structure enters the inelastic region.

Linear Quadratic Gaussian and H-infinity active control schemes are designed,
simulated and assessed for buildings, modelled as lumped parameter systems,
including base and actuator dynamics. Various aspects of the designs are extensively
evaluated using multiple criteria and loading conditions and validated in large-scale
benchmark problems under practical limitations and implementation constraints.

A novel design method is proposed for minimising peak responses of regulated
signals via a deadbeat parametrisation of all stabilising controllers in discrete-time.
The method incorporates constraints on the magnitude and rate of the control signal
and is solved via efficient Linear Programming methods. It 1s argued that this type of
optimisation is more relevant for structural control, as failure occurs when maximum
member displacements are exceeded.

The problem of stiffness matrix estimation from experimental data is formulated as an
optimisation problem and solved under various conditions (positive detiniteness, tri-
diagonal structure) via an alternating convex projection scheme. Both static and
dynamic loading is considered. The method is finally incorporated in an adaptive
control scheme involving the redesign in real-time of an LQR (Linear Quadratic
Regulator) active vibration controller. It is shown that the method 1s successful in
recovering the stability and performance properties of the nominal design under
conditions of significant uncertainty in the stiffness parameters.

XIII
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Protecting structures from environmental hazards such as earthquakes and wind loads
has always been a challenge in civil engineering. Strong earthquakes can have
devastating effects even for countries like the USA and Japan that have the economic
and technologic ability to design structures safely for such loads. Designing structures
strong enough to resist earthquakes that are likely to occur at most once in their lifetime
1S uneconomic. Earthquake engineering design is always evolving and current codes of
practice are based on concepts of inelastic energy absorption and controlled damage. In
modern design practice emphasis is placed on giving structures elasticity rather than
strength by allowing for larger deformations during earthquakes. This has resulted in
fewer buildings collapsing and reduced number of deaths, but has increased the
economic costs due to damaged buildings. There is growing demand for designing
buildings that can not only prevent them from collapsing, but also minimises damage by

reducing vibrations from earthquakes, wind loads and also heavy traffic, waves or

deliberate acts.

A novel 1dea for protecting structures 1s the use of structural control. This involves the
use of damping devices or active mechanisms that help suppress undesired vibrations of
civil engineering structures. Given that seismic design methods are already based on
energy absorption concepts, it 1s surprising that it took so long for this method to be
developed in the area of structural engineering, since similar techniques (e.g.
suspensions) have been used for a long time in the automotive industry. Passive systems
are mechanisms in structures that dissipate energy. In Civil Engineering applications the
most common passive damping device 1s a tuned-mass-damper (TMD). This dissipates
energy by placing a mass on the top of a building, oscillating with the same frequency

as the building’s resonant frequency (fundamental mode).
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A different method is active control, where actuators capable of producing large forces
are placed inside a building to counteract external forces, e.g. due to earthquakes or
wind loading. The most common mechanism is the active mass driver (AMD). A large
mass, placed on top of the building, is being driven by actuators counter-balancing the
movement of the building from the earthquake. What began as a theoretical state of the
art method 1s slowly gaining acceptance by the industry and is progressively used more
frequently in structures. The first structure to implement active structural control was
the Kyobashi Seiwa building in Tokyo [Lynch 1993] in 1989. This 10-storey building
had two controllers placed on the roof counteracting the first two modes of vibration
whose mass was about 1% of the total mass of the building. The actuators were
suspended like a pendulum and used hydraulic pumps to transfer energy. The devise

was used to control the building during large winds and small to moderate earthquakes.

An active control mechanism consists of an actuator, a control mechanism, a
(mathematical) control law and sensors to record the motion of specific parts of the
structure [Hatada and Smith 1997]. An actuator is placed at a certain position in the
structure, and when a disturbance occurs (e.g., earthquake, high wind, etc.) the sensor
records it and sends the signal to the computer, which in turn analyses the data and
triggers the actuator. The actuator generates the appropriate forces that attempt to
minimise or suppress vibrations thus stabilising the building. In the sense described

above, active control is more demanding than passive because a poorly designed system

may lead even to instability.

There are several disciplines required to design a good active structural system and

several major areas where active research in structural control is taking place. These

include:

e Structural dynamics and the theory of vibrations; the underlying theory

behind why and how structural control works.

e “Intelligent” mechanical systems that require the minimum possible

energy to be efficient and can effectively transfer energy from the
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actuator to the control device with minimal losses (tuned mass dampers,

active mass drivers, hybrid control devices, smart material etc).

e Control systems design; including accurate modelling of disturbance-
structure-controller interaction, appropriate optimal/robust control design
algorithms and any other issue arising in control engineering problems

(e.g. Instrumentation, actuators-sensors placement, etc).

e Evaluation of the overall control system via computer simulations and

validation of simulations via experimental work.

The thesis is mainly focused on theoretical aspects of control systems design necessary
for structural control. Since structural control is a new application area of feedback
control, the existing techniques (and algorithms) and design methods have to be re-

examined and their applicability in structural control reassessed.

Control Systems is the area of engineering that deals with the analysis and synthesis of
dynamic system responses. The main objective of control engineering is to modity the
“open-loop” dynamics of the system by manipulating 1ts input and output variables, so
that the “compensated system™ has improved dynamic-response characteristics in terms
of stability margins, disturbance rejection or noise immunity. Typically, the controller 1s
implemented in a closed-loop (feedback) configuration, automatically adjusting its input
signals using measurement information arising from its outputs, so that the overall
system operates automatically. In the context of active structural control the measured
information is typically provided by strain-gauges, displacement sensors or
accelerometers placed at strategic locations on the structure. This information is
sampled and fed to the controller, which consists of an algorithm implemented inside a
computer. The algorithm generates digital signals that, after being converted back to
analogue form, are applied to the inputs of the actuator (typically an electro-mechanical
or hydraulic device), which generates an appropriate force or torque to counteract the

external effects due to the earthquake or wind load.

I
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Modelling is central in control systems design. Buildings are usually idealised as linear
time-invariant lumped spring-mass-damper systems. The control device requires
appropriate modelling and by interacting with the structure a new increased order model
1s obtained. The effect of disturbances on a structure and the way they propagate and
aftect its response are also essential aspects in modelling the combined earthquake-
structure-controller system. Material non-linearities, external perturbations and
uncertainties of structural parameters are also common and need to be taken into
account in the modelling process. Physical systems can never be exactly approximated
by mathematical models, but the closer the representation the more accurate conclusions

can be drawn about the system’s expected behaviour.

In the context of active structural control the objective is to suppress vibrations arising
from external disturbances (Earthquake or Wind load) by effectively absorbing energy
and improving the damping of the structure. In contrast to more straightforward active
control applications (e.g. automotive active suspension systems), civil engineering
structures are significantly more complex systems dynamically. This is mainly due to
the presence of a large number of vibration “modes” (longitudinal, lateral, torsional),
which are typically coupled. Complexity also arises from the interaction between the
structure and its surrounding soil (in the case of earthquakes) and due to non-linear
effects, especially in the presence of large forces/displacements when parts of the
structure enter the inelastic region. Modelling accurately the disturbance signal
(Earthquake or Wind load) in terms of its strength, frequency and energy content and 1ts

interaction with the structure gives rise to an additional source ot complexity.

Over the last few years a wide range of design methodologies have been proposed 1n the
area of structural control, including non-linear/sliding-mode control, pole-placement
and observer-based methods, adaptive control, fuzzy/neural-based methods, reliability-
based control and optimal control [Housner et al 1997]. Optimal control appears to be
the design method increasingly favoured by most researches, mainly due to important
recent theoretical advances in this field and to the design flexibility that this method

offers. The two most important optimal control paradigms, around which most other
optimal-control methods cluster, are LQR/LQG optimal control and H. optimisation

methods which are examined thoroughly in this work. In addition, new design optimal
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algorithms are proposed to account for different objectives and assessed via analytical

and simulation results.

1.2. Thesis main contributions

 Under cycling loading, present during earthquakes, steel ceases to have elastic
properties. This results in the change of strength and stiffness of steel elements
and reduction in the frequency of vibration of the structure. Simulation results
based on the frame-pendulum system are used to describe the dynamic

behaviour of an inelastic steel structure employing passive control.

e Prior knowledge of the characteristics of the input disturbance signal in control
systems design 1s beneficial for the design of the feedback controller and the
optimisation of its response. Here, an identification filter obtained by analysing
the spectral characteristics of a real earthquake signal i1s obtained and
incorporated to an LQR design procedure, which is subsequently analysed and
simulated. The results show that improved levels of performance can be
achieved with this method and suggest the importance of using any such a-priori

information, whenever it 1s available.

e A novel design method is proposed and developed that aims to reduce maximum
peak responses of regulated inputs, an objective especially appropriate for
structural engineering applications. The resulting optimisation problem involves
the parametrisation of all discrete finite settling-time stabilising controllers and
is solved using linear programming. The controller 1s designed for a variety of
input signals and the obtained simulation results are compared with those
obtained by other methods. Particular care has been taken to make the design
method realistic by incorporating appropriate constraints on the magnitude and
rate of the resulting control signal. Other practical issues have also been
addressed, e.g. controller model reduction, addition of pre-whitening filters.
optimising the design by considering different disturbance models.

computational issues arising from the Linear Programming algorithm, etc.

()
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A novel method is proposed for estimating poorly or partially known stiffness
matrices of structures from online data recorded from its dynamic response. The
method relies on the solution of an optimisation (distance) problem over the
cone of positive-definite matrices. The estimation method can be applied to
structural stiffness matrices arising in civil engineering applications, including a
special form of tri-diagonal structure corresponding to the models developed in
this work. Various techniques are developed for the solution of the optimisation

problem, convergence is formally established and comparisons between the

different methods are made through simulations.

Structures affected by earthquakes or other environmental loads often require
reinforcement in terms of structural control. If the stiffness of such a structure
has degraded at unknown levels, there is difficulty in designing a suitable
controller. This problem can be overcome by performing on-line estimation of
the uncertain stiffness parameters during an earthquake. After an acceptable
number of measurements have been obtained, the estimator should ideally
converge to the true stiffness parameters which can then be used to re-design the
controller. In the thesis the estimation technique described in the previous
paragraph is combined with an on-line LQR tuning control method, resulting in
a robust adaptive design algorithm. Simulation results demonstrate the ability of
this method to suppress vibration and stabilise a structure (which otherwise
would be unstable i1f the wrong 1nitial parameters were used for control design),

even In the presence of considerable levels of uncertainty in the stiffness

parameters.

The control techniques investigated in this work are applied for two industry-
standard benchmark problems which have been proposed recently to evaluate
different control design schemes. The benchmark problems involve the control
design of two real large-scale structures under stringent practical requirements
and assessed with multiple performance criteria. The relative advantages ot each

design method examined are analysed and discussed.
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1.3. Thesis Outline

Chapter 2 reviews the literature on existing structural control methods. The chapter is
focused on describing practical aspects of mechanical control systems and their use. The
main control methods, i.e. passive. active, hybrid and semi-active control are
introduced. The potential merits and drawbacks of each method are explained and an

example of a real structure employing a control mechanism corresponding to each

method 1s presented.

In chapter 3 the control-design methods used throughout the thesis are presented.
starting from basic definitions and building up to more advanced topics, which form the
foundations of the techniques used in subsequent chapters. A brief introduction of the
preliminaries of control systems theory is given, followed by topics related to systems
modelling and mathematical systems’ representations. Examples are given of simple
mass-spring-damper models, their transfer functions and state-space representations.
Concepts of discrete-time control, controllability, observability, and systems
representation in terms of time-domain and frequency-domain techniques (Bode plots)
are also included here. Classical control methods such as pole placement, Linear
Quadratic Regulators (LQR) and Kalman filters are discussed in more detail. The Ho

control problem is formally stated and its solution is outlined using the Youla

parametrisation approach.

The next chapter analyses a passive control system, namely a frame with a pendulum
providing energy dissipation. The aim here is to establish whether the pendulum, which
is a natural system without any external interference, can reduce directly or indirectly
the vibrations of the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>