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ABSTRACT 

The primary objective of the research reported in this thesis 

was to develop a theoretical method capable of accurately analysing 

cooling towers with leg-supports. A finite element method was derived 

and using the technique theoretical results were obtained for a 1/250th 

scale model and the corresponding full-scale structure. An experimental 

investigation was also conducted on the model tower. The theoretical results 

obtained for the model and full-scale towers are compared with the 

experimental results obtained for both structures. It is shown that 

the finite element method derived yields the most accurate prediction 

to date, as far as the author is aware, of the free vibrational 

behaviour of cooling towers with leg supports. 

The experimental investigation of a model cooling tower was 

conducted using a multi-point excitation system. An innovatory use was 

made of a helium-neon laser as a displacement transducer. This device 

is deemed to give excellent results provided a few simple precautions 

are taken. The experimental data obtained clearly show the important: 

vibratory modes of the model cooling tower. Due to another worker the 

experimental data for the corresponding full-scale tower were also 

available. This experimental information serves as a foundation for 

confirming the validity of the theoretical technique. 

A novel algorithm used to compute the stiffness and mass 

matrices of doubly curved shell finite elements has been derived and 

described in detail in this thesis. The algorithm lends itself 

readily to a structured modular programming approach and hence this 

technique with its attendant ease of program modification has been 

adopted. The theoretical flexibility of the algorithm is also high. 
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Thus, different finite elements stiffness and mass matrices can be 

conveniently formed with minimal changes to the computer code. The 

algorithm should find wide use in forming the element matrices of 

finite elements. 

A new form of constraints is utilized by the finite element 

method reported herewith. These constraints can be employed for 

rotationally periodic structures and are invaluable in allowing the 

analysis of large complex structures (such as cooling towers with 

leg-supports) within the size restrictions imposed by the computing 

system. 

Sophisticated doubly curved shell and axisymmetric finite 

elements have been employed in the work reported herein. Detailed 

improvements and modifications to the elements have been discussed. 

Stress matrices are derived for use with these elements. Stress 

analysis of several structures have been conducted using these 

elements and the results are shown to be in good agreement with 

published information. 



NOTATION 

The standard symbols used in the text are given below. 

Some duplication is unavoidable; however, the correct meaning of the 

symbol will then be made clear in the text. Any symbol not defined, 

particularly matrices, are defined in the text. Unless otherwise 

stated the symbols have the following meaning: - 

A, B Lam4 parameters (in this text A=1 and B= R) 

E Young's Modulus 

G Shear Modulus = E/2(l+p) 

L Length of the meridian of an element 

M Couple acting in the plane through the meridian and normal 
a 

to middle-surface 

Mß Couple acting in the plane through the circumferential line 

and normal to the middle-surface 

Maß Twisting moment. Couples act in opposite senses in the plane 

along the meridian and normal to the middle-surface 

M Mass density 

Na Direct stress in meridional direction 

Nß Direct stress in circumferential direction 

Naß Shear stress in the circumferential direction 

N Number of similar substructures constituting the whole 

periodic structure - i. e. number of representative substructures 

R Radius of revolution (shortest distance from axis-of-revolution 

to middle surface of shell wall - i. e. radius of a parallel 

circle) 

S Foundation elasticity in the vertical direction 

Z Distance along the axis-of-revolution 

CQ Angle subtended by the meridional edges of a substructure 

at the axis of symmetry 
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a, b, c, and d are suffices associated with the Hermite interpolation 

polynomials - see text 

e(a, ß, y) Strain at any point (a, ß, y) 

f Hermite interpolation polynomials in s 

g Hermite interpolation polynomials in 0 

h Thickness of shell wall 

h3 h- 12 

m Number of meridional nodes, i. e. nodes along a meridian 

(nodal circles) 

n Number of circumferential wave-lengths, also termed harmonic 

or circumferential wave number 

I sind 
P=' it 

R) 

P ý1 + sin4) 
R 

r Radius of curvature-of meridian 

r Position vector 

s Distance along a meridian (in the text it is synonymous with a. ) 

-_S 
SL 

u Displacement along the meridian (downwards) 

v Displacement along the circumference (anti-clockwise) 

w Displacement normal to the shell (outwards) 

x, y, z Cartesian coordinates 

a, ß, y Tri-orthogonal set of "right-hand" curvilinear coordinates 

a- direction along meridian of shell structure (in a 
downward direction) 
direction along circumference of shell structure 

y- direction through thickness of shell structure 
(radially outwards) 

A 
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8(a, ß) Displacement at any point on the middle surface (y = 0) 

de Displacements at the nodes 

c, X Strain components at middle surface 

ea - extension in the a-coordinate direction 
CO - extension in the ß-coordinate direction 
CaO - shear strain in the aß plane 
Xa - change of curvature in a-coordinate direction 
Xß - change of curvature in ß-coordinate direction 
Xaß - twist in aß plane 

6 Angle subtended by the arc of a parallel circle 

(in this text 0 is synonymous with ß) 

6Rx0 
0 

K1K2 Principal curvatures (Kl 
r and K2 =sR 

O) 

V= 
(1 - P) 

2 

r 
r =h 

p Poisson's Ratio 

va Stress component along meridian 

a8 Stress component along circumference 

aa$ Shear stress component - 

0 Angle the normal to the shell wall makes with the Z-axis 

(axis of revolution) 

X (see e) 

Y' Angle subtended by the parallel meridional edges of the 

finite element at the Z-axis 
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INTRODUCTION 



1. INTRODUCTION 

The primary purpose for the research reported in this thesis 

was the urgent requirement for a theoretical technique to accurately 

analyse the dynamic behaviour of cooling towers. The accurate analysis 

of a cooling tower idealized as a shell of revolution (i. e. when discrete 

column or leg-supports are not included in the model of the structure - 

the base of the tower is then an extension of the shell surface) is 

not particularly difficult and can be undertaken by conventional 

techniques. For example, the resonant frequencies and mode shapes of 

a hyperboloidal cooling tower shell can be analysed by solving the 

differential equations of motion [ 13. However, if the effects of 

leg-supports are to be included accurately in the analysis, conventional 

techniques cannot be employed satisfactorily. The cooling tower can no 

longer be regarded as an idealized axisymmetric structure. Methods 

_`= 
involving this assumption usually result in unacceptable errors (as 

will be domonstrated later in the text). It could be stated that the 

accurate analysis of a cooling tower with leg-supports appears at 

first sight to be analogous to the satisfactory solution of a structural 

problem involving a mathematical discontinuity. 

It is believed that the theoretical method derived in this 

thesis succeeds in accurately analysing the dynamic behaviour of 

cooling towers with leg-supports. The method is based on the finite 

element method. An excellent introduction to the subject is given by 

Rockey et al. [2D. The book by Desai and Abel L3] is also of note. 

A classical work on the subject is due to Zienkiewicz C4]. The finite 

element method is an approximate numerical technique which can be used 

to solve a wide range of problems of a relatively complex nature. It has 

gained wide-spread popularity over the past twenty years with the 

advent of high speed digital computers. However, an investigation into 

the behaviour of a very large or complex structural system using the 
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finite element method can often lead to the problem of the mathe- 

matical model having too many degrees-of-freedom (d. o. f. ) to be 

handled completely by even modern digital computers. An alternative 

to simplifying the mathematical model - which would lead to unsatisfactory 

approximations in the results - is to divide the structure into a 

system of connected components or substructures. The behaviour of a 

substructure can then be studied if certain constraints are imposed on 

the structure such that the substructure behaves exactly as if it were 

a part of the whole structure. For rotationally periodic structures 

such constraints can be imposed; they are new to finite element analysis 

and will be discussed in Chapter 3. These constraints will be referred 

to as 'Complex Constraints' to distinguish them from the usual type of 

constraints encountered in finite element analysis. The analysis of a 

representative substructure using complex constraints can be regarded 

as analogous to the study of a representative section of a symmetrical 

structure where symmetry-boundary conditions are invoked so that the 

representative section is mathematically equivalent to the whole 

structure. 

The substructuring approach has been used with the finite 

element technique to derive a method of analysing cooling towers with 

leg-supports. A large computer program entitled VACTIL has been written 

by the author [53 to generate the solution. The method yields the 

most accurate theoretical prediction to date, as far as the author is 

aware, of the free vibrational behaviour of cooling towers. (The 

program, VACTIL, is at present being used by the Design Department of 

the C. E. G. B. ). Confidence in the results permits the prediction of the 

effectSof other parameters such as Poisson's Ratio, foundation elasticity, 

etc., on the vibrational characteristics of cooling towers. 
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The experimental work reported in this thesis is for a 1/250th 

scale model cooling tower and was investigated by the author using a 

Manual/Automatic Multipoint Apparatus. The results obtained were of 

sufficient accuracy to allow a adequate description of the modes of 

vibration of the tower to be made. The accuracy of the results were 

due partly to the employment of a innovatory displacement measuring 

device based on a5 mW helium-neon laser. The use of the laser to 

measure displacements proved to be highly satisfactory provided a few 

simple precautions were observed. The measurements were more speedily and 

accurately obtained, when compared with the use of other devices such 

as capacitance transducers. 

In the work reported in this thesis doubly curved* shell 

finite elements (four-noded element which is a part of a shell of 

revolution bounded between a pair of parallel circles and a pair of 

parallel meridia - see Fig. 4.2) and axisymmetric (ring) elements were used 

to analyse cooling towers and other structures. The doubly curved shell 

finite elements used and discussed in this thesis are basically similar 

to that derived by Woodman and Severn [63 from proposals for plate and 

axisymmetric elements made by Schmit, Bogner and Fox E73. The doubly 

curved elements referred to in this text employ complicated displacement 

functions. These elements are capable of high accuracy. Due to the 

comparatively large number of nodal degrees of freedom used the elements 

are sensitive to geometrical 'imperfections' in the structure. These 

imperfections can be intentional, or unintentional, as for example due 

. That is curvature in two independent orthogonal directions as for example 
the surface of a hyperboloid. In this context a cylinder can be regarded 
as a doubly curved shell of revolution where the-radius-of the: meridional 
curvature is considered to be infinite. 
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to small errors in the calculated geometrical properties. Hence, care 

must be exercised in the calculation of geometrical properties (see 

Chapter 6). A quadratic variation of strains across the thickness of the 

elements have been assumed in their derivation. This is thought to give 

a more accurate estimate of the bending stiffness than if linear variations, 

of strains are assumed. 

Finite element stress-displacement matrices are derived in 

Chapter 4 for use with these elements. The stresses predicted are shown 

to agree well with published literature in Chapter 11. 

A novel algorithm to numerically evaluate the stiffness and mass 

matrices of the doubly curved finite elements was derived with the following 

goals: 

(i) Error checking and program modification would be simple and 

also that a high degree of confidence could be placed in the resulting 

coding. 

(ii) Allow the basic algorithm to be used, with as few changes as 

possible, for evaluating the element matrices of several different 

doubly curved finite elements. 

It is believed these goals have been met. The derivation of 

the algorithm is presented in Chapter 5. The 0. lgorithm readily lends 

itself to a structured modular programming approach. The ease of 

modification of this algorithm gives the technique real flexibility. For 

example, it is simple to change the numerical scheme so that the 

elasticity matrix of say Novozhilov r8] is used in the calculation of 

the element matrices instead of Vlasov's L4D. Using a conventional 

programming approach such alterations would require considerable effort 

with an attendant risk of introducing mathematical or programming errors 

in the coding. These remarks apply equally well to changing the displace- 

ment functions used in the element matrices. 



1.5 

This chapter has attempted to introduce the reader to the scope 

of this thesis and underline the salient features of the work that is 

to be described in detail in the following chapter. The chapter that 

follows immediately presents the background to the present investigation 

and discusses previous attempts to analyse the static and dynamic behaviour 

of cooling towers. It will be seen that the theoretical predictions have 

not agreed very satisfactorily with experimental evidence. A significant 

part of the thesis will then be concerned with the description of a method 

that enables accurate analyses of cooling towers. The experimental 

investigation of a model cooling tower will be described and good 

correlation obtained between the experimental results and the values 

predicted by the theoretical method. Experimental results available for 

the corresponding full-scale structure will also be used in the correlative 

study. Difficulties encountered in the research programme will be 

described. Improvements and modifications to the finite elements used in 

this work will be discussed. The derivation of the stress-displacement 

matrix for use with the shell finite elements will be detailed. The 

stress analysis of several shell and axisymmetric shell structures will 

be presented and the results will be shown to be in good agreement with 

published data. 



CHAPTER TWO 

COOLING TOWERS - PREVIOUS WORK 



2.1 

2. COOLING TOWERS - PREVIOUS WORK 

In this chapter some of the theoretical and experimental 

investigations of previous workers will be discussed. It is shown that 

the dynamic analyses of cooling towers with leg-supports have not yielded 

accurate results. Experimental results obtained for full-scale cooling 

towers and their corresponding models are also discussed and are shown 

to be in poor agreement. 

2.1 Static Wind Loading 

Martin and Scriven C 10 ] were among the first investigators to 

analyse the membrane stresses of hyperboloidal cooling towers subjected 

to a constant wind pressure. Later Martin, Maddock and Scriven r 11 J 

calculated the displacements of the structure. Kalnins C 12 , 
presented 

a numerical technique which combined the advantages of direct integration 

and the finite difference method for the analysis of shells of revolution 

subjected to symmetrical and non-symmetrical loads. Albasiny and Martin 

13 ý 
claimed that their analysis -a combination of the finite difference 

method and a technique of separation of variables - of a cooling tower 

under static load conditions yielded results that agreed well with those 

obtained by the complete bending theory, and also with measured loads 

on model towers in wind tunnel tests. It must be noted that the towers 

analysed were of uniform thickness with no leg-supports. Tottenham [ 14 

also analysed the stresses in a hyperboloidal cooling tower of uniform 

thickness and with no leg-supports using a matrix progression method. 

He concluded that the forces predicted by simple membrane theory were 

very close to that calculated by complete bending analysis. These 

investigations show therefore that satisfactory stress analyses of 

hyperboloids can be performed using simple membrane theory. However, for 

actual cooling towers, where the thickness is not uniform and the 

structure is supported on leg-supports, this approach leads to 
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unsatisfactory approximations. The method of Could and Seng-Lip [ 15 

is noteworthy as they included leg-supports in their analysis. They 

concluded that hyperboloidal shells with leg-supports must have sufficient 

reinforcement at the shell/support boundary as the concentrated stresses 

which are generated by the discrete supports are not adequately resisted 

by the membrane action in the shell. They concluded that thickening of 

the shell near the base was necessary. Abu-Sitta [ 16 ] 
attempted to 

study the effects of the stress interaction at the shell/support 

boundary by imposing several different types of boundary conditions 

at the base of the tower. He treated the effect of leg-supports 

using two different methods. However, firm conclusions cannot be made 

from a study of his results. 

The methods of analysis referred to above,. which are based 

essentially on the differential equations of equilibrium, are representative 

of the work of many investigators. Most of these methods are severely 

restricted with respect to accurately representing the geometry and 

material properties of the shells (and hence of cooling towers). The 

theory developed by Kalnins [ 12 ] is probably among the better of these 

methods. 

Graffin and Strome r 18 ] were among the first workers to use 

finite elements to solve the problem of static wind loading. Following 

this work Percy, Pian and Klein and Navaratna [ 19 ] derived an axisymmetric 

(ring) finite element. The shape of the finite element used was that 

of a frustum of a cone. A computer program SABOR III was used to 

generate the solution. (The C. E. G. B. computer program BACTo2 [20 D is 

essentially of the same form as SABOR III. ) Later the Ferrybridge 'C' 

cooling tower under steady wind loading were analysed by Will and 

Coffin [ 21 ] using conical and circular cylindrical shell elements. 

The-wind loadings were allowed to vary in both the circumferential and 
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meridional directions. (The wind loads were based on experimental results 

of wind tunnel tests on mode]. cooling towers. ) Both the analyses 

referred to above necessitate approximating the cooling tower geometry, 

as elements that have no meridional curvature are employed. Thus it is 

probable that 'physical singularities' which are not present in the 

actual structure are introduced at the element boundaries by the finite 

element analyses. Hence, it would not be unexpected if errors are 

introduced into 'the calculated (static) stresses. This hypothesis 

appears to be supported by results from the computer program BACTo2 i 20 ]. 

It was observed by Pope [ 21 J that in order to get the direct force 

along the meridional axis reasonably accurately a large number of conical- 

frusta elements are required. Another important observation regarding 

the two finite element methods referred to above is that axisymmetric 

elements are used. This leads to unavoidable assumptions when analysing 

non-axisymmetric structures such as cooling towers with leg-supports. 

In the program BACTo2 an effort has been made to model the leg-supports. 

However, due to the axisymmetric nature of the analysis all the leg- 

supports are modelled as an 'equivalent' conical frusta. One of the 

main difficulties created when a cooling tower is approximated by an 

'equivalent' axisymmetric structure is that the errors introduced by 

this assumption are of an unquantifiable nature. We shall see in 

the following section that this is one of the assumptions that tend 

to colour the results obtained from theoretical analyses of vibrating 

cooling towers. 

2.2 Dynamic Behaviour of Cooling Towers 

Until 1965, a considerable degree of effort had been expended 

in analysing the problems of static wind loading on cooling towers. 

From experiments conducted by Bailey and Fidler [ 22 ] (also see 

Reference 23) on hyperboloidal shells it appeared that cooling towers 
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were reasonably. safe against buckling instabilities under wind loading 

produced by wind speeds of below 200 miles per hour. Relatively little 

attention, however, was given to the solution of the dynamic response 

of cooling towers and the possible contribution of wind-induced 

vibrations to the instability of cooling towers tended to be regarded 

as of secondary importance. 

In November 1965 gale force winds caused the collapse of 

three newly constructed cooling towers at Ferrybridge 'C' Power Station. 

Observers who were present at the collapse of one of these towers 

reported that there was a general ovalling and rippling below the 

throat followed by large movements over an area whose diameter was 

about half that of the tower. A few seconds later the tower collapsed. 

The large amplitude vibrations referred to had periods of several 

seconds. The report of the Committee of Inquiry of the C. E. G. B. C 24 J 

into the collapse of the towers emphasized the need for a more 

relaistic appraisal of wind loading, and a better representation of the 

fluctuating component in the structural analysis. Armitt [ 25 J 

conducted an extensive experimental investigation to determine the 

mechanics. of the collapse of the Ferrybridge towers. He observed the 

behaviour of model towers in a wind tunnel and reported that resonant 

stresses were partly responsible for the collapse. He concluded that 

resonant stresses could be a serious problem associated with some tower 

designs and that the single most important parameter appeared to be- 

the lowest resonant frequency. 

Several attempts, both experimental and theoretical have 

, been made to determine the free vibration characteristics of cooling 

towers, especially since the C. E. G. B. report r 24 ] 
was published. 

The first stage of such investigations is usually the determination 

of the lowest natural frequencies and coresponding mode shapes of the 
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towers. Unfortunately, it will be seen in this review that the natural 

frequencies of full-scale cooling towers have not been accurately 

predicted. Hence predicted mode shapes and stresses, which are more 

difficult to calculate, must be suspect. 

Except in the case of relatively simple geometries such as 

cylinders, conical and spherical shapes, etc., comparatively little 

effort has been expended in analysing vibrating shells of revolution. 

Kalnins r 17 ] has described a method of solution for obtaining the 

eigenvalues and eigenvectors of general shells of revolution. His method 

is based on the classical linear bending theory of shells derived by 

Reissner [ 26 1. The method is analogous to the Myklestad-Prohl r 27,28 J 

method for beams and is therefore a trial and error method. A prior 

knowledge of the approximate frequency of the required solution is 

necessary for economical application of the method. For each trial 

frequency a determinant is evaluated. When the determinant changes 

sign an interpolated value of the natural frequency is obtained and 

considered to be the solution. 

The resonant frequency of axisymmetric structures can be 

obtained using the method of Percy et al. C 19 3 
and Webster C 29 ý. 

Webster's method using a ring finite element appears to be reasonably 

efficient whereas the method of Percy et al. suffers from using 

coincal elements, and thus a large number of elements are required to 

obtain an accurate solution for structures that have meridional 

curvature. 

Hashish [ 30 ] 
analysed the free vibration of hyperboloidal 

cooling tower using a modified finite difference method and compared 

the results with measured values. The theoretical values were observed 

to be significantly lower than the experimental values. 
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Neal r 31 ] 
experimentally and theoretically determined the 

lowest two natural frequencies for a hyperboloidal shell supported by 

four pairs of inclined columns. The second lowest frequency, predicted 

by both techniques, agreed to within about 18%. The lowest frequency 

agreed to within about 1.5%. He experimentally determined the resonant 

frequencies of the same shell but supported by fourty pairs of support 

columns. (In full-scale cooling towers, the usual practice is to employ 

a large number of pairs of leg-supports; fourty is a typical number. ) 

However, he did not then theoretically analyse the structure. No 

firm conclusions can be made from the results of Neal's investigation. 

Woodman and Severn E6 J used a doubly curved shell finite to 

analyse an idealized (i. e. constant thickness was assumed and no attempt 

was made to model the leg-supports) model of the Ferrybridge 'C' cooling 

tower. Note that as a shell finite element was used, no prior 

assumption was made that the structure was axisymmetric. This was a 

noteworthy departure from the usual practice of using axisymmetric 

elements. The theoretical results were compared to the experimental 

results of Williams C 33,34 ]. Unfortunately very poor agreement was 

obtained. This may have been due in part to insufficient core-storage 

of the computer not allowing the use of a sufficient number of elements 

for satisfactory convergence. 

It is now interesting to compare some experimental and 

theoretical results for an idealized cooling tower model. Williams F33 J 

carried out frequency response tests on a 1/576th scale nickel model of 

Ferrybridge cooling tower. The model had no legs and was of uniform 

thickness. In Fig. 2.1 theoretical and experimental results are 

superimposed on those obtained by Williams r 33 1. These are (a) Kalnin's 

solution [ 17 ] for variable thickness using the program SHEL [ 35 ], 

F 
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(b) Webster's solution for uniform thickness [ 29 ] using the program 

NOTTo2 C 36 3, (c) Armitt's experimental results C 37 ] for a model 

where the leg-supports and variable thickness were modelled accurately. 

(The two lowest resonant frequencies of the full-scale tower were also 

measured during a perfunctory experimental investigation. The frequencies 

were converted to the model values using the formula given in Section 

8.3 and are depicted in the figure as two 'dashed' lines as the m and 

n values were not measured. ) It is seen that generally indifferent 

agreement is obtained between the experimental and theoretical results. 

For the relatively simple case with constant thickness and no legs, 

the error at the lowest frequency (which for a cooling tower is 

arguably one of the most important parameters from a design viewpoint) 

is about 10%. 

For the more complex situation, therefore, when leg-supports 

are included in the analyses, the predicted values are probably of 

little relevance. This is emphasized in Fig. 2.1 where the frequency 

measured by Armitt [ 37 ] is significantly lower than the experimental 

result for the idealized tower and the theoretically predicted values. 

In order to establish conclusively that the poor correlation 

obtained for the Ferrybridge tower is representative of theoretical 

predictions for other tower designs, the results for several other 

model cooling towers are given in table 2.1. The models were made 

from 'Devcon' (see Chapter 7) and were 1/250th scale size. All the 

models had leg-supports. The computer programs SHEL r 35 3 
and NOTTo2 C 36 J 

were used to generate the solution. The numbers in parentheses given 

'in the table are the number of circumferential wavelengths (n). 



Table 2.1: Experimentally Measured and Theoretically Calculated 

Resonant Frequencies of Model Cooling Towers with Leg Supports 

Model Natural Frequency (Hz) 

Cooling Theoretical 
Experiment 37 Tower 

Kalnins [ 17 ý Webster L 36 

Thorpe Marsh 185.3(3) 182.9(3) 93(3) 
112.3(4) 151.2(4) 102(4) 
180.2(5) 157.7(5) 125(4) 

Drakelow 'C' Not 220.0(2) 53(2) 
calculated 140.5(3) 64(3) 

_ 72(-) 
106.7(4) 79(4) 
131.0(5) 118(5) 

Hams Hall 'C' Not 140.1(3) 79(3) 
calculated 101.8(4) 103.5(4) 

129.6(5) 150.0(-) 

Skelton"Gratige 'B' Not 224(2) 56(2) 
calculated 141.5(3) 66.5(3) 

143.4(4) 

Ferrybridge 'C' 94.5(3) 117.8(3) 49(3) 
71.0(4) 85.9(4) 57(4) 
74.4(5) 93(5) 80(5) 

The numbers in parentheses indicate the values of n: a dash means the 
value of n is uncertain. 

Table 2.2: Comparison of Frequencies for 1/250th 

Scale Model and Full-Scale Cooling Tower at West Burton 

Model Frequency (Hz) Full Scale Frequency (Hz) 

Measured Extrapolation Measured 

66 0.61 0.41 
78 0.72 0.61 

103 0.95 0.81 
112 1.96 - 
128 1.19 0.96 
143 1.33 1.06 
160 1.48 1.20 
180 1.67 1.42 
213 1.98 1.58 
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Burrough, Jeary and Winney [ 39 J. 
were among the first workers 

to instrument a full-scale model in order to measure the structural 

resonances. They recorded the output of a number of accelerometers 

placed at strategic positions on the tower surface; power spectral 

densities were then obtained and an estimate of the probable and possible 

resonant frequencies were made. These frequencies are given in column 

3 of table 2.2. The results for the corresponding 1/250th-scale model 

were obtained using the same technique and are presented in column one 

of table 2.2. In column two of the table the model frequencies have 

been extrapolated to the full-scale structure by means of equation 8. l 

(see Chapter 8). There are difficulties in comparing the values given 

. 
in columns two and three as the model shapes were not available for both 

the model and full-scale. Also (it could be argued) that there is 

some uncertainty in the material values assumed for the equation. It 

is interesting to note that when the tower was idealized as a uniform 

shell and the programs SHEL and NOTTo2 were used to calculate the lowest 

natural frequency, values of 145.8 Hz and 150.6 Hz, respectively, were 

obtained. (This compares to the lowest frequencies given in table 2.2 

which are-66 Hz and . 41 Hz. The latter figure when converted to an 

equivalent model frequency is 44 Hz. ) The difficulties referred to above 

serve to illustrate the problems that are inherent in comparing the 

results obtained for model and full-scale structures. 

In Section 2.1 it was seen that for the static analyses of 

cooling towers the theoretical proposals of Gould and Seng-Lip r 15 3 

- and Abu-Sitta F-16 3 
are noteworthy as a rational attempt was made to 

'incorporate the effects of leg-supports. Similarly, for dynamic 

analyses the finite element methods due to Deb Nath r 40 3 and Young, 

Sun, Lo, Kayser and Bogdanoff [ 41 ] 
are of interest. In Reference 

40 a doubly curved shell finite element was used in the dynamic analysis 
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and the effects of leg-supports were included by omitting parts of the 

shell at the base. The cooling tower chosen by Deb Nath for his calculations 

was the full-scale tower at Didcot (which is the same as that investigated 

herein - see Chapter 9). His values for the natural frequencies are at 

variance with the experimental values obtained by Winney [ 42,43 ] for the 

actual full-scale tower. In Reference 41 the resonant frequencies of 

the 'Paradise cooling tower' (U. S. A. ) were calculated. Two types of 

finite elements were used: a three-dimensional beam finite element and 

an orthotrophic quadrilateral flat plate finite element orientated 

arbitrarily in three dimensional space. The former type were used to 

represent the leg-supports and the latter were used to model the hyper- 

boloidal shell of revolution. The resonant frequencies calculated by this 

method have not been validated as experimental results were not available 

for a correlative study. However, it should be noted that the central 

processor unit (c. p. u. ) time required by the 'CDC 6500' digital computer 

(used for the analysis) was 2124 seconds. The long c. p. u. time required 

is attributable to two reasons: (i) A flat plate was used to represent a 

doubly curved structure. Hence convergence of the element would be 

expected to be poor. (ii) As the whole tower, including leg-supports, 

was analysed, a large number of degrees of freedom would have been 

required. 

2.3 Closure 

A survey of previous analyses of cooling towers has been attempted. 

It has been observed that in general, poor correlation between experimental 

1 and theoretical results has been achieved. Two aspects of the theoretical 

'analyses in general (that introduce: unquantif iable errors) have been 

noted: i. e. (a) attempts have been made to model the cooling towers as 

idealized axisymmetric structures and (b) the discrete nature of the 

leg-supports at the base of the tower has not been modelled accurately. 
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Some of the problems encountered when comparing results for 

model and full-scale cooling towers have been discussed. The survey 

will serve as a background to the work discussed in this thesis. 



CHAPTER THREE 

SUBSTRUCTURING AND ROTATIONALLY 

PERIODIC STRUCTURES 
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3. SUBSTRUCTURING AND ROTATIONALLY PERIODIC STRUCTURES 

This chapter reviews some of the work that has been reported 

regarding substructuring, periodic structures and periodic structures 

forming a closed ring. It is shown that a cooling tower can be regarded 

as a closed ring of identical periodic substructures and explains the 

basis for analysing the free undamped vibration of rotationally periodic 

structures by applying 'complex constraints' to the boundaries of only 

one representative substructure. 

3.1 Substructures and the Displacement Mode in Periodic System 

Przemieniecki [ 44 ] has presented a basis for analysing the 

static behaviour of structures using substructuring. Hurty [ 45 

employed the technique for dynamic analysis. Summaries of some of the 

variations of Hurty's method are given by Hou r 46 ] and in Reference 

47. The substructuring method pre-supposes that the free vibrational 

behaviour of a large structural system can be determined by a knowledge 

of the component substructure. That is, the mode shapes of the complete 

structure are assumed to be a linear combination of the individual 

substructures. The substructuring method as applied by Holze and Boresi 

48 3 can be applied to large or complex problems because only a subset 

of the structure mode shapes associated with the lowest frequencies are 

used to synthesize the system mode shapes. Note that the method 

described by Holze and Boresi r 48 ] 
can be used for analysing systems 

that are composed of non-identical sub-structures, or alternatively 

identical substructures. 

We shall now confine our discussion to systems consisting of 

identical substructures that are linked at identical junctions. A 

structural system with a regularly repeating section -a representative 

substructure - is referred to as periodic. When analysing a periodic 

system it is of obvious advantage both from a theoretical and computational 
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view-point to be able to use the repetitive nature of the structure to 

simplify the calculation. 

The vibrational behaviour of periodic systems can be studied 

by considering the displacement mode as a wave propagating in the 

system [ 49 3. The mathematics of wave propagation in periodic structures 

is well based in the literature. For example Brillouin [ 50 ] 
considers 

the problems that occur in solid state physics, electrical engineering 

and electronics. Mead and Sen Gupta [ 51 ] have applied wave propagation 

techniques to the study of the free and forced vibration of periodic 

skin-rib structures. Mead [ 52,53 ] has studied wave propagation and 

natural modes in mono- and multi-coupled systems with and without 

damping. The flexural motion of waves in beams and plates have been 

investigated by Heckl r 54 J and Cremer and Leilch [ 55 ]. In the 

papers referred to, exact harmonic solutions have been found for the 

equations of motion of the periodic system. The comparatively recent 

papers by Mead [ 56 ] and Abrahamson C 57 ] are noteworthy because they 

underline the use of approximate numerical techniques such as the finite 

element method, to wave propagation in periodic systems. Orris and 

Petyt r 49 ] analyse the vibrational behaviour of a periodic system by 

considering the displacement mode as a wave propagating in the system, 

and then by studying the wave's 'propagation constant'. They use the 

finite element technique-to evaluate the 'phase constant' of the system. 

They show that when a system is vibrating in one of its free waves, 

there is a constant ratio between the amplitude of the motion in one 

substructure and that at the corresponding point in the adjacent 

substructure. The ratio of these amplitudes is equal to exp (u), 

where u is the complex propagation constant of the wave. For a purely 

imaginary u, the corresponding vibration frequencies can be found by 

imposing constraints on the finite element equations of motion of a 
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single substructure. The constraints are of the form E UL 3=L UR ] exp (+p). 

CUL 3 and 
C UR 3 are the displacement vectors on the left- and right- 

hand boundaries, respectively. The resulting Hermitian eigenvalue 

problem can now be solved to obtain the resonant angular frequencies, w, 

corresponding to p; u can have any purely imaginary value between -in 

and +in. 

3.2 Rotationally Periodic Structures 

We shall now restrict our discussion of periodic structures to 

consider only those systems that form a closed ring. Rotational 

periodicity can also be termed rotational symmetry or cyclic symmetry. 

(A comprehensive treatment of symmetry is given by Weyl r 58 J. ) In 

this text a rotationally periodic structure will be regarded as 

follows: - a structure made up of identical segments and symmetrically 

arranged about an axis-of-revolution. Thus, if the geometry of the 

structure is defined for any radial or axial position at some angle 6, 

it will be identical at an angle (0 +nx 
Nr) 

where both n and N are 

integers. N is structure dependent (e. g. the number of identical 

substructures that constitute the rotationally periodic structure). n 

is any integer less than N. Note that an axisymmetric structure can be 

regarded as a rotationally periodic structure where the periodicity tends 

to infinity; i. e. Ni-. 

MacNeal, Harder-and Mason [ 59 3 have developed a method of 

simplifying the analysis of rotationally periodic structures and have 

incorporated the technique in the finite element computer program NASTRAN 

which can be used for static stress analysis, steady state heat transfer 

analysis, and vibration analysis. The key operation in the method is 

the transformation of the degrees of freedom of the structure into 

uncoupled symmetrical components. 

Thomas [ 60 3 developed the method of Orris and Petyt C 49 J 
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further. Whereas Orris and Petyt considered infinitely long 'chains' 

Thomas used the technique for studying-rotationally-periodic structures 

consisting of a finite number, say N, of identical substructures forming 

a closed ring. Thomas regards any normal mode of vibration as a wave 

propagating round the structure where the wave undergoes a phase change, 

ip, between adjacent substructures. Using this approach to calculate the 

natural frequencies and normal mode shapes of a rotationally periodic 

structure, the treatment is as follows. The mass and stiffness matrices 

of one representative substructure are computed and required degrees of 

freedom (d. o. f. ) constrained by the standard methods [4]. The 

unconstrained d. o. f. on one boundary (say, left-hand) of the substructure 

are constrained so that all the displacements corresponding to these 

d. o. f. have the same amplitude as the corresponding displacements on the 

right-hand boundary, but have the prescribed phase difference of 

This can be expressed in complex arithmetic as 

I 
EULJ ° [URJexp (+ ip) ... (3.1) 

where [ UL 3 and [ UR 3 are the complex displacement vectors on the 

left- and right-hand boundaries respectively. (Note that the d. o. f. 

associated with the displacements in equation (3.1) are referred to 

as a 'boundary' d. o. f. and are distinct from those 'internal' d. o. f. 

not associated with the substructure boundaries. ) 

The method of Thomas [ 60 J referred to above is similar to 

that described by MacNeal, Harder and Mason [ 59 ]. However, MacNeal 

- et al use real arithmetic in their method whereas Thomas uses complex 

'' arithmetic. The use of complex arithmetic simplifies the equations 

required to define the technique as it is not necessary to consider sine 

and cosine components of displacement separately. There are other 

advantages of the method outlined by Thomas in Reference 60 and 
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detailed in a later paper [ 61 ]. Some of these advantages are: - 

(a) Rotationally periodic as well as not quite rotationally periodic 

structures (i. e. with small perturbations) can be analysed. (b) The 

treatment can be generalised so that each substructure can be 

mechanically connected to any number of substructures, so long as the 

connections are rotationally periodic. (c) The method is not 

confined for use with finite elements but can be used in any matrix 

analysis of structures that are linearly elastic. (d) The method is 

not confined to vibration. It can be used in other structural eigen- 

value problems such as buckling. 

We shall therefore adopt the method of Thomas for use in the 

investigation of cooling towers. We shall regard a cooling tower on 

leg-supports as a number of identical substructures joined together to 

form a closed ring. The cooling tower at Didcot Power Station which 

is analysed in this thesis can be divided into forty such substructures, 

each consisting of a 2n/40 (i. e. N- 40) sector of shell, and one "V" 

shaped pair of legs (see Fig. 3.1). 

For convenience of expression the process of applying constraints 

to UL of the form described in equation (3.1) will be referred to as 

'applying complex constraints'. It is now pertinent to examine the 

possible values of the phase angle ý. In order to ensure continuity 

of displacements between: the first and last substructure of a rotationally 

periodic structure with N identical substructures, Np should be a 

multiple of 2n. That is, ý can only take the discrete values 

O,. xz. 

z is an integer that takes the value 
2+1 

or 
N2 depending on 

whether N is even or odd, respectively. If Nr 
x n, where 06 it < z, 
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n is the harmonic circumferential wave number. 

The numerical technique by which complex constraints are 

applied in the program VACTIL [5] will now be outlined. It will be 

seen that the technique can be easily applied to a free vibration problem 

using finite elements. 

From a computational view-point the displacements that are 

complex-constrained can be regarded as undergoing a transformation (as 

for example a coordinate transformation). Let the displacements before 

the application of complex constraints be a complex vector Up of order 

j and let it be UQ after the application of complex constraints. Let. 

the kth component of the vector Up be denoted as Upk . 
(Similarly for 

UQ:.... ) Now let complex constraints be applied so that the kth component 

of Up is equal in amplitude to that of the kth component of the vector 

UQ but differs by the phase angle. t (=H x n). (For convenience of 

explanation we have assumed that only one component of Up is complex- 

constrained. ) Thus, the displacements can be equated as 

Ul = U1 
pQ 

U2 = U2 
pQ 

Uk Uk x exp(+iý) 
pQ 

U3 = U3 
pQ 

In matrix form equation (3.3) is 

[Up] = [T] [UQI 
... (3.4) 

where the matrix [TJ contains terms in zero (mostly), unity and one 

term in exp (iý).. In practice many d. o. f. are complex-constrained. The 
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treatment is the same except that the matrix [T] 
contains as many 

terms of exp (ii) as there are constraints. 

Now let Ks be the stiffness matrix of the representative 

substructure before the application of complex constraints. (Note that 

the conventional type of finite element constraint can be applied to 

Ks, if required. ) Let K be the corresponding matrix after complex 

constraints have been applied. K is Hermitian-complex. Then 

K= [TJT [KSJ [ T] ... 
(3.5) 

(with ()T standing for transpose of a matrix). 

The equation (3.5) can be regarded as having been obtained 

from equation (3.4) by a treatment similar to that used for the 

transformation of geometrical coordinates (see Reference 4, page 10). 

The numerical evaluation of equation (3.5) in the author's 

finite element computer program VACTIL [5] is performed in double 

precision complex arithmetic. When Ks is large, as is usually the 

case, a technique such as described for the transformation of geometrical 

coordinates in Chapter 6 must be employed to minimize computer core 

requirements. 

The treatment for the mass matrix of the representative sub- 

structure, Ms, is the same as for Ks. The natural frequencies and 

mode shapes of the complete structure, for any given value of n, are 

obtained by solving the eigenvalue equation 

(K - w2 M) x=0.... (3.6) 

K and M are the mass and stiffness matrices of a single substructure, 

subjected to the complex constraints described above, and are complex 

Hermitian matrixes. x is the vector of nodal displacements of the 

substructure; note that the eigenvectors are complex. The constrained 
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matrices K and M must be formed separately for each value of p considered; 

that is, for each value of n. The eigenvalues of the constrained 

substructure are identical to the eigenvalues of the full structure 

60 D. x can be used to generate the corresponding eigenvectors of 

the full structure. A detailed description of the mathematical basis 

of the technique is given in Reference 61. 

3.3 Computer Time and Storage 

One important advantage in using complex constraints is 

that only a representative substructure is analysed in preference 

to the whole structure. Thus both computer time and region requirements 

are reduced. Moreover, using a conventional finite element method and 

non-axisymmetric finite elements the number of circumferential nodes , 

n, cannot be requested. a priori. However, when using complex constraints 

the value of n is selected by choice of . 

It is useful to obtain an approximate estimate of the saving 

in computer c. p. u. time and computer storage (or region size) obtained 

by using complex constraints. 

Let t be the ratio of the c. p. u. time taken to solve the 

eigenvalue equation for the whole structure to the corresponding time 

taken for a representative substructure. let C be the ratio of the 

computer region taken to analyse the whole structure to the corresponding 

region size required to analyse a representative substructure. 

Many eigenvalue solution subroutines require a c. p. u. time 

that is proportional to the number of d. o. f. cubed. Also remembering 

that when complex arithmetic is used, each numerical multiplication 

There have been references to "non-classical" mode shapes in the 

literature [ 40,33 1. The value of n to be ascribed to a particular 

mode shape will be discussed in a later section. 
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takes about four times longer than when real arithmetic is used, it 

can easily be shown that t is approximately equal to N3/(2N-+ 4) 

for extracting all the eigenvalues. 

Storage requirements for an analysis are primarily dependent 

on the size of the overall (global) matrices and is proportional to 

2 
the number of d. o. f. squared. Thus C is roughly 2N 

For a cooling tower with forty representative substructures 

(i. e. N= 40) t= 761 and C= 800. These figures demonstrate that 

when analysing complex structures that are rotationally periodic the 

analysis of only one representative structure is either (a) essential 

to enable the problem to be solved without exceeding the restrictions 

imposed by the computing system or (b) greatly reduces the computer 

time and storage required. 

3.4 Closure 

The finite element analysis of a complex structure is 

facilitated if the system can be regarded as composed of component 

substructures. If the system is periodic the displacement mode can be 

regarded as a propagating wave and described by a complex propagation 

constant. If the structure is composed of identical substructures then 

the analysis can be greatly simplified by the use of complex constraints 

on one representative substructure. 
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CHAPTER FOUR 

STRESS-DISPLACEMENT MATRICES FOR 

DOUBLY CURVED FINITE ELEMENTS 
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4. STRESS-DISPLACEMENT MATRICES FOR DOUBLY CURVED FINITE 

ELEMENTS 

4.1 Introduction 

The purpose of this chapter is to derive stress-displacement 

matrices (often referred to simply as stress matrices) for use with 

doubly curved shell finite elements. For convenience of explanation 

the specific case of the doubly curved shell finite element proposed 

in Reference 40 is considered. However, the derivation can easily be 

adapted to enable the derivation of the stress matrices of other 

doubly curved elements. By way of illustration the stress matrix 

of an axisymmetric element is also derived. 

As the method of finite elements is well known - an explosive 

expansion of the subject has taken place in the last decade - an 

introduction to the subject will not be given in this thesis. (For 

a comprehensive introduction to the subject see References 2,3 and 4. ) 

However, some of the basic principles used in the derivation of a 

finite element will be detailed in this chapter. 

The stiffness matrix for the doubly curved shell finite 

element is presented in Reference 40 in explicit rather than implicit 

form - only the expression for the strain energy is given explicitly 

40, page 100 1. Thus, in order to derive the finite element stress 

matrix it is also necessary to obtain equations that are common to 

the derivation of the stiffness matrix. Also to enable some of 

the equations used in the analysis to be verified, an expression for 

the element strain energy is obtained and seen to be equal to that 

' given in Reference 40. 

442 Geometry of a Shell of Revolution 

In this section the geometry of a shell of revolution will 

be briefly discussed. Equations will be developed which will be of 
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use in the derivation of the stress matrices and which are also 

required for computing important geometrical properties (such as 

sin¢/R). 

A smooth surface can be defined in the Cartesian coordinate 

system (x, y, z, ). However, such a system does not lend itself readily 

to the geometry of a shell sector. Any point on the surface can be 

defined uniquely as follows: 

x= F1 (a, 

y= F2 (a, ß) 

z F3 (a, ß) 

... (4.1) 

The parameters a and a are defined as curvilinear coordinates. Fl. 

F2 and F3 are continuous and single-valued functions of a and ß and 

exist in their simplest form for an orthogonal system of curvilinear 

coordinates. As an added benefit the directions of the principal radii 
s 

of curvature are mutally perpendicular. 

Equations (4.1) can be written in vector form, thus, 

r=r (a, ß) 

If ds is the vector joining the two coordinates (a, ß) and (a+da, ß+dß), 

then 

dr dr 
ds = äa da +ß dß 

The dot (scalar) product of ds with itself is: 

(ds). (ds) - ds2 = (A2 da2 + B2dß2) 



4.3 

(As the coordinate system is orthogonal the dot product of the two 

2r 8r 2r 8r 2 8r r 
vectors ýa and äß is zero. ) Here A= äa äa and B=ß 

When only one of the curvilinear coordinates a or ß is 

varied in any particular operation the above equation gives 

ds = Ada 
a 

dsß = Bdß 

... (4.2a) 

... (4.2b) 

(dsa is the increase in arc length along the coordinate line a for an 

increase in this curvilinear coordinate by da). A and B are usually 

known as the Lama parameters and define (see below) the directional 

characteristics of the coordinate lines a and ß, respectively. 

As shells composed of only one material are to be analysed, 

the surface joining the loci of points equidistant from both walls 

of the shell will be defined as the reference surface. The concept 

of a reference surface is very useful, as will be seen. Consider the 

reference surface of a general shell of revolution, as given in Fig. 41. 

Let r (QA in Fig. 4.1) be the radius of curvature of the meridian 

(first principal radius of curvature) and R (OA in Fig. 4.1) be the 

radius of the parallel circle, i. e. the circle with its plane normal 

to the axis of revolution, Z-axis. The normals to the points at A and 

B intersect at Q. Let QA make an angle ý with the Z-axis. 

Let 0 be specified as the curvilinear coordinate $. For a 

unit increase in 0, i. e. do = 1, dsa will be the incremental length 

' in this coordinate direction, i. e. dsß =Bx1 from equation (4.2b). 

However dsa is also identical with the arc of a parallel circle and 

, can be expressed as dsß = Rd©. By comparison with equation (4.2b), 
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therefore, B=R. If the length along the meridian is chosen as the 

other-curvilinear coordinate a, then A is unity. 

i. e. 

A= 1 

B =R 
... (4.2c) 

Hence, the Lama parameters have been obtained for the special case 

where the meridional arc length, s, and the angle defining the arc of 

a parallel circle, 0, are adopted as the curvilinear coordinates. (To 

complete the triad of "right-hand" orthogonal axes, a third axis y 

normal to the reference surface is defined, and is declared zero at the 

reference surface. ) This choice is not arbitrary; the attendant 

simplifications obtained in the geometrical expressions used in the 

derivation of the stiffness matrix are manifold. 

Now r is the principal radius of curvature associated with 

the distance along a meridian s (or a). The second principal radius 

of curvature associated with 0 (or ß) is (R/sin 4). Expressed as 

curvatures, 

and 

K1 =_... (4.3a) 

sin $ 
K2 = R= ... (4.3b) 

From Fig. 4.1, for small AB 

i(CB - OA) = AR} 
{AB =) 

== 
cos and in the limit 

ax 
ä=r cos ... 

(4.3c) 

Now rA¢ = AB = As and in the limit 
as r 

hence (using equation (4.3c)) 
as = cos ... (4.4a) 
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and 
a2R=- 

sin 
a¢ 

=- 
sin 

8s2 
as r ... (4.4b) 

It is readily shown [ 8, page 43 
-1 

that the elemental 

volume of the segment of a shell bounded by two parallel circles, 

meridional sections and surfaces parallel to the reference surface, 

say d(vol), is given by the expression 

d(vol) = AB(1 + YK1)(1 + YK2)dy da dß 

Substituting from equations (4.2) and (4.3), 

d(vol) =R1+r+ 
S1R + S1Ä ¢ 

y2 x dy do ds ... (4.5) 

From the geometrical definition of the shell three parameters 
23 

are evaluated numerically; i. e. 
äz, a2 

and 
a 

3. 
(Here Z is the distance 

az az 
along the axis-of-revolution. ) These parameters must be used to evaluate 

other important geometrical properties. For example, the meridional length 

(L) is obtained as follows: 

AL2 = (AZ2 + AR2) , 

from consideration of Fig. 4.1. 

Thus 

L21 
L=J AL =J1+ 

(IR 
dZ ... (4.5b) 

0 

Cos ý is similarly obtained: 

cos =1 

)2I 

... 
(4.5c) 

An expression for the important parameter (1/r) is obtained 

as follows: - 
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As rAý = AL and AL = AZ/sin ý 

It 
= /sin 

Also as sin 4= 
äs 

and 
a2 

2=- 
sin ý 

we get 
as 

1 
(2 

R 
WS aZ sin sin ý/r 

With elementary manipulations, and remembering to use 

equation (4.5d) we get, 

2 
sin3x 

aR 

az2 

... (4.5d) 

... 
(4.5e) 

The important geometrical parameter r asr 
{see equation (4.9b)} is 

obtained frcm equation (4.5e) and is: - 

1 arý= 
cos 3X1X a2R 

X 

(IR 

r as1 1+ (aRý2 aZ2 Z 
az 

_ 
(a R/8Z3) 8R 

8Z (a2R/3Z2) 

The above completes the basic geometrical information 

... (4.5f) 

required for the section and chapters that follow. 
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4.3 Basic Assumptions of. Thin Shell Theory 

A shell is defined as a body bounded by two curved surfaces 

where the distance between the surfaces is small in comparison to 

the other dimensions. In this thesis it will be assumed that the 

shell is formed from a material that is homogenous, isotropic and 

linearly elastic. 

A shell is defined to be thin when the ratio (C) of the 

first principal radius of curvature (r) to its thickness (h) is large 

in comparison to unity. Kraus [ 62 3 advocates that E; 10 and 

Novozhilov [81 that , 20. In practice, shells of engineering 

interest (e. g. cooling towers) have C values that lie in the range 

50 to 1000. 

Several important assumptions are made in the theory of 

thin elastic shells. These assumptions are known variously as 

either Love's Postulates or Kirchhoff's Hypotheses, and are stated as 

follows: 

(i) The deflections of the shell are small. 

(ii) The straight fibres of a plane (within the shell wall) 

normal to the reference surface before deformation remain 

so after deformation and do not change their length. 

(iii) The normal stresses acting on planes parallel to the 

reference surface can be neglected in comparison with 

other stresses. 

That these assumptions are valid in many practical situations 

is clear from the immense quantity of established work involving thin 

shells and based on the above. Also, Novozhilov and Finnkel'Shtein [63 ] 
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formally discuss the implications of these assumptions and conclude 

that the errors are of the order (TI, . 

4.4 Stress-Strain Relationships for General and Thence Thin 

Shells 

Let us now consider Hook's Law for a homogeneous, isotropic, 

linearly elastic medium. Let aaa, Qßß and a be the normal stresses 

acting on three mutually perpendicular faces of an element cut from 

the elastic body. (The first suffix gives the direction of the stress, 

and the second the direction of the normal to the plane on which the 

stress acts. ) Let eaa, eßß and e1 be the corresponding strains induced 

in the body. Let aaß, aßY and aya be the shear stresses on these faces 

with eaß, e1 and eya the attendant strain components (or shear 

deformation). The relation between the stresses and strains can be 

given in matrix form as 

a(ct, , y) _[ D1 ][ e(a, , y)i ... (4.6a) 

Dl is often termed the "Elasticity Matrix". (However, it must be 

noted that there are various forms of the Elasticity Matrix, as will 

be seen in this chapter, and that expressions given in the literature 

involving this term must be interpreted with care. ) The terms of this 

matrix are readily available from the standard theory of properties 

of materials. (For example, see Hearmon [ 64 J, pages 65 to 67. ) 

For a thin shell the terms of the constitutive matrices 

given in equation k"6Q. can be significantly simplified. Returning to 

Kirchhoff's Hypotheses, (ii) implies that deformation of a thin shell 

as a three-dimensional body takes place without the shearing 



F 

4.9 

deformations eya, e, 
y 

and without strain eyy through the thickness 

of the shell. 

i. e. eya = e, 
y 

= eyy =0 

For linearly elastic, homogeneous materials the shear strain components 

are directly proportional to the corresponding stress components. 

Thus as eßY = 
o0Y 

and eYa 
aGa 

, where G is the Shear Modulus 

(= 
1) 

the shear stress components Q and a vanish. Note that 2(l+P) ßY Ya 

eYY = a/ay{w(a, ß, y)} where w(a, ß, y) is the displacement normal to any 

surface within the thickness of the shell for y= constant. Therefore, 

eyy is deemed to be zero this displacement will be independent of the 

value of y. That is, the normal displacement of the reference (or 

middle) surface will be equal to the normal displacement at any point 

within the shell on a common normal. 

Finally, application of Kirchhoff's third hypothesis allows 

aYY to be declared zero. (Even in the case of a pressure vessel it 

is said 
[ 65 j that the stresses in the thickness direction, aYY, 

are very small in relation to meridional stresses, a 
as , 

or 

circumferential stresses, aßß, that are induced by the pressure. ) 

It is now possible to present the stress-strain relationship for 

thin elastic shells. This is a re-formulation of the general 

relationship expressed by equation (4.6a) 

raaal 1P0 eaa 

E 
aßß 

(1 -2p10 
eßß ... (4.6b) 

p Cr 
1e 

aß_ 
OO2 

aß 



4.10 

i. e. 

E ß(cc Y)l =C D2 3[ e(c ,, y)] ... (4.7) 

where E is Young's Modulus and p is Poisson's Ratio. 

4.5 The Stiffness Matrix for a Double-Curvature, Shell Finite 

Element 

4.5.1 Relation between strain and nodal displacements 

In the previous section the stress and strain components were 

shown to exist only in the aß plane for thin shells of revolution 

(equation (4.7)). The study of the three-dimensional continuum can 

now be satisfactorily reduced to the analysis of the two-dimensional 

reference surface. 

It can be shown that the deformation of the reference surface 

can be completely determined by six strain components (see Novozhilov 

8] pages 26 and 27). Let ea, cß be the extensions of a point (a, s) 

on the reference surface in the directions of a and ß, respectively. 

Similarly, let Xa and Xß be 'rotations' in these directions. Let caß 

be the shear strain and Xaß the twist. Thus, considering a small 

element on the middle surface, ea, eß and eaß characterize the 

variations of its dimensions whilst Xa, Xß and Xaß characterize its 

distortion. 

It is now necessary to relate the strains at the middle 

surface to the strains at any point in the material. For a general 

shell, the relevent equations have been derived by Vlasov [ 9, page 

249, equations 7.8]. Substituting for K1 K2, A and B gives: 
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eaa = ea + Xay + (- K1xa)y +C= Xanyn 
n=3 

eßß = eß + X1Y+ (- KX)Y2 +x in 
a2ß 

n=3 ... (4.8a) 

and eaß = Eaß + XaßY + (1P2ea$ - IPXaß)Y2 + I3 Xaßnr 
nn 

where Xan, Xßn and Xaßn are defined by Vlasov, pages 249-251. p and p are 

defined later. (Note that -h2; y1+ -ih, where h is the thickness of the 

shell wall. ) For thin shells Love [121] 
assumes a linear variation of 

[c(a, ß, Y)] with-y. Several other authors also neglect the terms of order 

Y2 or higher. However, Vlasov [9, 
page 262] argues that this contradicts 

a basic assumption (i. e. (ii) in Section 4.3) of thin shell theory. On 

the other hand, it must be noted that Novozhilov C 8, page 53 J, while 

accepting that these contradictions do exist, strongly suggests that 

the mathematical inaccuracies so generated are still of the order of 

1 On consideration, for the present purpose we assume a quadratic 

variation of the strain across the thickness of the shell wall. The 

following matrix equation is then obtained from equation (4.8a): 

eaa 00 Y(1 - 
r) 0 

e=0100 Y(1 - 
in _ 

Y) 
ßß -R 

L 

aß 
00 (1+2p2y )00 

ICa 
ca Eaß Xa Xß Xa J 

0 

0 

Yil 
2 

PY) 

... (4.8b) 

(where the superscript T denotes the transpose of the particular matrix) 
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or 

[ e(a ß Y)] _EyJ[ E(a, C, Y=01 )J 
... (4.8c) 

Here sin and p __ + sin 
'pRR 

Continuing our analysis of the reference surface it is now 

desired to relate the strains to the displacements at the middle 

surface. This relation is obtained from Valsov [ 9, page 250, 

equations (7.11) 
. 

Remembering to substitute for A, B, K1 and K2 we 

get: 

[c (a, a)]= [B1 ][a (a, ß 'Y=O )] ... (4.9a) 

where 

1 la 0 L as r 

cos 1a sin 4i 
R R' 

ae 
R 

1a1a_ cos 0 RT LR 
30 as 

[B J_ 

2 
ar 0_1+1a 

L2 as r2 L2 as2 

_p 
cos 40_ sing + cos 

+ 
a2 

R R2 
LR 

as Yý2R2 a9 

p 
(If 

a cos 2 cos a1 a2 
TR 

ao as 
R 

TR2 ao 
IRL 

aöas 

... (4.9b) 
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and C 6(a, OD =[uv w] 
T. 

u, v and w are the orthogonal displacements 

along the coordinate axes a, ß, y (see Fig. 4.2). With reference to the 

doubly curved shell finite element shown in Fig. 4.2, the bar sign 

signifies normalization with respect to the element dimensions. That 

is, s=L and 0L is the length of the meridian (see Fig. 4.2) 

and Y' is the angle subtended by the parallel meridians of the element 

1a=a1aa 
considered. (Note that L as and ,-= ae' 

as ae 
4.5.2 Displacement function 

The displacements at any point on the middle surface must 

now be related to the variables (displacements) at the nodes of the 

finite element (e. g. 1,2,3 and 4 in Fig. 4.2). That is, an equation 

of' the form 

[8(a, ß)J = LP]LöeD 
... 

(4.10) 

is required where [ de ] is the nodal displacement vector. The matrix 

is obtained using the following arguments. 

It is assumed that each of the three displacements, i. e. 

u(a, ß) = u(se) = u, say, v and w, can be written as the products of 

one-dimensional, cubic interpolation polynomials and undetermined 

displacements at the nodes of the elements. For u the expression is: 
i 

m 
u= if 

ab (a+l) ba (b+l) eo 
. 

g (ui )+Lfg 
(LES)i 

+ R'Yf g 
(lailu 

ii 

+ LRýY fj (a+l) g(b+1) 
o 

.. 
(4.11 

(2asuae 

Here, 0=RX0. 
0 
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If there are four nodes (i. e. im = 4), then 

a=1 when i=I or 2 

=3when i=3or4 

and b=1when i=lor3 

=3 when i=2 or 4. 

Also, f1(s) = f1 (say) =1 -3s2 + 2s3. Similarly g1(6)= g1 (say) 

=1-352+2e3 

f2=s-2s2+s3 g2=e-252+e3 

f3 = 3s2 - 2s3 

f4=-s2+s3 

g3 = 392 - 263 

g4 °- g2 + 53. 

The accuracy, and usefulness, of the above displacement function has 

been verified by several authors [ 66,40,6,67 J. Thus, several 

important requisites, like for example, the continuity of displace- 

ments and slopes between adjacent elements along an entire edge, are 

satisfied. 

From equation (4.11) it is observed that there are 16 

displacement terms in u for a finite element with four nodes. Thus, 

the three orthogonal displacements u, v and w give rise to 48 

displacements or degrees of freedom at the nodes of the element: 

aA as a2A 
Aý' äs aeo ' asaeo 

, -where j takes the values 1 to im(=4) and A takes the notation u, v 

and w respectively for each value of j. Let these 48 displacements 

be denoted by the nodal displacement vector [6e3. Then, 
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[T11D ET12D LT133 LT141 

6 (a'0) T211 [ T22 J ET 
23 

,ý r24 ] x Lae 

[T31J ET32-ý [T33J [T34-ý 

... (4.12) 

where the sub-matrices 
[Tip] are given by ETli ]_` Tmi lE 08 -, 

T2i = 

[[04] 
[ Tmi] E04] and [T3ij [r08j ETmi11 

. Here 
J J 

04 3 and 
E 08 ] are zero row-matrices of order (1 x 4) and (1 x 8) 

respectively. From equation (4: 11) CTI_[fg Lf gb RY'f g 
mi ab (a+l) a (b+l) 

LRY'f (a+l)g(b+l) 
] where a and b; vary, as in equation (4.11), with i. 

Now comparing equation (4.12) with equation (4.10), it can 

be seen that [P] in equation (4.10) is the matrix of order (3 x 48) 

given above in equation (4.12) (i. e. the matrix with terms in the 

sub-matrix 
[T. 

3 
ý) 

. 

4.5.3 Strain energy 

Sufficient information has been derived in the previous 

sections to enable expressions for the strain energy and thence the 

stiffness matrix to be obtained. 

When a material has been subjected to elastic deformation 

the forces that are responsible for the deformation process are negated 

by the ensuing internal stresses within the material. These internal 

stresses contribute to the total internal energy of the body; this 

contribution is referred to as an increase in the strain energy, U. 

UJ Uo d(vol) 

' vol 

where U0 is the strain energy per unit volume. For a material that 
(0 (e 

was unstressed before the deformation, U0JJ de. da 
=0 e_ a -0 
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For a linearly elastic material, the stress-strain characteristics 

are linear; hence, 

Ua 
1 

e. a 

Thus, for the present case, in matrix notation 

U=2J 
vol 

[ e(a, 0, Y)J 
T[ 

a(a. ß, Y)] d(vol) ... (4.13) 

From equation (4.7) 

U=1J 
vol 

[ e(a. ß, Y)1T [ D2 1 [e(a, ß, Y)j d(vol) 

Substituting from equation (4.8c) for [ e(a, ß, y)J and from equation 

(4.5) for d(vol), we obtain 

U=2_ JL e(a, ß)JT [ DJ L e(a, ß)] d9. ds ... (4.14a) 

s=0 A=0 

where +h/2 

Dt Jy= R{1 ++ 
sinx + SiR 

y2X Ly3T CD2ý Cy] dy 

-h/2 

(-I 

r 

... (4.14b) 

(Note the rule of matrix" algebra where ([ x][y ]) T=[yJT [X3 T) 

Now, substituting for [ e(a, ß)I from equation (4.9a) we obtain 

U21J dCa, ß)]T CB11T[D] CB1J [ aCa, B)j dA ds 

As shown earlier, equation (4.10), [6(, )J PJL de J, and 
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hence, 

Now let 

U=21J EeýT CPJT [B1JTLDDEB, ] [PJCSe1 d8 ds 

CBS = [BiJEPI ... (4.14c) 

which gives 

U= 2JJ 
ESeJT [BJT [DJ[B3 3 d6 ds 

Let [K] = J1 J1 
[B]T [D][B] d9 ds 

s=0 6=0 

Then U=2 [Se jT [K][e] 

... (4.15) 

... (4.16) 

... 
(4.17) 

We now invoke the Principle of Virtual Work - "During 

any virtual displacement imposed on a body the total external work 

done by the externally applied nodal forces must be equal to the total 

internal work done by the stresses". Let the virtual displacements 

at the nodes be [ dell and [ Fe ] the statically equivalent forces 

at the nodes. Then the external work done =E6 
el JT[ Fe J. By the 

Principle of Virtual Work the internal work done is due to the actual 

stresses associated with the nodal displacements E öe 3, and the 

virtual strains associated with the virtual nodal displacements [ 6el D. 

Now, applying arguments-similar to those used to obtain equation (4.17), 

it is seen that the internal work done is [6 el jT[KJ[ ae J. 

(Note that U0 is now equal to e. a as the stress due to the actual 

displacements [ de j is constant, while the virtual strain is 

increased owing to the virtual displacements [ 6el-ry. ) 

Thus, [äel T [Fe] = Lael JT [KILdeJ 
J 
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Premultiplying both sides by [ del J gives 

C6elDEdel3TrFe J_ raelDEael 

The inverse of ([ gel Ir ael JT) exists as 

so chosen - the Virtual Work Principle must be valid 

applied displacements. Premultiplying both sides by 

gives 

T [K jEoe J 

Is el 3 can be 

for any system of 

this inverse 

LFe] = LK][ej 

This is a generalisation of the familiar expression for Hook's Law in 

matrix form. [K] is the stiffness matrix. By evaluating equation 

(4.14b) is can be shown that [DJ has the following form: - 

CDJ E= 

ý1 - p2) 

d 
1 symmetric 

terms 

pd1 d1 

0 0 d2 

d4 pd4 0 d6 

pd5 d5 0 d9 d$ 

0 0 d3 00 

... (4.18a) 

where, neglecting h4 in terms and terms of similar or smaller magnitude, 
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dl=R(h+hSRr 

d2 Rv (h + h{S 1+ p2}) 

_ 
wherd v2 (1 - p) and h= 12 

d3= 
2vpRh 

d4=hsiný 

dshr 

d6=hR 

d7=vhR 

d8 =hR 

=phR dg 

... (4.18b) 

The other matrix term in the expression for the stiffness 

matrix is [B]. [BJ is calculated from equation (4.15) where 
[Pl 

is obtained from (4.12) and [ B1 3 from equation (4.9b). Whilst 

differentiating with respect to s, when evaluating [B], it must 

be remembered that R varies along s. Thus, for example, 

a(Rf ) 
_1 

= fi+ fiR' R 
R 

where from equation (4.4a), R' = 
aR 

=L cos 4. Differentiation with 

as 
respect to 6 is straightforward as R and L are not functions of 0. 

At this state it is pertinent to note that by substituting 

.' for CD D in equation (4.14a) from equation (4.18) is can be 

verified that the expression for the strain energy, U, is identical to 
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that obtained by Deb Nath [ 40, page 100, equation (A. 1) J. (However, 

see Section 4.6.3 regarding U for the ring element. ) 

4.6 The Stress Matrix 

4.6.1 Stress at any point 

The equations set out in the previous sections now allow 

the 'stress matrix' to be obtained with relative ease. From 

equations (4.7), (4.8c), (4.9a), (4.10) and (4.15) 

[aia, B, YD= CD 
2DEYJCB, DEPD[6'D 

CD3: EBJ[eD 

C H1 :C de D 
... (4.19a) 

where 
[ D33 = ED 

211Y]... (4.19b) 

and 
CH1] [D3] [BJ 

... 
(4.19c) 

(Note that the displacement vector Ce-J is in the 'local' 

curvilinear coordinate system of the shell element. ) 

H1 ] is called the stress-displacement matrix or, simply, the 

stress matrix. 
[B] in equation (4.19c) is evaluated as described 

in Section (4.5.3. ). ý D3 3 is obtained from equations (4.7) and 

(4.8b): 

I 

DE C J- P 3 C1-P2) 

0 

p0 Y1-r'\ YP 1-SinR ¢Y 0 (1 
0 Yp(1 -r)Y1- 

sin ý 
Y) 0R 

12 2\ 000 Yv1-2PY (1+P) 
... (4.19d) 
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Thus the stress matrix [ H1 D of order (3 X 48) can be obtained 

and the stress components aaa, aßß and aaß can be determined at any 

point (a, ß, y) on or within the shell wall. 

4.6.2 Stress resultants and couples 

Whilst it is useful to know the stress at any particular point 

in the wall of the shell it is often more practical to calculate the 

'averaged' stress distribution in the shell. By integrating the stress 

components along a normal to the shell wall for y varying from 

-2 to +2 
11 

a two-dimensional theory of stress can be presented. For 

convenience, it is possible to describe the action of the stress 

components over a unit value of arc of a parallel circle at the 

reference surface. Thus, for unit wall length in the circumferential 

direction the forces can be obtained. (This is similar to the treat- 

went used in Beam Theory. ) From elementary theory C 68, page 73 J it 

is known that a system of forces can be represented by statically 

equivalent resultants and couples. Using the above concepts it is now 

possible to define components of stress and moment that enable the 

'averaged' stress behaviour of the shell to be described. 

The arc length of a parallel circle for y= constant sub- 

tending and angle AO at the Z-axis is equal to LO(R + y) = AO. R(1 + R). 

Defining AO such that unit arc length at the middle surface is obtained 

(i. e. De. R = 1) we get ý(1 + R). 

The stress resultants and couples of oaa distributed over 

an a= constant face of the shell, for unit arc length of the reference 

surface, are given by 

+h 
JN 

Na h vaa (1 +) dY 

Y- 2 
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and 

ä= 
fa 

aa 
1+RY dY 

Similar relationships apply for Qßß and aaß. Thus, the three components 

of [ a(a, ß, y) J in equation (4.7) are given by six stress resultants 

and couples - Na, Nß, Naß and Ma, Mß, Maß, respectively. The directions 

of these components are indicated in Fig. 4.3. 

In matrix notation, therefore, 

Nh 
a 

_2 CND L:: = 
J_- 

ß 

ßiaýa, y) J1*R dY 

From equations (4.7), (4.8c) and (4.19b) 

+h/2 

EN] 
J 

-h/2 

E D3 J[£ (a, a) D1 +R dY 

Similarly, 

M ra +h/2 
[M] = Mß = 

-h/2 
Maß 

D3 [ EiaB)J 1+Ry dy 



CENTRAL ELECTRICITY RESEARCH LABORATORIES REF. RD/l/ N 113 76 

Ya 

ORTHOGONAL 
CURVILINEAR COORDINATE 
DIRECTIONS 

'ter 
. _-- 

N 

Na 

M(I 
\)- 

Y 

M 
ap 

Ma 

N-Oý I Na 
FIG. 4.3a STRESS-RESULTANTS AND MOMENT 

(b) (c) 

es. - 
---3 

Nap 

Npa 
Np 

Na 

FIG. 4.3b DIRECT STRESS AND 
SHEARING ACTIONS 

Mß 

Maß 

MPG 

FIG. 4.3c COUPLES 



4.23 

Now integrating, and neglecting terms of order h4 or smaller 

we can write 

Nh ph 0 h(R-r Rh 1- sin) 0 
a 

Nß ph h0 
(l E 

-rR1- sin 0 

N Naß 0 V(h+lP2h 00 VE 
I 2) 

[Nm] _==MMh 
Rph 

0 ph 0 
aR 

Mß Rh h0 
ph h0 

Maß 00 Rh 00 VE 

xE2x[ e(a, ... (4.20a) 
(1-p ) 

h3 
where h= 12 

i. e. [Nm] = ED4] [s(a, ß) 3 
... (4.20b) 

As before. substituting for [ e(a, ß) I, 

[ ENý-I = [D4: [BJo 

i. e. - 
ýNm 

` ýH2ýýaeJ ... (4.21) 

Here L112 ý is the stress matrix of order (6 x 48) for obtaining the 

' averaged force per unit length of arc in terms of stress resultants 

and couples. ([ D4 1) is readily obtained from equation (4.20a) and 
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B3 is evaluated as described previously. ) Hence, alternative forms 

of the stress matrix have been presented as [ Hi j and 1 112 ]. 

4.6.3 Ring element 

The stress matrix for the ring element [ 40 ] can be similarly 

derived. The ring element can be regarded as a special case of the 

shell element. The relevant differences are as follows: 

(a) ' is now 27r. Hence numerical differentiation or integration 

with respect to 5 is not necessary. 

(b) The nodes of the ring element are taken to be the parallel 

circles defining the element. Hence, the ring element has two nodes. 

(c) The displacements, along the parallel circles of the ring 

element are taken to be sinusoidal or cosinusoidal. 

The matrices ED 
3] and ED 

4ý 
(equations (4.19d) and (4.20b) 

are not functions of 0 and are therefore identical for the ring element. 

However, [ Bl ] in equation (4.9b) is a function of 0; hence, it 

differs (slightly) from the expression given in this text. The 

ring element has 24 degrees of freedom compared with the 48 degrees of 

freedom for the shell element. The displacement function is therefore 

simpler (also see item (c) above) and hence [PJ in equation (4.12) 

is different. 

The expression for the strain energy, U, of the ring 

element can be calculated as indicated in Section 4.5.3, in order to 

verify the accuracy of the equations used. However, it must be noted 

that in the expression for the strain energy given by Deb Nath 

, "[40, equation (A1)D there is a typographical error. The third 

bracketed term should read: 

3- 
12 

XS+X8+2v X X+ v2 
s0 2 xs6 
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The derivation of the stress matrix of the ring element 

is as follows. (Where relevant, previous equation numbers, marked 

with a prime sign, will be used as this will illustrate the similarity 

between the two derivations. ) The equation (4.19) can be written for 

the ring element aS 

ED[illE... (4.19a') 

where L H1 ] is the stress matrix. 

The alternate form of the stress matrix enabling the stress resultants 

and couples to be calculated is given by 

LNm] = CD41EB][de] 
_ [HýE, eJ 

... 
(4.21') 

For the ring element, [ D3 ] and L D4 1 are given explicitly by 

equations (4.19d) and (4.20a). 

From equation (4.10) an equation of the form 

C6(a-ß)D = L. P' 3L6e3 
... (4.10') 

is obtained. If Ede ], the nodal displacement vector, is re-arranged 

so that the nodal displacements are grouped according to genre and not 

according to node number, displacements of the following form will be 

obtained: - 

aul 2ul 3u au2 a2u2 a w4 
ul, as 23 u2, as 2 "".. " 3 ... 

(4.22) 
as as as as 

Let this vector be [6eJ. That is, the orthogonal curvilinear displace- 

ments u, v and w in the middle surface of the element are given by 
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u uo cos no 

v= vo sin no = Cd(a, ß)3 

ww cos no 
0 

Here the suffix 'o' denotes amplitude. (In equation (4.22) 

all the displacement variables are amplitudes. However, for typo- 

graphical convenience, the 'o' (S omitted. ) 

cos nO 00ETD 

=0 sin nO 01oD 

00 cos nO [03 

Co] E01 

LT] CoJ Cae3 

... (4.23) 

i. e. 

Caic )D = EAJ CPý Caee J 

where LA] is the (3 x 3) matrix with trigonometric terms 

and [P3 is the (3 x 3) matrix diagonal in [T] in equation (4.23), 

and where LT]_[ F1 LF2 L2F3 L3F4 F5 LF6 L2F7 L3F8 ]. 

(The nodal vector [ de J is calculated by the 'free vibration. analysis' 

part of the program. [ de ] is obtained merely by re-arranging 
g 

[a2]. ) 
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Here, 

F1 1 0 0 0 -35 84 -70 20 

F2 0 1 0 0 -20 45 -36 10 

F3 0 0 
2 

0 -5 10 -7.5 2 

1 2 2 1 
F4 0 0 0 6 _ 3 1 _ 3 6 

F5 0 0 0 0 +35 -84 70 -20 

F6 0 0 0 0 -15 39 -34 10 

F7 0 0 0 0 2.5 -7 6.5 -2 

F8 0 0 0 0 -6 0.5 -2 
6. 

Now, from equation (4.14c), 

LB] = CBi3 CP] 

LB1]EA 3 P] 

where 
[ B1 J is given by: - 

1d0 
L ds 

cos n 
RR 

_n1d cos 
RL 

ds R 

__ 
dr 

LB'] -2- _0 1 Lr ds 

_pCos 
4 

R 

Pn 1d_ cos 
R pLdS R 

1X 

1 

S 

-2 S 

-3 S 

-4 S 

-S S 

-6 S 

-7 S 

I 

r 

sin 4 
R 

0 

1 d2 

r2 L2 d; 
2i 

g 2 
sin cos d n 

_ 2+ LR 2 
R ds R 

2n cos ¢ 1 d 
+ R L ds 

Hence, the alternate forms of the stress matrix are obtained by 

substituting in either equation (4.19a) (i. e. stress components) or 
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equation (4.21) (i. e. stress resultants). 

4.7 Conclusions 

1. The stress matrix for the double-curvature, shell finite 

element has been derived enabling the stress components at any point in 

the shell wall to be determined. An alternative form of the stress 

matrix is also presented that allows the 'averaged' value of stress per 

unit length of arc, in terms of stress resultants and couples, to be 

evaluated. 

2. The information that has been presented will enable the stress 

matrices of other doubly curved elements to be derived. By way of 

illustration the stress matrix of a doubly curved ring finite element 

has also been derived. 

3. The equations used in the derivation of the stress matrix 

yield an expression for the strain energy that is equal to that obtained 

previously. This suggests that the equations used in the analysis are 

correct. 
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5.1 

1. AN ALGORITHM FOR PROGRAMMING THE ELEMENT MATRICES OF DOUBLY 

CURVED FINITE ELEMENTS 

5.1 Introduction 

Writing a computer routine to numerically evaluate the 

stiffness and mass matrices of doubly curved shell finite elements is 

a particularly difficult task when adopting a conventional programming 

approach. The coding is long and complicated and error checking of 

the routine by the original author or by a program maintenance engineer 

is extremely tedious. Some degree of uncertainty will, therefore, 

remain. Also, if it is desired to change the formulation of the 

element, for example to change the displacement function of the 

elasticity matrix used in the derivation, it is often more convenient 

to re-write the whole routine rather than attempt to change the coding. 

The derivation of a algorithm for which it is thought that 

the above criticisms do not apply is presented in this chapter. The 

basis of the algorithm is that the apparently diverse and complicated 

matrix calculations are reduced to a few simple manipulations. The 

algorithm readily lends itself to a structured programming approach and 

hence this technique (with its attendant advantages of ease of 

modifying the coding and verifying the accuracy) has been adopted. 

Therefore, the whole procedure can be verified or modified with ease 

and a high degree of confidence can be placed in its execution. For 

ease of explanation the algorithm has been derived for use with the 

doubly curved shell finite element proposed in Reference 40. However, 

due to the modular, general nature of the basic technique it can 

also be readily adapted for use with other types of finite elements. 
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5.2 Brief Problem Description 

The doubly-curved shell finite element [ 40 J has four 

nodes with twelve degrees of freedom per node. It uses a complicated 

displacement function L 67 3 and the strain is assumed to vary 

quadratically through the thickness of the element. The stiffness 

matrix of the finite element is, therefore, a complicated matrix of 

order (48 x 48). 

The element stiffness matrix is obtained by numerically 

evaluating the final product of five matrices - see Fig. 5.1. These 

individual matrices contain terms which are differential operators and 

operands and the final products must be integrated in two dimensions. 

The algebraic manipulation involved in obtaining the 2,304 terms of 

the final matrix is tedious and it is, therefore, difficult to avoid 

introducing algebraic errors. Moreover, the computer coding required 

for numerically evaluating the final matrix reflects the complexity 

of the final expressions, and also has the possibility of containing 

coding anomalies. 

5.3 Theroretical Framework and Computational Procedures 

The stiffness matrix of an element can be written as: 

J1 J1 EtoDLC] EZ(s) J[CJT [to jT d8. ds ... (5.1) 
80 s-0 

The detailed terms included in the matrices are given in 

Fig. 5.1. The nomenclature used in Fig. 5.1 has been explained in 

Chapter 4. However, note that; [ to is a matrix of order (48 x 3) 

and is given by equation (4.11) in Chapter 4, [C, is a matrix of 

order (3 x 6) and is given by the transpose of [ B1 ] given in equation 

(4.9b) in Chapter 4, [ Z(s) J is a matrix of order (6 x 6) and is 
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given by [DJ, in equation (4.18a) of Chapter 4. 

The individual terms constituting the matrices in equation 

(5.1) must be studied for a full appreciation of the difficulties 

involved in formulating a computer coded routine (therefore see Fig. 

5.1). Note that it is tempting to multiply LC ][ Z(s)][ C3T to 

obtain a matrix of order (3 x 3). This is incorrect as [C]T 
must 

first operate on [ to JT and [ to ] must first be operated on by 

C J. That is, the equation given in Fig. 5.1 only implies the order 

or multiplication and not the order in which the differential operations 

are to be performed. Thus, [toC] must first be evaluated before 

the product is used to multiply Z(s), and LC]TEt0jT must be evaluated 

before [ to ][Ci[ Z(s) I is allowed to operate on [C3T[ to 3T. 

(Note that [ to 3[ C] is a strain-tensor. ) 

We now rewrite the equation (5.1) as: 

[Ct] EoCo3 C11 C12.... C16 

°Il E'D3 [t3 [o3 x C21............ LCoJ [oD E t3 C31.......... C36 

[Z(s)]EC]T[toJT d8. 

... 
(5.2) 

tJ is a column vector of order (16 x 1) and is a sub-matrix of the 

matrix [t 
03 

Equation (5.2) can be re-written as 

b11 b12" 
. b16 

KEa Jj' b21 ................ 

b31 ............... 

I z(s)J [C JT[ to J-T d;. d5 

... (5.3a) 
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where bid _[tJ [Cif j 
... (5.3b) 

are now Note that the b sub-matrices of order (16 x 1). id 

Equation (5.3) can be re-written as: 
k11 k12 k13 

KE a 
JJ [ B] [Z(s)] [B]T k21 k22 k23 ... (5.4) 

k31 k32 k33 

the matrix [B3 contains the sub-matrices bid and is of order 

(48 x 6). 

Equation (5.4) can be expanded by elementary matrix 

manipulations, thus: 

k11 a 
JJ 

(b11 z11 b11+ " .. ". ) ds. d8 

The complete expressions for the symmetrical matrix iE is 

given on the following page by equation (5.5): 



t 

k11 
JJ 

[ (b11 z11 b11 + b12 z21 b11 + b14 z41 b11 + b15 z51 b11) 

+ (b11 z12 b12 + b12 z22 b12 + b14 z42 b12 + b15 z52 b12) 

+ (b13 z33 b13 + b16 z63 b13) 

+ (b11 z14 b14 + b12 z24 b14 + b14 z44 b14 + b15 z54 b14) 

+ (b11 z15 b15 + b12 225 b15 + b14 z45 b15 + b15 z55 b15) 

+ (b13 z36 b16 + b16 266 b16)J d;. d76 

k22 = 
JJ 

[ (b22 Z22 b22) 

+ (b23 z33 b23 + b26 z63 b23) 

+ (b23 z36 b26 + b26 z66 b26) J de"ds 

k33 = 
if E (b 

31 Z11 b31 + b32 z21 b31 + b34 z41 b31 + b35 z51 b31) 

+ (b 31 Z12 b32 + b32 Z22 b32 + b34 Z42 b32 + b35 Z52 b32) 

+ (b31 Z14 b34 + b32 Z24 b34 + b34 Z44 b34 + b35 Z54 b34) 

+ (b31 Z15 b35 + b32 Z25 b35 + b34 Z45 b35 + b35 Z55 b35) 

+ (b36 Z16 b36) ] dB. ds 

k21 = 
JJ 

[ (b22 z21 b11) 

+ (b22 z22 b12) 

+ (b23 z33 b13 + b26 z63 b13) 

+ (b22 z24 b14) 

+ (b22 z25 b15) 

+ (b23 z36 b16 + b26 z66 b16) J dO. ds 

k31 = if [ 
(b31 Z11 b11 + b32-Z2 1 b11 + b34 z41 b11 + b35 z51 b11) 

+ (b31 z12 b12 + b32 z22 b12 + b34 z42 b12 + b35 z52 b12) 

+ (b36 263 b13) 

+ (b31 z14 b14 + b32 z24 b14 + b34 Z44 b14 + b35 Z54 b14) 

+ (b31 z15 b15 + b32 z25 b15 + b34 z45 b15 + b35 z55 b15) 

+ (b36 266 b16) ] d9. ds 

k32 ff [ 
(b31 z12 b22 + b32 Z22 b22 + b34 Z42 b22 + b35 252 b22) 

+ (b36 263 b23) 

+ (b36 z66 b26) j dA. ds 

5.5 

x... (5.5) 
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All the k-matrices have not been included in equation (5.5) 

as IE is symmetrical and thus kid = kJi. Also note that though each 

k-matrix is a summation of thirty-six matrix terms, some of the matrix 

terms are zero matrices (as the Z matrix in Fig. 5.1 contains zero 

terms), and hence only the non-zero matrix terms are entered in 

equation (5.5). 

Each term of the stiffness matrix KE can be written in 

terms of the ijth term of the sub-matrix, kmt in the following form: 

1J166_ 

kmý =1 _ý 
bl z bý ds. d9 ... (5.6) 

s=0 8=0 k=1 h=1 m kh h£ 

where the m and £ suffices have the range 1 to 3 respectively (e. g. 

m, £=1,3). For typographical convenience we omit the transpose 

sign for the 'ending b-terms'. 

The suffices i and h range from 1 to 6. The column vector 

b_ is defined by equation (5.3b). Thus, with reference to b1_ the 
ink 

_ 
ink 

suffices m and k denote the particular term of the matrix [CD given 

in equation (5.3b) and the superscript i denotes the particular row 

of the column vector [t3. 

Consider the term bam. Let it be written as 

.tl bmk 11 Aink 

The usual indicial notation where double sufficies are 

taken to mean summation is not being employed. Here, Hmk is a 

differential operator associated with the term Cmk, mk is the 

scalar associated with the differential operator, and t' is a term 
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of the column matrix defined in equation (5.2); tl is therefore the 

differential operand. For example consider the term 

bib = -R 
a (Lf2 g1); see Fig. 5.1. Here H16 c 

a-' 
A16 

pR 
ae ae 

and t= Lf2g1. 
2 

We can now re-write equation (5.6) as: 

ff 66_ 
Km3 = (H A 

_. 
tl). (z_). (H_ . A_. t3) ds. d6 

k=1 h=1 mk mk kh h! C hfl ... (5.7) 

Equation (5.7) is the mathematical basis for the method. The 

computational aspects of evaluating the terms of the equation will now 

be explained. 

Consider tl where i can take any value from 1 to 16. A 

particular, value of i will give a term which is a product of the 

interpolation polynominals f and g (and other parameters). Also, 

consider the differential operator H in equation (5.7). Computationally 
mk ` 

it is not possible to accord this variable an identity of its own. 

However, the quantity (H 
_t') 

can be considered as a computational 
mk 

variable. 11 can be any one of six differential operators 

, (see matrix C in Fig. 5.1)i. e. 'no differentiation', a _, aa -as2 
as ae, 

2 a 
and 

a 
Thus, in principle, it is necessary to prepare 

ae2 (a© as)ý 

six one-dimensional arrays each of order 16. That is 
2 

at 
9a...., 

at, 
However, in practice it is advantagous to 

as 35 (Do ash 
partition and simplify the vector t and then to perform the 

differentiation on the sub-matrices of this vector. 
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Let 

S1 

S2 

CtJ 
S3 

a4 

where each 6 column vector is of order 4. 

(Note that [tJ is the displacement function of the shell element. 

It has been sub-divided into four vectors as a four-noded element is 

being considered. In a general analysis, therefore, the vector It 

can be sub-divided into as many nodes as are contained within the 

finite element. ) 

Now the L al ], [2J' Cd3 ] and ý d4 matrices can be 

written generally as: - 

fy'ga+l 

E] = 
Lfy+l'gl+l 

Rýfy'gA+2 

LR1Pfy+1. gÄ+2 

... (5.8) 

where A is 0 if n is odd and 2 if n is even. y is 1 if n is less 

than 3 and 3 if n is greater than 2. {n varies from 1 to 4. } 

6n] can be simplified (from a purely computational view-point) 

as 

do J= (a. fd. ge) 
. ... (5.9) 

v 
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The values of a, d and e vary with i (which is given in equation 

(5.7)) and are given in the following Table: 

i a d e 

1 1 1 1 

2 L 2 1 

3 Rý 1 2 

4 LRý 2 2 

5 1 1 3 

6 L 2 3 

7 Rý 1 4 

8 LR4 2 4 

9 1 3 1 

10 L 4 1 

11 Rey 3 2 

12 LRý 4 2 

13 1 3 3 

14 L 4 3 

15 Rip 3 4 

16 LRip 4 4 
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It is now necessary to differentiate analytically only the Hermite 

interpolation polynomials fl, f2, f3, f4 and g1...... g4. The 

computer code can be used to assemble the differentiation of products 

of functions of s, such as R, and the f-polynomials. Returning now 

to equation (5.7) it is necessary only to note the type of differential 

operation signified by 11 at an early state of the computational procedure 
mk 

and to use this information to select-the appropriate differentiated 

form of the f and g polynomials at a later stage. At the early stage 

it is also convenient to allow the computational procedure to select 

the appropriate values of A 
_, 

z_and A_ . The possibility of 'human 
mk ih hZ 

error' is thus reduced to a minimum. 

The partitioning and simplification of the displacement 

function Lt 
_j 

enables a corresponding increase in the theoretical 

flexibility of the procedure to be made. For example, if it is 

required to extend the generality of the shell element by allowing 

variation in the geometrical properties of the structure with the 

circumferential position (5) this approach is invaluable. 

The above deals with the differentiation of the terms of 

13 
. The integration procedure is explained by re-writing equation kom 

(5.7) as: 

ij 1-- 
km, G(6)d6 

©=o 

1 

F(s) ds 
Js=O 

... (5.1O) 

where the terms which are functions of s and 6 are separated and 

written as F(s) and G(0) respectively. At the present the geometrical 

properties are assumed not to vary with 0 and therefore G(0) is 

integrated analytically. however, as the geometrical properties are 

functions of s. F(s) has to be computed by a numerical method. 
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{Gaussian-Quadrature integration is used, Kronrod [ 69 J. } When 

the geometrical properties are not functions of s, as for a cylinder, 

F(s) is evaluated analytically. The above procedure minimizes the 

errors in numerical integration and also reduces the computing 

time. 

In order to get ideas fixed, consider the following 

examples. 

In equation (5.7) let i=2, j=7, n=1 and I=1 for 

k=. 1andh=1. 

i. e. 

k27 
r1_ J(! 

_ 
Lf g Rlf d. dO 

f 

6=0 as L' 21 11 

(as-' 

'14 

h=1 

z11 is given by equation (4.18b) in Chapter 4 and is: 

R h+h3 sind 
12 Rr 

i. e. 

k27 
i1Rh+ 

h2 sin 
). 

afi) ds 
11 k=1= 

J6=0 
glg d6 4 

Js=O 
2 Rr L 8s 8s 

h=1 

and is in the form given in equation (5.10). 

The sub-matrix kmt is obtained by repeating calculations 

similar to the above example many times. (Note that some of 

the matrix-terms of kmk are merely the transpose of other terms, 

or are symmetrical. ) 
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The (whole) element stiffness matrix, L, is therefore 

assembled in the above fashion - i. e. by repeating a comparatively simple 

expression a very large number of times (about 1 million). Thus in 

principle, the validity of the calculation procedure is verified merely 

by very careful verification of the computer coding used for the basic 

manipulation. 

The element mass matrix has not been considered in this 

chapter - it is very simple in comparison to the stiffness matrix, and 

can be programmed in a similar fashion to the above. 

Finally note that for explanatory purposes only single or 

mono-operators have been considered. However, duo- or even tri- 

operators have to be oonsidered in the actual calculation. An example 

of the latter is: - 

sing + cos _a18 

R2 LR as ý2 R2 3-0 

This leads to only a little more computing sophistication as the 

permutations of the differential operations and associated scalars 

have to be summed. Again this is a repetitive procedure involving 

the basic calculation referred to above. ihe summation is over four 

terms for duo-operators_and nine terms for tri-operators. The 

derivation of the expression for duo-operators is given in the Appendix 

5.1. 

5.4 Discussion 

The simplicity of the method has been demonstrated since 

the conception, implementation and preliminary testing of the computer 

coding required only eleven working days. A block diagram of the 
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subroutines used for the purpose is given in Fig. 5.2. 

The above technique was then used to form the stiffness 

and mass matrices of the shell finite element. The present method 

gave excellent results thereby confirming a small but theoretically 

very significant error in the coding used previously to program the 

shell and stiffness matrices. 

The 'anomaly' in the displacement function discussed in 

Appendix 12.1 was investigated successfully. This investigation 

highlighted a feature of the present method (i. e. theoretical 

flexibility) as changes to the displacement function were made by a 

few simple changes to the coding. A conventional programming approach 

would have resulted in complicated changes of coding format with the 

attendant risk of introducing errors. Similar ease in changing the 

coding is envisaged if other changes to the theoretical assumptions 

basic to the present finite element have to be made. 

5.5 Conclusions 

A new algorithm to evaluate the stiffness matrix of a 

doubly curved shell finite element has been derived and shown to be 

accurate and easy to implement. It has been shown that the apparent 

diverse and complicated matrix calculations required to obtain the 

stiffness matrix can be reduced to a basic numerical expression that 

is then repeated a large number of times. Error checking of the coding 

is simple. Because of the general modular nature of the numerical 

scheme theoretical changes to the finite element can be easily 

implemented. Moreover, adaption of the technique to other finite 

elements is straightforward. 
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CHAPTER SIX 

GEOMETRICAL ANALYSES 
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6.1 

6. GEOMETRICAL ANALYSES 

This chapter considers several analyses of a geometrical 

nature that are of importance in the analysis of cooling towers and 

allied structures. 

6.1 Description of Meridian 

Certain types of shells of revolution have meridional 

curvature that cannot be properly aescribed by exact geometrical 

equations. For example, a nominally hyperboloidal cooling tower shell 

may have meridional curvature that is not truly hyperbolic, but 

which is more accurately described by a function such as a polynomial. 

Such a meridian is referred to as a 'general meridian'. It is best 

described by determining several points on the meridian and then using 

this information to obtain a function describing the curve. The points 

on the meridian can be defined in terms of their distance (R) from the axis- 

of-revolution (Z-axis), along a line perpendicular to it and the 

Z-coordinate of the point of intersection on the Z-axis. The function 

can be. then used to calculate the geometrical parameters (e. g. 
sin 

R 

see Section 4.2). 

In the program VACTIL [5] either a polynomial or cubic spline 

function is used to define the meridian. Note that any method that does 

not allow a prior knowledge of the coordinates at the bottom of the 

shell of revolution is unacceptable. This is because the coordinates of 

the node common to the cooling tower shell and the leg-support must be 

specified as identical. Otherwise, there will be discontinuity of 

displacements at the common node because of the different displacements 

that would be predicted by the displacement functions of the finite 

elements used to model the shell and leg-supports. 
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ýý 

We first consider the polynomial representation of the meridian. 

The radius of revolution, R, at any point on the meridian can be given as 

R= Ao + Atz 1+..... 
+ n_1 z n-1 

... (6.1) 

where n is the number of R and Z pairs defining n points on the meridian. 

z is normalised with respect to the axial length of the meridian (i. e. 

0; z< 1) and is defined as zero at the top of the meridian. For 

any value of the independent variable (z) R is obtained, given the 

coefficients of the polynomial (i. e. Ao, Al, A2.... An_1). If h pairs of 

R and Z values are available, then in matrix form 

1zz2z3 ýý. ýý z n-1 
1111 

[RJ = 1zz2z3..... z n-1 
2222 

1:: 

1zz2z3..... z 
n- 

nnnn 
si 

A 
0 

Al 

n-1 

... (6.2) 

where Eh j is a column vector of order n. We can write equation (6.2) as 

[RI = [Q3 [A3 ... (6.2b) 

where Q is the matrix of order (n x n). 

Therefore, the coefficients of the polynomial are given as 

[A]= [QI-1FR] 
... (6.2c) 

The equations (6.2b) or (6.2c) can be solved to obtain the coefficients 
[AJ. 

However, the matrix 
[QJ is ill-conditioned. For a typical problem, with 

n= 12 (say), the determinant is of the order of 10-30. Thus usual 

techniques [ 74 ý 
used to solve for [A] *in equations (6.2b) or (6.2c) 

may lead to incorrect solutions due to rounding-errors. 
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A simple technique can be derived that can minimize the 

rounding errors, if use is made of the special characteristics of 

Q ý. Consiaer the simple matrix equation: 

1 zl zI2 +z2z3 -z3z2 +z1z2 

1 z2 z22 (-1)3 -(z2 + z3) +(z3 + z1) -(z1 + z2) 

1 z3 z32 +1 -1 +1 

(-1) 100 
(z1 - z2) (z1 - z3) 

X 0 (-1)2 0 (Z2 - Z1)(z2 - Z3) 

00 
(-1) 3 

(z3 - z1)(z3 - z2) 

... (6.3) 

The right-hand side of equation (6.3) is merely a factorization of the 

(3 'x 3) matrix on the left-hand side of the equation. The factorization 

process is deduced by studying equation (6.3) and the following equation: - 

(z1 - z2)(zl - z3) =1x Z12 - (z2 i z3) x Z11 + (z2z3) 

We can similarly factorize the matrix [QJ of order n, thus: - 
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(-1)n 

(z2z3 ... zn)(-1)1+1 (z3z4 ... znz1)(-1)1+2 ............... 

n (z2z3z4 + z2z3zs +... )(-1)n-3+1 (z3z4z5+ z3z4z6 +... )(-1)-3+2 
... 

(z2z3 + z2z4 + z2z5 +... )(-1)n-2+1 (z3z4 + z3z5 + z3z6 +... )(-1)n-2+2 ... 

(z2 + z3 + z4 + ... )(-1)n-1+1 (z3 + z4 + z5 +... )(-1)n-1+2 ... 

1X (-1)n+l 1X (-1)n+2 

(-1)1 00 (z1 - z2)(zl - z3)... 

x0 
(-1)2 0 

(z2 - z1)(z2 - z3)... 

00 

(-1)n 
0p "(zn 

- z)(zn - z2)... .. 

i ... (6.4) 

The relative merits of using the above technique is observed in Table 6.1. 

(It is clearly seen that the Factorization Method yields the least error. ) 

Table 6.1: 'Error Parameter' Values for the 

Three Methods of Inverting [QJ 

Error Parameter 

forn - 13 forn=20 

DINV 10-3 (solution not 
found) 

MA2IAD 10-4 10+10 

FACTORIZATION -8 10 0.06 METHOD 
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DINV is a double precision I. B. M. subroutine that inverts the 

matrix 
[Q3 by elementary transformations ('pivots' are selected so that 

rounding errors are minimized). MA2IAD is a Harwell subroutine that 

'factorizes' matrices in order to reduce the effects of ill-conditioning. 

The 'error parameter' is obtained as follows: the matrix [, Q 

is multiplied by the computed inverse. The product is a matrix with 

diagonal terms of unity. The non-diagonal terms should theoretically be 

zero, but due to rounding errors are usually non-zero. The largest non- 

diagonal term is termed the 'error parameter' and is a rough guide to the 

errors generated by the inversion routine. 

An alternate representation of the meridian is obtained using 

a cubic spline interpolation technique [ 92, page 156 ]. A spline can be 

briefly described as follows: - 

A spline of degree m through a set of points (zi, Ri) for 

i=1,2 ... n is a function which is a polynomial of degree m in each 

interval [z3 
, zj+l] for (1 , n-1) and of continuous (m-1) th derivative 

throughout the whole interval [zi, zn] and which takes the values R. at 

zi, i=1,2 ... n. It has (m-1) degrees of freedom and in general (m-1) 

pieces of information define it completely. If"P and Q are two splines 

passing through (zi, Ri), i=1,2 ... n, then XP + (1 - X)Q is another 

spline passing through (zi, Ri), i=1,2 ... n. 

A cubic spline (m = 3) has two degrees of freedom and therefore 

two pieces of information are required to define it completely. In VACTIL 

the spline-subroutine uses the supplied data (i. e. n pairs of R and Z- 
2 

values) to estimate 
äZ2 

at z= z1 and z= z2. There are other methods 

of obtaining the two pieces of information that are required. For example, 

the user could specify the information or alternatively the routine can be 

` made to chose the spline by minimizing the sum of the wrighted squares of 
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the jumps in the third derivative at the data points. However, whilst 

these other methods may be more suitable for specific problems, in 

general the option chosen for use in VACTIL appears to give very 

satisfactory results. 

The above methods have been discussed with respect to the 'R 

and Z' values defining the meridia of a general curve. However, the 

techniques discussed above are also used in the program to interpolate 

other geometrical information, such as thickness variation along the 

shell. 

Of the two methods discussed, the author has found that in 

general the cubic spline interpolation technique is preferable for 

defining cooling tower meridia. 

6.2 Transformation from Cylindrical to Curvilinear Displacements 

As will be seen later, the leg-supports of cooling towers are 

modelled by beam-elements C70D in the program VACTIL. The coordinate 

system of the beam element is cylindrical whilst the local coordinate 

system of the shell element is orthogonal-curvilinear as discussed in 

Section 4.2. Therefore, a common or global coordinate system must be 

used. This is chosen to be the cylindrical coordinate system. This 

section details the theoretical and computational aspects of the 

co-ordinate transformation. 

From the geometry of Fig. 6.1 we obtain: 

us sing 0 cosh ub 

vs =010 vb 

ws -cos4 0 sinn Wb 
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US = DISPLACEMENT TANGENTIAL 
TO SHELL SURFACE 

S WS = DISPLACEMENT NORMAL AT 
H SHELL SURFACE 
E 
L" VS = DISPLACEMENT ORTHOGONAL 
L TO US AND WS CONSISTENT 

. WITH A 'RIGHT-HAND' SET OF Wb 

AXES 

B Ub' Vb, Wb ARE THE DISPLACEMENTS 
E ALONG THE CYLINDRICAL 
A COORDINATE AXES (I. E. GLOBAL 
M DISPLACEMENTS - SEE TEXT) 

REF. RD/l/ P 10/76 

ws 

N 
N 

N 

AXIS OF 
-r REVOLUTION 

(Z - AXIS) 

N 
N 

FIG. 6.1 DISPLACEMENTS IN THE LOCAL AND GLOBAL COORDINATE SYSTEMS 

RLLN/JA(CON)(27.9.76) RL 3.3.4391 

US Ub 

SHELL 
MID-SURFACE 
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As shown in Chapter 4 äS 
= sin ¢. The derivatives of ub, 

vb and wb can easily be obtained: - 
T 

au au au aw 
sSSs 

"s as ae asae vs .... " asae 000 
T 

aub 
........ 

awb 
Tc ub aZ az 30 CL_ 

The coordinate transformation matrix [ Tc ] is given by 

A0000000B000 

A' (A2Q) 000000 B' (ABQ) 00 

00A0000000B0 

0" 0 A' (A2Q) 000000 B' ABQ 

000010000000 

00000 (QA) 000000 

000000100000 

0000000 (QA) 0000 

-B 0000000A000 

"B' -ABQ 000000 A' (A2Q) 00 

00 -B 0000000A0 

00 -B' -ABQ 000 
-0 

00 A' A2Q 

where A= sin 4, B= cos 0, Q=1.0, A' = 
asin ý 

and B' = 
acos 

as as 

(Note that if it is desired to transform between normalised 

displacements, i. e. 

r Bus aus aub aus 
u ....... to u ....... 

Ls as a8 b az ae 

then Q= L/H where L and 11 are the meridional and axial lengths 
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of an element, respectively, and A' = 
asin ý 

and B' = 
acos 

as as 
The coordinate transformation matrix T is used to 

c 

transform the stiffness (and mass) matrices of the shell elements. 

If Ke is the stiffness matrix before the transformation and K' 
e 

after transformation, then 

Ke' Tc 3TFK 
eJ[ 

Tc 3 (see Reference 4, page 10) 

... (6.5) 

The matrix Ke is large; (48 x 48) for the twelve nodal d. o. f. shell 

element. Thus, evaluation of the above equation would normally require 

a correspondingly large computer core allocation. However, the 

following treatment would allow a considerable saving in core 

requirements: - 

We re-write equation (6.5) in terms of sub-matrices: - 

Tal 000 k11 symmetrical rTl 000 

CK tJ =0 
Ta2 00 k21 k22 

x0 
T2 00 

00 Ta3 0 k31 k32 k33 00 T3 0 

000 Ta4 k41 k42 k43 k44 000 T4 

... (6.6) 

Here [ Tal JT = T1, [ Ta2, 
T 

= T2..... and so on. 

0 is a zero matrix of order (12 x 12). For the four-noded 

twelve-d. o. f. shell element the submatrices are of order (12 x 12). 
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Equation (6.6) reduces to 

ýal k11 T(Symmetrical) 

C k' ]_ 
(Ta2 k21 T1) (Ta2 k22 T21 

e 
kra3 

k31 T1) (TO k32 T2) (Ta3 k33 T3) 

&a4 k41 T1) Oa4 k42 T2) (Ta4 k43 T3) (Ta4 
k44 T4ý 

Consider the sub-matrix term, Tal k1 TI. A routine can conveniently 

evaluate this term. As the term is of order (12 x 12) the computer 

core required 'for the operations are small. The same routine can be 

used to evaluate the other sub-matrix terms. 

6.3 Generation of Pseudo-Nodes 

Consider a rectangular beam element. It is necessary to 

describe its orientation in space, with respect to its principal 

moments of area. One method of doing so is to define 'pseudo-nodes'; 

this technique is discussed fully by Thomas and'Wilson [ 70 

Pseudo-nodes, as the name. implies, are-hypothetical nodes that define 

the position of the actual-nodes; the line joining-a pair of pseudo-nodes 

is taken to be parallel to the axis about which Moment 1 of the beam is taken. 
3 

(The Moment 1 and Moment 2 of the beam are given'by 
a12 

and 
3 

12 , respectively, where a and b are the cross-sectional dimensions 

with b measured in parallel to the first principal axis. ) 

In the program VACTIL the pseudo-nodes of a beam element can 

be entered by the user. If the beam elements are used to model the 

'V-pair' of leg-supports for a cooling tower, as for the tower at 

Didcot (see Fig. 7.1) the pseudo-nodes can be calculated by the method 

given below. (If requested by the user the calculation is performed 

within the program VACTIL. ) 
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The orientation of the beam representing a leg-support is 

given in Fig. 6.2. In the figure, Pl and P2 are the 'real' nodes 

of the beam and P1, Pi, P2 and P2 are the pseudo-nodes. The 

calculation proceeds as follows: - 

With reference to Fib. 6.2a and 6.2b: 

P2P1 is the representative leg-support of length L. 

P2 is the node at the top of the leg-support (i. e. 

the node is at the bottom of the shell of the 

tower). 

P1 is the node at the bottom of the leg support. 

ß is half the angle subtended by the bottom nodes 

of the 'V-pair' of leg-supports at the centre of 

the bottom circle in Fig. 6.2a. 

in is the length shown in Fig. 6.2a. 

Let the cylindrical coordinates of P1 and P2 be (Rl, 81, 

Zl) and (R2,92, Z2) respectively. ` 

a is the acute angle the tangent to the shell 

surface at node P2 makes with the horizontal. 

(Note that the value of a can be given to an 

accuracy of ±50 without affecting the accuracy 

significantly. ) 

Thus, 

tar. a= (Z1 - Z2)/(R1 - R2) ... (6.7) 

From the geometry of Fig. 6.2 equations (6.8) and (6.9) are: - 

M2 = L2 - (A1 - Z2)2 
... 

(6.8) 

R1 + R2 - m2 = 2R1 R2 cos ß ... 
(6.9) 

Solving equations (6.7), (6.8) and (6.9) a quadratic 
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R2 

TOP 
NODE 

P2 

(p IS 4.5° FOR 40 
PAIRS OF LEGS) 

REF. RD/L/P 10/76 

LEG-SUPPORT 
OF LENGTH L 

(R1 - R2) 
m 

P, 
BOTTOM NODE 
OF LEG-SUPPORT 

FIG. 6.2a GEOMETRY OF A LEG-SUPPORT OF A 'V-PAIR' 
OF COOLING TOWER LEGS 

P2 

P1 

FIG. 6.2b REAL AND PSEUDO-NODES OF A LEG-SUPPORT 

RLLN/JA(CON)(27.9.76)RL 3.3 4395 
kký 

I-'i pl. 



6.11 

is obtained: 

Ri (1 + tang a) + R1 C -2R2(cos + tan2 a) J 

+ (R2 tan2a - L2 + R2) =0... (6.10) 
22 

Thus if a, R2 and L are given then R1 is calculated. 

With reference to Fig. 6.2a and 6.2b, P2 and P2 are the 

pseudo-nodes of P2. 

p2 = (R2 +b sin a), 92, (Z2 -b cos a) J 

and 

P2 = (R2 +b sin a), A2, (Z2 +b cos a) J 

The pesudo-nodes of P1 can now be determined if the unit position 

vectors of P1, P2 and P2 are known. Hence, the Cartesian coordinates 

of Pi and P1 are given by the equations 

1122 

and 

Pi = P1 - lP2 + 'P2 

(As the global coordinate system is cylindrical, the Cartesian 

coordinates are re-converted back to the cylindrical system. ) 
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7. PROGRAM DESCRIPTION 

This chapter presents an overall description of the finite 

element program VACTIL ('Vibration Analysis of Cooling Towers 

Including Legs'). The program has been developed primarily to analyse 

the free vibration of cooling towers whilst explicitly including the 

effects of the leg-supports and/or foundation elasticity. An analysis 

of the cooling tower at Didcot (Fig. 7.1) is presented as an illustration 

in the use of the program - see Appendix 7.1. VACTIL can also be used 

to analyse the free vibration of complete or partial shells of 

revolution with (or without) meridional curvature; the shells of 

revolution may include cut-outs or openings. When rotationally periodic 

structures are analysed, a considerable saving in computer storage 

and computer time may be achieved by using the 'complex constraints' 

option. Moreover, complete, cylindrically symmetric shells (which 

are a special case of rotationally periodic shells) can conveniently 

be analysed by specifying a representative section of the whole 

structure and then invoking boundary conditions pertaining to their 

symmetry. 

The description given in this chapter is brief as the 

important programming details have been discussed earlier. Also, 

note that only the program VACTIL is described; however, the 

description is broadly applicable to the other two programs 

referred to in this thesis. VACTILo2 [ 73 ], which is also called 

SACTIL, is an extension of VACTIL and incorporates the stress matrices 

derived in Chapter 4. SACTIL can calculate resonant stresses, 

' forced response stress (both static and dynamic) as well as resonant 

frequencies and mode shapes. The program RE-SAP [ 72 ] incorporates 
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the ring finite element discussed in Section 4.6.3, and calculates 

resonant stress, frequencies and mode shapes of axisymmetric 

structures. All three programs are large multi-segment programs 

employing about sixty to eighty subroutines. 

All three programs are written in FORTRAN and are designed 

to be executed on the I. B. M. 370 computing system. Computer core 

requirements for each of the programs are dependent on the type of 

problem solved (though as indicated in Chapter 3 the degrees of 

freedom, d. o. f., of the structure are the primary factor). A 

special 'dynamic storage' facility is incorporated in each of the 

programs to allow array sizes to be dimensioned at the time of 

execution. Consequently, storage allocations range from 150 kilo- 

bytes to 750 K-bytes. The problem described in Appendix 7.1 

required about 350 K-bytes of computer core and. about 30 seconds 

of computer (c. p. u. ) time. References 5,73,72 give complete 

descriptions and instructions for running the programs. 

7.1 General Description 

A flow diagram of the program VACTIL is given in Fig. 7.2. 

The execution of VACTIL is common to most dynamic finite element 

programs using the displacement method. That is, 

(i) Input data is read, checked and printed. 

(ii) Element stiffness and mass matrices are formed. 

(iii) Element stiffness and mass matrices are assembled to create 

the stiffness and mass matrices, respectively, of the 

substructure (if complex constraints are applied) or of 

the whole structure. 

(iv) 'Usual' constraints and/or complex constraints are 

applied (if required). 



STA R 

READ AND CHECK 
ERROR DATA IN SUB : 

DISCOVERED DATAIN 

YES 

ANY MORE 
PROBLEMS 

7 

NO 
STOP 

'STOP' 0 ON THE ERROR READ AND CHECK 
"88$$" DATA IN SUB : 
CAR DISCOV- SHELDA 7, ERED 

YES ' FORM ELEMENT 
ERROR AND OVERALL 
DISCO V- MATRICES. APPLY 

ERED 'SIMPLE' CONSTRAIN 

/ MODIFY 
STIFFNESS 

OR/AND MASS YES 
MATRICES 

7 

NO 

APPLY 
COMPLEX 

: ONSTRAINT YES 
11-1 7 

NO 

JOINT 
OR 

ISCONTINUITY 
YES 

NO- 

MASS 
MATRIX 

NO POSITIVE 
EFINIý 

READ, CHECK AND ERROR 
MODIFY MATRICES ---0 
IN SUB : MATMOD nlSCOVFRFn 

READ AND CHECK ERROR 
DATA IN SUB : """G) 

CCONST DISCOVERED 

APPLY CONSTRAINTS 
IN SUB : CTRANS 

READ DEGREES OF 
FREEDOM THAT ARE 

CONTINUOUS 
ACROSS A JOINT 

APPLY THE CONTINUITY CONDIT- 
IONS TO THE OVERALL MATRICES 

YES CALCULATE NATURAL 
FREQUENCIES AND 

MODE SHAPES 

3 PRINT RESULTS 

FIG.. 7.2 FLOW HART FOR VACT IL 



7.3 

(v) The equations given in Section 7.3 are solved. 

(vi) Results are printed. 

With reference to the above, item (ii) has been discussed 

in Chapter 3; item (iii) is a straightforward finite element 

technique (see [ 4, Section 1.6 ] and [ 2, Chapter 10 ]). 

When an axisymmetric structure is analysed its symmetry 

can be invoked to simplify the analysis of the structure. Alternatively, 

as an axisymmetric structure is a rotationally periodic structure 

(where the periodicity tends to infinity) complex constraints can be 

employed (as discussed in Chapter 3). When a rotationally periodic 

structure is analysed either the whole structure can be defined 

(indifferent answers will usually result, as a coarse mesh would 

usually have to be employed) or complex constraints can be applied. 

For the analysis of cooling towers with leg-supports it is necessary 

to use complex constraints. An illustrative example with a 

reproduction of the actual computer printout is given in Appendix 7.1. 

VACTIL uses two types of finite elements; a doubly curved 

shell finite element with four nodes (see Chapter 4) and a 

straight beam finite element (see Section 6.3). For cooling towers, 

the shell elements are used to model the shell, whilst the beam 

elements are used to represent the leg-supports. Each node, for 

both elements, is allowed twelve degrees of freedom (d. o. f. ). 

These are: 

au au a2u av av 
u' as ' ae ' asae "' as ' äe 

00 

2v aw aw a2w w asae0 ', as ' aeýý asa0O 

S SO, 
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Six of the twelve d. o. f. are not required by the beam element. These 

'dummy' d. o. f. must therefore be constrained at nodes not coincident with 

those of the shell elements. These dummy d. o. f. are the second, third, 

fourth, seventh, eighth and twelfth d. o. f. listed above. The orthogonal 

curvilinear coordinate system in which the shell element is derived, 

results in u, v and w being the displacements in the meridional, circumferential 

and normal directions, respectively, with reference to the shell middle 

surface. On the other hand, the local coordinate system of the beam 

element is cylindrical. The displacements u and w are then parallel and 

normal to the axis-of-revolution, respectively; v is the orthogonal 

displacement consistent with a 'right-hand' set of axes. In Fig. 6.1 

the displacements for the shell and beam elements are illustrated where 

the suffices s and b pertain to the shell and beam respectively. 

When both types of finite elements are used a common or 

'global' coordinate system is required. The local coordinate system of 

the beam element is chosen as the global system. This has been discussed 

in detail in Chapter 6. 

When a node is common to both types of elements it is 

essential to specify identical coordinates for the common node for both 

element-definitions. Otherwise, errors will probably be introduced by 

the discontinuity of both displacement functions (which are different 

for the beam and shell elements) at the common node. 

The 'pseudo-nodes' of the beam element can be explicitly 

or implicitly defined - see Chapter 6. 

The convergence L 2, page 201 ] 
of the shell element is 

reasonably good for calculating frequencies and for obtaining an estimate 

of the displacements. (We shall see later that for the calculation of 

stress the convergence of the element could be profitably improved. ) 

Hence, only a few elements are usually required to analyse a structure 

Rc 
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when the frequency of vibration is the primary consideration. For 

example, four shell elements were required for the analysis of the 

cooling tower considered in Appendix 7.1, when constant wall thickness 

was assumed. The answers were seen to be very similar, especially for 

the lower eigenvalues, to that obtained when six shell elements were 

used. Moreover, the shell element has been observed by the author to 

give satisfactory results for 'aspect ratios' not exceeding 3: 10 or 10: 3. 

Foundation elasticity is represented in the program by a 

'spring'. Due to the simplicity of this 'element', it is not explicitly 

incorporated in the program. The user enters the value of foundation 

elasticity and specifies the node at which it acts. The program then 

adds this term directly into the stiffness matrix. (That is, 'direct 

stiffness terms' are modified to represent foundation elasticity 

2, page 15 ]. ) 

Other shell structures, such as the spherical cap analysed 

in Chapter 11, can also be investigated. The figures 7.3a to 7.6 

are from the user's guide to the program VACTIL [5] and are reproduced 

here to give an indication of the other types of structures (in 

addition to complete shells of revolution) that the program is capable 

of solving. 

7.2 Major Assumptions and Limitations 

For the shell elements the ratio of the material thickness 

to the principal radius of curvature must be less than 1: 10. 

Euler's Theory is assumed for the beam elements. 

The materials of both shell and beam elements must be 

, linear, elastic, homogeneous and isotropic. Thin Shell Theory is used. 
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(Basic assumptions used in the analysis have been discussed in greater 

detail in Chapter 4. ) 

7.3 Equations Solved 

The natural frequencies and mode shapes of the structure are 

obtained by solving the matrix equation 

(K - w2 M) x=0... (7.1) 

which can be written as (A - XB)x = 0. 

This is a standard eigenvalue problem which can be readily 

solved by a number of different methods [ 75 ]. The C. E. G. B. library 

subroutines that solve this problem are based on a series of published 

algorithms 
[ 76,77,78,79 J. Note that when complex constraints are 

used the eigenvectors are complex. 

In the program SACTIL the 'forced response' facility can be 

requested. The applied force (or forces) may be specified as positive, 

negative or zero. For time varying loads the variation is assumed to 

be sinusoidal and the frequency must be specified. (When the load is 

static then the frequency is defined as zero. ) 

For the applied force response the derivation of the equations 

used for the calculation are as follows: - 

When sinusoidal forces are applied to the structure, we 

get 

M+C x+ K x= P eialt ... (7.2) 

where the matrix C represents the damping of the structure and P 
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represents the applied forces in magnitude and phase. Assuming that 

iert 
x=xe 31 . o .. (7.3) 

we have 

(- w2 M+iwC+ K) x= P ... (7.4) 

If it is assumed that the damping is viscous then the damping term 

wC is given by 

... (7.5) wC = wd1 - 

and for hysteretic damping, we have 

wC=dK... (7.6) 
2 

In SACTIL either viscous or hysteretic damping can be specified. The 

damping is given in a rather more general form as 

wC= w(dl K+ d3 M) ... (7.7) 

or 

wg= d2 K+ d4 NI , ... (7. £3) 

with the constants di specified by the user. Thus the following sets 

of equations are obtained 

2 
wM+ i((. o d1 K+w d3 N) + K} xo =P... (7.9) 

or 

{- w2 M+ i(d2 5+ d4 M) + K} xo =P... (7.10) 
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These equations are solved using complex Gaussian elimination. to 

give the steady state response x0 in amplitude and phase. 

5 



CHAPTER EIGHT 

VIBRATION TESTS ON A 1/250T11 SCALE 

COOLING TOWER MODEL 



8.1 

8. VIBRATION TESTS ON A 1/250TH SCALE COOLING TOWER MODEL 

8.1 Introduction 

Experimental investigations reported in the literature usually 

I describe work conducted on idealized cooling tower models and not on 

exact scaled replicas of full-scale towers. Even so, these investigations 

have not been very successful (e. g. see References 22,23,33,39) because 

of the relatively complex nature of the free vibration behaviour of these 

structures. Whilst simple structures such as cantilevers can be 

successfully excited in a pure mode by a single point force, this is 

not possible for cooling towers. Much work has served to identify the 

'. 
1 general pattern of possible mode shapes of cooling towers. In Fig. 8.1 

several of these modes shapes are presented. In practice, the excitation 

of one of trese modes shapes to the exclusion of the others is very 

difficult, especially if two or more modes have natural frequencies 

that-are very close to each other. However, the excitation of a 

particular mode can be made easier by a judicious choice of the excitation 

forces with respect to their (a) number (b) frequency (c) phase and 

(d) position on the structure. For example, assume that in Fig. 8.1 

the Modes I and II relate to a two degree-of-freedom system and that 

the modes have natural frequencies very close to each other. Then 

two forces diametrically opposed (see Fig. 8.1) but in-phase would 

excite Mode II, whilst in anti-phase would excite Mode I. The choice 

of the number of exciting forces is usually a compromise. To isolate 

a pure mode with n unconstrained d. o. f. would ideally require n 

numbers of exciters - see the paper by Traill-Nash [81 J. In practice, 

this number is usually too large and so a smaller number is employed. 

(In the experimental investigation reported in this chapter six exciters 



CENTRAL ELECTRICITY RESEARCH LABORATORIES 

N 
Z 

0Z OW 

a- zw 
Z aJ 

W NW 

V 

W= 

J 
Wp 

lz ;; p cz w. 
WW ZLUx 
F- F- LL CD 

via=z 

&ALDwwCD 
= QJ 

WDz !cZu 
QAW 

to I-- 1E w 

Oa 
vi 

ZZ 

Qý'cvl4W 

ýN cc Z: im 
>w : 
w 

wa 
22tzäcrvW, 

x0ýwa t-- Zaor- Co 

Co Co 
Z-Z 
OoW`W 

N-N 

r-% 

o %I 
u 
W 
N 

0 

m fý 

r- 
u 

Z 
0 

u 

0 

"' ö 

u ý= 
u 
w 

F'+ 

Co 
Z 

F- 
U 
w 

< 
O 

N 
%ý.., 

I1HLIIF 

ZO /Wr, z/ 

L ý\ LL 1-)0 
1 w 

rV of \ . -" 
/ 

2 
Jz 
V- 

HV 

N 

11 

E 

Ln 

11 
e 

N 

1 

E 

v 

i 

N 

11 

E 

M 

II 

C 

F= 

W 
F 
U 

2 
U 

w 
0 
0 

ti 



v 

8.2 

were used, though even with this number it was observed that some modes 

were difficult to excite in isolation. ) 

As stated earlier, many previous investigations of model 

cooling towers have tended to idealize the structure by assuming a 

shell of constant thickness with no leg-supports. However, one of 

the primary reasons for the investigation reported here, was to 

validate the theoretical results obtained from the program VACTIL. 

Hence, great care was exercised in obtaining an exact scaled replica 

of a full-scale tower.. The model had to comply with important scaling 

criteria - see Armitt [ 25 J'. (The author is grateful for the 

expertise gained at the Central Electricity Research Laboratories, 

C. E. R. L., Leatherhead, which enabled these requirements to be satisfied. ) 

Thus the thickening of the wall of the tower shell at the base (ring- 

beam) and at-the top (cornice) were accurately modelled. Also the 

leg-supports were included to scale - see Fig. 8.2. 

8.2 Experimental Apparatus and Measurement Technique 

The principles of resonance testing have been well documented - 

see References 80 to 85. The semi-automatic excitation system used 

in the investigation is based on that originally used by Taylor, 

Gaukroger and Skingle [ 85 ]. (However, several improvements have 

been made that enabled speedier and more accurate results to be 

obtained. ) The process-of setting up a pure mode using the system is 

as follows: - 

The cooling tower is first vibrated using one exciter. 

The frequency is adjusted till the correct resonance phase condition 

exists between the exciter and the response transducer that is placed 

close to the exciter. (At resonance the velocity response will be 
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in-phase with the force input, the displacement response will lead by 90 0 

and the acceleration will lag by 900. ) The Servo-Control Unit is then 

switched on so that-it maintains the required: phase condiiton. This is 

important as when the. second exciter is switched-on the relative phase of the 

first exciter will tend to change. The force output of the second 

exciter is adjusted until it is in phase (or anti-phase) with the first. 

The other four exciters are switched-on and adjusted, one at a time, 

until the whole structure is vibrating in the desired mode. 

A 1/250th scale model of the full-scale cooling tower at 

Didcot was chosen for the investigation. This was because the 

experimental results for the corresponding full-scale tower [ 42 ] 

were also available. The model tower was made from an epoxy resin 

with added steel powder called 'Devcon B'. (The manufacturer also 

calls it 'Plastic Steel B". ) The model was approximately 457 mm in 

height. The outer surface was painted with a reflective paint, 

'Codit'. The model was fixed to a large (diameter = 535 mm), thick 

(25 mm), steel base-plate by an adhesive. The steel base plate fixed 

to a turn-table which in turn was placed on a metal table. It was 

assumed, therefore, that the base of the tower was perfectly rigid. 

Six electromagnetic vibratoi5 were spaced equally about 

the periphery of the tower about 30 nun above the base plate. The 

arm of each exciter was fixed to the wall of the tower using a little 

epoxy resin (Devcon). During the preliminary stages of the investi- 

gation the exciters shown in Fig. 8.2 were used. However, in order 

to reduce the effective mass of the armatures and the stiffness of 

the armature suspension, smaller more compact exciters were employed. 

An added advantage of this change was that less of the tower surface 
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was obscured by the exciters thus enabling more displacement 

measurements near to and around the exciters to be made. A dis- 

placement measuring capacitance-transducer was mounted immediately 

above each exciter - see Fig. 8.2. The transducers did not come into 

contact with the tower. (A capacitance-transducer forms one plate 

of a capacitor whilst the tower structure coated with an electrically 

conducting paint forms the other plate. The capacitor is nominally 

a parallel plate capacitor and is included in the negative feedback 

circuit of an amplifier. The varying voltage produced by the amplifier 

is thus proportional to the normal displacement of the tower. ) 

A block diagram of the multipoint excitation system is 

given in Fig. 8.3. The description of the system is as follows: - 

A sinusoidal signal generator with two outputs in 

quadrature with each other is employed. The frequency of the generator 

is controlled by means of a d. c. input voltage. It is thus referred 

to as a voltage-tuned oscillator, (V. T. O. ). The '0°' output of the 

V. T. O. is amplified and fed to the six exciters. The design of the 

amplifiers used for this purpose is such as to minimize the phase 

shift of the amplified signal. The '90°' output of the V. T. O. is 

fed to six cathode ray oscilloscopes (C. R. O. ). The output of each 

displacement (capacitance) transdicer is also fed to a C. R. O. Hence, 

the C. R. O. displays, (i. e. "Lissajous Figures") compare the relative phases 

of the respective displacement transducer outputs with the '90°' 

output signal of the V. T. O. 

The output from any one of the six displacement transducers 

is fed to the Servo-Control Unit. The '900' output of the V. T. O. 

is also fed to the Unit. The Servo-Control Unit 'limits'* both the 

amplifies the signal till clipping takes place. Thus, a sinusoidal 
signal is converted to a square wave-form. 

I 
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'90o' and displacement transducer outputs. The phase difference, 

say 0o, between the limited signals is measured. If 0o is that value 

set by the user (1800 or 00 for resonance), the d. c. input to the V. T. O. 

from the Servo-Control Unit is unaltered. Hence, the frequency of the 

V. T. O. remains almost constant. However, if 0o is not equal to the 

required value, the d. c. voltage input to the V. T. O. is altered; an 

increase in the d. c. voltage causes an increase in the frequency of the 

V. T. O. and vice-versa. 

A record of the Lissajous display was found to be very 

useful. At resonance, the six displays are straight lines inclined 

acutely or obtusely to the horizontal (i. e. the outputs of the displace- 

ment transducers are in anti-phase or in-phase with the '900' output 

of the V. T. O. respectively). A polaroid photograph of all six Lissajous 

displays was taken for each mode. For the modes of vibration reported 

in this thesis the patterns of displays were unique. Hence, when it 

was desired to return to a particular mode, the record of the particular 

mode could be referred to, so that the setting-up procedure could be 

expedited. This was particularly useful in exciting Mode 5 (see Section 

8.3). 

A feature of the experimental investigation was the innovatory 

use of a laser as a displacement transducer. This unique remote measuring 

transducer is made by Decca Radar Ltd., Walton-on-Thames 'DECCOM FAST 

TRACKER', RL/LG/96801. A5 mW helium-neon laser and an interferometer 

(similar to a Michelson's interferometer) are central to the 

functioning of the instrument. The unit works on the Doppler Shift 

Principle. That is, laser light reflected from the surface of the 

vibrating structure undergoes a change'in frequency in comparison to- 



8.6 

the primary or reference laser beam. The greater the velocity of 

vibration of the structure the greater the phase difference between the 

reference and reflected beams. This difference in phase is converted 

by an interferometer into a series of moving interference fringes. 

These fringes are translated into an output voltage by means of 

electronic instrumentation ('tracker-box'). The magnitude of the 

output voltage is proportional to the velocity of the vibrating 

structure. Note that both the magnitude and direction of the vibration 

are detected by the DECCOM laser unit. 

The maximum velocity of a point on a homogeneous resonating 

body is proportional to its maximum displacement, for small vibrations. - 

The maximum output voltage of the tracker-box is therefore proportional 

to the maximum displacement, along the line of the laser beam, of the 

wall of the cooling tower, with respect to the particular point the 

laser beam is aimed at. 

The DECCOM was phase-adjusted by aiming the laser beam at a 

very tightly clamped non-resonating body. The phase of the output 

voltage of the trancer-box was then adjusted (by means of a 'Brookdeal' 

Model 421 phase shifter) so that it was in-phase with the '900' output 

of the V. T. O. It must be noted that it was found necessary to 

re-adjust the DECCOM when the excitation frequency was changed. 

Initially, in-order to establish the reliability of the 

exciter used for the phase-adjustment of the laser, several different 

types of tightly clamped non-resonating exciters were used. It was 

confirmed that the phase of the. output voltage of the tracker-box 

was similar for any of the exciters employed, for a given frequency. 

ideally, when the laser is aimed at a resonating structure, 
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the voltage will be wholly in-phase with the '0°' output of the V. T. O. 

If the resonance is not perfect, however, a component of voltage in- 

quadrature with the '0°' output will be detected. This voltage component 

will be referred to as the 'impure component'. Therefore, in order to 

obtain a measure of the purity of the mode, the relative magnitudes of 

both the component in-phase with the '0°' output (i. e. 'pure component') 

and the impure component must be determined. Hence, the output 

voltage of the tracker-box is fed to a 'Transfer Function Analyser' 

(T. F. A. ), which is also fed with the '0O' and '90°t outputs of the 

V. T. O. The T. F. A. has two d. c. output voltages which are proportional 

to the impure and pure components, respectively. These voltages are 

displayed separately on digital multimeters during experimentation. 

At resonance, as expected, the multimeter displaying the magnitude of 

the pure component tended to a maximum reading. 

The DECCOM was found to be most safisfactory as a 

'wandering' displacement measuring device. It was possible to speedily 

and accurately measure the displacements over the tower surface. With 

a little practice it was possible to move the laser bean over the 

tower surface and then obtain an approximate idea of the 'purity' 

and other characteristics of the mode. Two important aspects 

affecting the use of the DECCOM should be noted. The signal-to-noise 

ratio of the voltage output would sometimes be degraded. This would 

usually be due to poor reflection off the structure. This was 

corrected by changing the point of incidence of the beam slightly, 

and by ensuring that the beam was incident normal to the tower surface. 

Re-painting of a particularly bad area was also found to be beneficial. 

Thus, continuous monitoring of the output of the tracker-box of the 
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DECCO14 (by means of a C. R. O. ) is advocated. 

A second though uncommon reason for a poor signal-to-noise 

ratio arises from the coherent nature of the laser beam. At multiples 

of the laser tube length, the coherency is weakest. Therefore, if the 

total distance travelled by the beam is an integer multiple of the tube 

length, the DECCOM may not operate as expected. 

8.3 Results and Discussion 

In order to establish that the equipment was performing 

satisfactorily the mode with the lowest frequency, Mode 1, was 

excited. At a vertical distance (height) of approximately 375 mm 

from the base plate the pure and impure components of displacement 

were noted as functions of angular position. The results are 

displayed in Fig. 8.4. It is noted that there are four circumferential 

wave-lengths (i. e. n= 4). 

If 'perfect' excitation of a mode could be obtained, the 

ratio of the pure to the impure components of displacement would be 

infinite. In a practical case, however, the ratio is finite and is a 

measure of the purity of the mode. In Fig. 8.4 the ratio is observed 

to be approximately 31. The purity of the mode is also described by 

plotting the impure component against the pure component. The 'average' 

line drawn through the points gives the phase angle, since the impure 

component is in quadrature with the pure component; see Fig. 8.5. 

(A phase angle of less than 300 is found to be acceptable in practice. ) 

Fig. 8.6 is a representation of the variation of displacements 

perpendicular to the central axis, with the vertical distance above the 

base plate. It is observed that the curve is asymmetric and that there 

are two meridional nodes, m=2. (For several other modes the 

asymmetry was observed to be more pronounced. ) The curve can be 

represented by a polynomial of order between 5 and 7. 
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Fig. 8.7 displays the variation of the impure and pure 

components of displacement at and near resonance. The values are seen 

to tend to form a circle. Again, this is coercive evidence that the 

mode is reasonably pure. The damping ratio is calculated by the Kennedy 

and Pancu [ 80 ] method to be approximately 0.01. 

The preliminary results indicated that the apparatus was 

functioning as expected. Hence, as for Fig. 8.4, fifteen sets of 

measurements at various distances from the base plate were obtained 

for Mode 1; this necessitated about 500 displacement measurements. 

The results were used to obtain a contour map of the displacements, 

(i. e. the surface of the tower is projected onto a plane rectangle and 

points of equal displacement are joined together). It must be noted 

that intermediate points are interpolated using a cubic spline function, 

Greville [69. The C. E. G. B. program 'CONTCT' (C. E. G. B. '370 Subroutine 

Package') was used to obtain the contour map. The information obtained 

from the map correlated with information already presented in Fig. 8.4 

and 8.6. (Note that this contour map is given together with the contour 

maps for all the other modes in Fig. 8.9a and 8.9b. ) 

Fig. 8.8a is a contour map for Mode 2. The map shows that 

there are three meridional nodes; one node is very near the top of 

the tower. From cursory measurements of the displacements made 

near the top of the tower-it was not evident that the latter node 

was present. Moreover, Winney [ 42 ] has reported two and not 

three meridional nodes for the second mode of vibration of the full- 

scale tower. Hence, some doubt was cast as to the validity of the 

extrapolations made by the contour mapping program CONTCT. However, 

the finite element computer program 'VACTIL' [5] predicted three 
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meridional nodes with one node near the top of the tower*. Thus, 

it was thought that a closer examination of Mode 2 was advisable. 

With reference to Fig. 8.8a the displacements between the 

angular positions 145° and 205°, and, from the top of the tower to 

a depth of 70 mm were measured at very close intervals; about 200 

readings were obtained. The results were plotted by hand and are 

displayed in Fig. 8.8b. The pattern of contour lines, especially the 

top of the contour of zero displacement in the middle of the figure, 

is very similar to the unique pattern obtained by CONTCT in Fig. 8.8a. 

between the angular positions 145 0 
and 2050. Hence, it can be concluded 

that the contour map produced by the program CONTCT is a reasonably 

accurate representation of the practical situation. 

Fig. 8.8c was obtained by the method described previously 

for Fig. 8.8b, and is the detailed measurement of displacements between 

angular positions 600 and 1200 in Fig. 8.8a. This figure explains 

why it is not immediately obvious that a third meridional node is 

present near the top of the tower. For this node to be readily detected, 

the vertical line of zero displacement should be deviated at 

right-angles when it is near the top of the tower, to form the third 

meridional node. Examination of Fig. 8.8c shows that in the practical 

case the vertical contour of zero displacement is deviated by an 

angle less than the 90°'that is expected. In Fig. 8.8a, however, 

the extrapolations made by CONTCT enable the meridional node to 

be clearly observed. It is concluded, therefore, that Mode 2 has 

three meriodinal nodes, and that cursory measurements of displacements 

In order to keep the logical flow of the discussion in this chapter 
it is necessary to refer to information that will be presented in 

the next chapter. 
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at the top of the tower can be misleading. 

Although Modes 3 and 4 were excited with comparative ease, 

excitation of Mode 4 was relatively difficult because of harmonic inter- 

ference from other modes. The unwanted harmonics can probably be attenuated 

by the use of six more exciters; see Section 8.4. (It is interesting 

to note that the contour map obtained for. Mode 3 was very similar to 

a hologram of displacements presented by Leim, Hazell and Blask4 [ 86, 

Plate 1] for a vibrating cylinder. ) 

It was found difficult to correctly excite the mode with 

the fifth lowest frequency. This is because there are, in fact, 

several modes within a very narrow band of frequencies. For convenience, 

and to be concordant with past practice, these modes will be referred 

to as "Mode 5". The lowest frequency measured (at a temperature of 

200C) for Mode 5 was 174 Hz with m and n values of 3 and 7, 

respectively. Also, two more modes between the former frequency 

and approximately 180 Hz were obtained; the in, n values were 3,5 

and 2,3. VACTIL predicts mode shapes (m, n) of (3,7) and (3,5) 

within this frequency range; the mode shape (2,3) is not, however, 

predicted. The measurements made by Winney E 42 J show that the 

full-scale tower has a mode shape of (3,7). It is possible there- 

fore that the mode shape (2,3) was measured due to interaction between 

the other two modes (see Section 8.4. ) 

Mode 6 was investigated as VACTIL predicted a mode of 

vibration at a frequency of approximately 206 Hz. The measured 

value was 209.5 Hz (as seen in Table 1) and the mode shape 

was (3,8). - Winney [ 42 3 obtained the same values of m and n for 

the full-scale structure at a frequency close to the 'normalised' 

frequency (see below and Table 8.1). Hence, in both the model and 

full-scale work a meridional node was observed very close to the 
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top of the tower. VACTIL, however, predicts two meridional nodes 

with a third node very close to, but just above, the top of the tower. 

Table 1 presents the resonant frequencies and mode shapes 

obtained for the model cooling tower. The corresponding results 

for the full-scale structure, reported by Winney [ ßi2 J, are also 

given for comparison. It must be noted that all the model frequencies 

were measured at 20°C. 

'Normalisation' (extrapolation to the corresponding full- 

scale values) of the resonant frequencies obtained for the model 

tower is a convenient method of comparing the frequencies obtained for 

the model and corresponding full-scale structure. The normalised 

frequency, F, is given by the equation: - 

FS Dis Ef 
F- 250 ES x ... (8. ß) 

where F, M and E are frequency, mass density and Young's Modulus, 

respectively. (It is assumed that the values of Poisson's ratio are 

sufficiently similar to be ignored; see Armitt [ 25 ], page 5. ) 

The subscripts s and f pertain to the model and full scale structures, 

respectively. (The denominator 250 is the scale factor. ) Burrough [87 J 

reports that 

Ef 29.5 x 109 Nm2 and Mf = 2323 kg m3 

The values of Es and Ms must now be considered. 

The Young's Modulus of 'Devcon B', Es, was measured by 

Blow [88] to be (5.24 X 109 ±0.1%) Nm2 at a temperature of 20°C. 

he also measured the mass density, MS, to have a value of 
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(2.31 x 103 ±0.1%) kg m 
3. 

It must be noted that the samples used 

by Blow were a few months old. Also, that various-different values 

for Es and Ms have been reported by other workers (see below). Blow 

states that the variation in values quoted for M. is probably due to 

differences in the concentrations of air bubbles formed in the epoxy 

during the mixing process. 

Assuming values for Es and Ms reported by Blow [ 88 

the normalised frequency of Mode 1, using equation (8.1) is: - 

(1.187 ±0.0086) Hz . 

Table 8.1: Comparison of Resonant Frequencies and Mode Shapes 

of Model and Full-Scale Structures (Didcot Cooling 

Tower) (Temperature 20°C for Model) 

Full-Scale 
Model Tower 

Mode 
Measured Normalised* Normalised* Measured m, n 

No. Frequency Frequency Frequency m, n Frequency 
Hz 1, Hz 2, Hz Hz 

1 124.5 1.16 (7.4) t 1.14 (5.6) 2,4 1.08 2,4 

2 136.6 1.27 (8.1) 1.25 (6.4) 3,5 1.175 2,5 

3 147.0 1.37 (5.3) 1.34 (3.1) 2,3 1.30 2,3 

4 156.0 1.45 (2.8) 1.43, (2.8) 3,6 1.41 3,6 

5a 174.0 1.62 (-1.8) 1.59 (-3.6) 3,7 

5b 180.0 1.67 (1.2) 1.64 (-. 6) 3,5 and 1.65 3,7 
2,3 

6 209.5 1.95 (-1.5) 1.91 (-3.5) 3,8 1.98 3,8 

*See text; tPresentage difference, with full-scale values as reference 
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However, if the values quoted by other sources are used, different 

frequencies are calculated; e. g. using the manufacturer's specifications, 

Es = 5.86 x 109 Nm2 and MS = 2.5 x 103 kg m-3, 

a value of 1.159 Hz is obtained. Alternatively, Deb Nath's [ 89 

values which are 

Es = 5.516 x 109 N M-2 and MS - 2243 kg m3 

yield a frequency of 1.13 Hz. Finally, if Armitt's E 9o D values of 

ES = 5.96 x 109 Nm -2 and MS = 2400 kg m3 

are taken the frequency is 1.153 Hz. The average of all four values is 

1.155 Hz. (It is pertinent to note that VACTIL predicts a resonant 

frequency of 1.154 Hz. ) 

Hence, it is not immediately apparent which value of Es and 

Ms are to be used in the present work. The careful measurements made 

by Blow are particularly noteworthy. However, ageing tends to produce 

a small change in the properties of Devcon (Blow, personal communication 

and Devcon Ltd. ); remember that the samples tests by Blow were only 

a few months old. The-resonant frequencies measured by Blow in 

May 1973 (unpublished data) are consistently higher than those measured 

in 1972 (by J. Hannah, unpublished data) when the model tower was new, 

by a factor of about 1.036 (=4%). This would indicate that the ratio 

of E and M has increased by a factor of 1.0362 (= 1.0737). Hence, 
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multiplying Blow's [ 88 ] value of Es/Ms (i. e. 2.268 x 106 Nm kg-1 

for 'new' Devcon), by this factor yields a value of-2.435 x 106 Nm kg 

This is less than the E/M value obtained from Deb Nath's data 

(2.456 x 106 Nm kg 1) 
and is greater than that quoted by Armitt 

(2.371 x 106 Nm kg 1) 
and the manufacturer (2.344 x 106 Nm kg 

1). 

Blow's E/M value of 2.268 x 106 Nm kg -l appears therefore 

to be a lower-bound to the value of this ratio. Any increase in the 

value of E/M above Blow's value is probably due to ageing. Deb Nath's 

value of 2.45957 x 106 Nm kg 
1 

is probably an upper bound to the value 

of E/M. It is pertinent to note that Armitt's and the manufacturer's 

values are close to the mean of the upper and lower bound of values 

which is 2.364 x 106 Nm kg 1. Thus, the four values of E/M appear to 

span the possible range of E/M values. The average value of the four 

readings is-2.3607 x 106 Nm kg 1. 
This value is very close to the 

mean of the upper and lower bound of values and also the manufacturer's 

value. The manufacturer's value is based on very many measurements 

on a large number of samples of Devcon and thus appears to be a 

valid base for the normalization of the model frequencies. Therefore 

this value together with equation (8.1) is used to obtain the 

values in the column headed 'Normalised Frequency 1' in Table 8.1. 

Blowts value of E/M adjusted for ageing (i. e. 2.435 MN m kg 
1; 

see 

above) is as tenable, and is used to obtain'Normalised Frequency 2' 

in column 4 of the Table. The number in parentheses in columns 3 and 

4 refer to the percentage difference between the normalised and full- 

scale frequencies. It is important to note the similarity in both 

" sets of normalised frequencies whilst remembering that the material 

properties of Devcon used in the two normalisation procedures depend 

on the measurements made by two different sources. In the absence 
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of firm arguments to the contrary, and in the knowledge that any 

error so obtained would be small, we shall adopt the manufacturer's 

values for the material properties of Devcon in the normalisation 

of the model cooling tower frequencies (see Chapter 9). 

Table 8.1 shows that the maximum discrepancy between the 

normalised frequencies 1 and 2 of the model and full-scale structure 

is 8.1%. However, it is observed that the maximum discrepancy 

between the higher three modes is less (maximum difference is 3.6%). 

The discrepancies between the lower modes is almost certainly due 

to differences in the foundation elasticity* - see Chapter 9. The 

model foundations are assumed to be rigid, see Section 8.2, whereas 

the full-scale structure has a vertical foundation elasticity of 

approximately 1.6 x 109 Nm1, [ 91 D. This will be discussed in 

Chapter 9 in detail. It therefore appears likely that if the 

foundation elasticity of a model tower is simulated to be equivalent 

to that of the full-scale structure good correlation (better than 

5%) between the measured values for the full-scale and model 

structures can be achieved. 

8.4 Suggested Improvements to the Measurement Techniques 

Whilst the apparatus and technique used for this work is 

satisfactory it is thought that the higher modes can be more 

conveniently determined by several changes. 

During the present experimental programme it was found 

possible to resonate the tower such that while the vibration of the 

bottom half of the tower was clearly defined (i. e. the contour map 

of this area was clearly defined, as for example, in the whole of 

A crude though interesting experiment illustrated this point. During 
excitation of the higher modes, touching the base of the legs of 
the vibrating cooling tower had very little effect. However, for 
the lower modes the effect was very pronounced. 
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Fig. 8.8a) the vibration of the top half of the tower was not (i. e. 

the contour map of the top half was composed of 'distorted ellipses' 

- see Fig. 8.9b). This is very probably not due to a non-classical 

mode of vibration as proposed by Williams [ 33 ] but is very probably 

caused by harmonic interference from neighbouring modes. This 

interference can be greatly attenuated by the use of more exciters. 

For example, 'Mode 5', which is not one but two or more modes could 

be probably investigated by employing six exciters at the bottom of 

the tower and six exciters at the top of the tower. (It must be 

appreciated that theoretically, a system with N unconstrained 

independent degrees of freedom requires N exciters to excite a pure 

mode; Traill-Nash [ 81 ]. ) 

Phase shifters should be used to correct a small phase 

inaccuracy. as described below: - 

The excitation forces are supplied by the '0°' output of the 

oscillator. Resonance is defined as a00 phase relationship between 

response and excitation forces. 0° is '0°' or '±90°' depending on 

whether a velocity or displacement/acceleration response is being 

considered. The Lissajous displays are used to compare in-phase 

signals. Hence, the excitation force is represented by the '0°' 

or '90°' outputs of the oscillator, for an 'in-line' display, 

depending on whether 6°'is '0°' or '90°. ', respectively. 

In practice, however, the '0°' output of the oscillator 

undergoes a small phase change, a°, before it supplies the excitation 

force. Thus, when the Lissajous display is 'in-line' the relationship 

between the response and excitation force is not 00 as required but 

(0 ±a) degrees. This small phase error can easily be negated by 
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by the use of phase shifters* acting on the '0°' and '90o' outputs 

of the V. T. O. 

8.5 Conclusions 

1. The free vibration of a 1/250th scale model of the Didcot 

tower has been described by measuring its resonant frequencies and mode 

shapes. Six modes of vibration have been observed. These modes 

agree, to a large extent, with those observed for the full-scale 

structure. The 'fifth mode' appears really to consist of two or 

more modes at similar resonant frequencies. Adopting the improvements 

advocated in Section 8.4 would enable a more accurate description of 

these modes. 

2. The use of a laser as a displacement measuring device for 

the model structure has been shown to be highly satisfactory, provided 

a few simple precautions are observed. Such measurements are more 

speedily and accurately obtained, when compared with the use of 

other devices such as capacitance transducers. 

3. The resonant behaviour of the model tower is similar to that 

reported for the full-scale structure for the first six modes 

investigated. The mode shapes are the same (except for Mode 2; 

the reason for the discrepancy is explained below), whilst the values 

of resonant frequency agree to within 8.1%. The agreement is better 

(less than 5%) for higher modes. The poorer agreement between the 

resonant frequencies for the lower modes is very probably due to 

differences in foundation elasticity between the model and full-scale 

structures. Foundation elasticity thus appears to be an important 

Two 'Brookdeal' Model 421 phase shifters were purchased for this 
purpose during the latter stages of the project. While time did 
not allow for the inclusion of these in the present work, preliminary 
results were seen to be envouraging. Also, the T. F. A. has been 
modified to incorporate the phase shifters. 
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property which must be considered in all future model work. 

4. The mode with the 'econd lowest frequency, Mode 2, has 

three and not two meridional nodes as appears from a. cursory 

examination (and as hitherto believed). This observation agrees 

with that predicted by the finite element program VACTIL. 



CHAPTER NINE 

FINITE ELEMENT ANALYSIS OF 

MODEL AND FULL-SCALE 

COOLING TOWERS 



9.1 

9. FINITE ELEMENT ANALYSIS OF MODEL AND FULL-SCALE COOLING TOWERS 

This chapter describes the finite element free vibration 

analysis of the model and corresponding full-scale tower at Didcot. 

The effects of leg-supports, foundation elasticity and variation in 

thickness of the wall of the tower shell will be explicitly included 

in the analysis. It will be shown that good agreement is obtained 

between the results of the finite element analysis and the experi- 

mental results for the model and corresponding full-scale structures. 

Having validated the finite element method, several parameters that 

affect the resonant behaviour of cooling towers will be investigated. 

(The parameters concerned, for example foundation elasticity, could 

not have been investigated with any degree of confidence in the past. ) 

The discrepancies that exist between model and full-scale experimental 

data will then be explained. Proposals will be made, including the 

corrections required, to accurately normalize model frequencies 

for meaningful comparison with full-scale values. 

9.1.1 Summate of Previous Attempts 

In Chapter 2a review of the work by previous authors was presented. 

In order to make this chapter more readable and self-contained we shall 

summarize and add a little to the findings of that review: 

The resonant frequencies of a cooling tower are very 

dependent on its geometry. (It will be seen that even small changes 

in geometry affect the resonant frequencies. ) Thus, to a considerable 

degree, the free vibrational behaviour of a tower is dictated at the 

design stage. It would be of great value, therefore, to predict the 

," values of the resonant frequencies for a given design and, also, 

to explore the effect of small alternations to the design. This would 
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lead, very probably, to economies in construction of the tower. 

(As a cooling tower costs, very roughly, about three-quarter of a 

million pounds, a 
. 
small fractional saving is appreciable in real 

terms. ) 

Previous methods used to predict the dynamic behaviour of 

cooling towers have used several techniques, for example: 

(i) Solving the equations of motion of an idealized tower. 

(ii) Conducting experimental investigations on scaled models. 

(iii) Finite element solutions. 

These methods have not proved to be entirely satisfactory. 

For example method (i) is limited to particular geometries and 

extrapolation of the results to practical structures have not produced 

very satisfactory information. The model investigation requires a 

considerable experimental effort. The information has then to be 

extrapolated in order to predict the behaviour of the full-scale 

structure; the extrapolation contributes to the degree of uncertainty. 

Discrepancies are also observed between the experimental results 

obtained for the model and corresponding full-scale structure. 

In Chapter 8 it was observed that the values of the resultant frequencies 

measured for the model, after normalisation, were relatively higher 

for the lower modes than the corresponding values for the full-scale 

structure [ 42 ], whereas the agreement between the higher modes 

was very much better. 
, 

The finite element solutions are probably the most convenient. 

Whilst the method is capable of yielding a considerable degree of 

accuracy the finite element representation of cooling towers has not 

been particularly accurate. For example, the leg-supports of the 
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towers have not been correctly included in the analyses, and foundation 

elasticity has not (in general) been considered. Consequently, the 

better finite element solutions (e. g. Deb Nath E40 3 usually predict 

resonant frequencies that are within only 10 to 20% of the values 

obtained experimentally. Moreover, there is usually some discrepancy 

between the mode shapes. It is of interest to note that finite element 

methods tend to yield results that are in poorer agreement with the 

results obtained for full-scale structures than with results for the 

corresponding models. 

The above shows that several questions must be answered in 

a successful investigation of the free vibrational behaviour of 

cooling towers. It is hoped to answer many of these questions in the 

following sections. Initially, it is instructive to summarize 

briefly some relevant information (gleaned from the literature) 

regarding the free vibration of cooling towers: 

(a) Self-load stresses (i. e. due to dead weight) appear to have 

a marginal effect on the natural frequencies of cooling towers. 

(b) Rotationally symmetric shells of revolution, without 

singularities, appear to have no modes of vibration which are 'non- 

classical' (i. e. the circumferential wave-number, n, does not vary 

with the meridional position on the structure. ). 

(c) The lower range of natural frequencies, i. e. 3, n; 8, 

is increased by an increase in the thickness of the cornice (thickening 

at the top of the cooling tower); however, for the predominantly 

-' extensional type modes the resonant frequencies are decreased. For 

' values of n greater than 7, the effect of increasing the thickness 

of the cornice is negligible. 
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(d) The greatest resonant response of a tower to wind excitation 

occurs in the mode having the lowest natural frequency (which is 

usually found to have a value greater than 0.5 Hz). 

(e) As a general rule, the resonant frequency of a tower 

decreases by up to 5% for wind speeds increasing from zero to the 

design wind speed. 

(f) Wind-induced maximum resonant stress varies inversely as the 

square of the resonant frequency and directly as the fourth power of 

the wind speed. 

9.1.2 Review of the Finite Element Method for Cooling Towers 

The shell of the cooling tower is represented by doubly 

curved shell finite elements (Chapter 4). The leg-supports of the 

tower are modelled by beam elements (Section 6.3). The cylindrical 

coordinate-system is chosen as the global system for both elements. 

Therefore it is necessary to transform the shell element matrices to be 

compatible with this system (Section 6.2). A representative substructure 

is chooser. In the case of cooling towers with 'V-pairs' of leg- 

supports the substructure includes one pair of legs. A typical 

finite element mesh and substructure is illustrated in Fig. 7.1. 

Complex constraints are applied to the substructure and the eigenvalue 

equation solved as detailed in Chapter 3. The number of circumferential 

wave lengths, n, is fixed by the appropriate choice of the phase 

angle p= 
Nr 

xn (see Chapter 3 and Appendix 7.1) where N is the 

number of identical substructures forming the structure. Thus, if 

the angle subtended by the substructure (CQ) is 90 (see Fig. 7.1) 

then for ý= 360 a mode with n-4 would be obtained. 
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9.2 Circumferential Wave Number (n) 

At this point it is pertinent to explain the author's 

interpretation of the value to be ascribed to it, when axisymmetric 

or rotationally periodic structures are analysed. For an axisymmetric 

structure n is identical to the number of sinusiodal (or cosinusoidal) 

wave lengths around any circumferential line of the structure and is 

equal to half the number of nodes around the circumference. For 

rotationally periodic structures n is as defined in Section 9.1.2. 

That is, if the displacements at substructure boundaries are alone 

noted, these displacements can be placed on a sinusoidal wave of 

wave length which is (1n)th the circumference. Note, however, that 

no assumption is made regarding the pattern of displacements between 

substructure boundaries. Thus for a non-axisymmetric structure that 

is rotationally periodic the circumferential displacement patterns 

may be different at different meridional positions; however, the 

sinusoidal relationships of the displacements at substructure 

boundaries alone, over any given circumferential line, will remain. 

Hence, if n is calculated by counting the number of 'zero crossings' 

of a displacement-circumferential-wave, the resulting value may 

be different from that obtained by using the definition given above. 

Thus while the method of calculating n used in this thesis will result 

in a constant value (of-n) at any meridional position on a cooling 

tower with leg-supports, the 'zero-crossings method' may give 

different values of n at different meridional positions. This may 

explain why Deb Nath [ 40 D, 
who attempted to model cooling tower 

leg-supports by having 'cut-outs' at the base of the shell, states 

that 'non-classical' modes are present in the free vibration of 

cooling towers. 
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9.3 Preliminary Tests 

Initially, in order to verify that the program (VACTIL) 

could accurately analyse comparatively simple shells of revolution, 

preliminary tests were performed. 

VACTIL was used to analyse a cylinder 'simply supported' 

(see Section 11.2.1) at both ends. Complex constraints were 

applied for the mode with n=4. A resonant frequency of 91.13 Uz 

was obtained with m=2. This compares reasonably with an analytical 

solution 
[ 94, page 194 ] which predicts a frequency of 91.09 Hz. 

It must be noted that, in the above example, VACTIL was 

used with CQ (see Section 9.12) equal to 9°. If CQ was made smaller, 

e-. g. 4°, marginally higher accuracy would have resulted as this is 

equivalent to using a finer mesh of elements. In the analysis of 

the cooling towers (described in Sections 9.4 and 9.5) it was 

necessary to initialize CQ to 9. Hence, this value was used for ° 

the preliminary tests. s 

The accuracy of the coordinate transformation described 

in Chapter 6 was verified by comparing the resonant frequencies 

obtained for a hyperboloid, with no constraints, with and without 

a coordinate transformation. The resonant frequencies were observed 

to be exact (to the eight significant figures given in the 

print-out) for the 'non-rigid body*irequencies'. (The 'rigid 

body frequencies' were very small - theoretically they should be 

zero - and equal to five significant figures. ) - Moreover, when the 

eigenvectors in the cylindrical coordinate system were transformed 

back to a curvilinear system, the displacements were sensibly the 

same (rounding errors cause very small differences) as the eigenvectors 
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obtained when no transformation was invoked. 

The exact resonant frequencies for a hyperboloid (with 

approximately the dimensions of the cooling tower at Didcot) can be 

obtained by solving the differential equations given by Carter, 

Robinson and Schnobrich [ 11. These values are given in Table 9.1 

column 1. Also, the results obtained using VACTIL to analyse the 

hyperboloid are given in column 2. The agreement is seen to be 

satisfactory. 

In the construction drawings of a cooling tower shell the 

meridional shape is defined by a series of points. The interpolation 

curve passing through these points may not represent a true hyperbolic 

curve. It is more accurate, in this case, to define the meridian in 

terms of a polynomial or cubic spline. This type of meridia is 

referred to as a 'general curve' (see Chapter 6). This facility 

was initially tested by generating R and Z values from the equation 

for a*hyperbola and thereby representing the meridian of the 

hyperboloid as a general curve. The result of this analysis is given 

in column 3 of Table 9.1. The agreement is observed to be 

good. 

Table 9.1: Resonant Frequencies Obtained for the Carter et al. 

Iiyperboloid for the First Three Modes with Four 

Circumferential Waves (n = 4) 

Method of Analysis 

Solutions of VACTIL Meridional 
Differential Nodes , 

Equations (i) Representation (ii) Representation m 
(Carter et al., as a Hyperboloid as a General 

El D Curve 

1.1808 1.1921 1.1880 2 

1.4474 1.4655 1.5203 2 

2.7772 2.8390 2.8198 3 
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Further tests were conducted on structures that were not 

perfectly hyperboloidal. These results (which are not reported here) 

showed that the program was giving consistent and accurate answers. 

The accurary of the beam element routines was investigated by 

comparing the answers obtained for a simple rectangular structure using 

VACTIL, with those obtained by a well-proved program 'VOSTAFo2' [ 93 ]. 

The answers in both cases were observed to be identical. 

Thus, the preliminary tests described indicated that VACTIL 

was giving satisfactory solutions. 

9.4 Model and Program Results 

Whilst preliminary investigation showed that the accuracy of 

the shell or beam element used separately in the program (VACTIL) was 

satisfactory, it was necessary to establish that the results obtained 

when both elements were employed together were accurate. 

It was not possible to devise a simple and straightforward 

test (as for example in Section 9.3) to achieve this. Controlled 

experimentation on model structures, under laboratory conditions, is 

capable of yielding accurate information (Chapter 8). Therefore it 

was decided to use VACTIL to analyse a cooling tower with legs and 

compare the results with experimental data obtained for a model. 

A 1: 250 scale model of a cooling tower at Didcot was chosen for this 

purpose as the resonant behaviour of the corresponding full-scale 

structure has been measured by Winney [ 42 ]. A detailed account of 

this work has been given in Chapter 8. Table 9.2, columns 2,3 and 4, 

summarize the findings. 

Normalization (extrapolation to the corresponding full-scale 

values) of the model tower is a convenient method of comparing the 
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frequencies obtained for the model and corresponding full-scale 

structures (see Section 6.2). To a first approximation the normalized 

frequency, F, is given by the equation: 

FS Ms Ef 
F (scale factor = 250)X Es x Mf 

x f(ps'pf terms in ps and pf ... (9.1) 

where F, M, E and p are the resonant frequency, mass density, Young's 

Modulus and Poisson's Ratio, respectively. The subscripts s and f 

pertain to the model and full-scale structures, respectively. 

Burrough [ 87 ] reports that Ef = 29.5 x 109 Nm2 and 

itf = 2323 kg m3 for the concrete used for the full-scale cooling tower 

at Didcot. The model tower was made from 'Devcon B' epoxy resin. The 

and Ms = 2500 kg m. 
9 

manufacturer specifies Es = 5.86 x 10 Nm23 

Poisson's Ratio for the full-scale tower (0.19; Burrough 

87 ]) is different from that for the model (0.24; Armitt [ 37 3). 

In order to obtain a value for f(ps, pf) it is often assumed that the 

mode of vibration of a tower is due to coupled bending/extensional 

vibration and that the relation 

i-ps 
fiPSýP f) 2 

1 Pf 
... (9.2) 

holds. In the present case where ps = 0.24 and pf = 0.19, f(ps, pf) is 

almost unity. Moreover, as will be shown in Section 9.6.2, the 

effect is even smaller than predicted from the simple expression given 

above. (Also, the effect of Poisson's Ratio on Mode 3 is different; 

See Section 9.6.1. ) Therefore, the values given in column 3 of 
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Table 9.2 were obtained by assuming that f(ps, pf) in equation (9.2) was 

unity. 

The results form VACTIL are given in columns 5 and 6 in 

Table 9.2. For comparison, results from a previous finite element 

technique [ 40, Table 2 ], where the column supports were regarded 

as extensions of the tower surface, are presented in columns 7 and 8 

of Table 9.2. (Note that the frequencies given in Reference 40 were 

corrected for the more accurate values of Mf and Ef due to Burrough 

[87 J. ) 
The immediate observation made from Table 9.2 is that the 

finite element program accurately predicts the free vibrational behaviour 

of the tower. The values of resonant frequency agree to within ±4%. 

Moreover, except for Mode 6, the number of meridional nodes (m) and 

circumferential wave lengths (n) are in exact agreement. During the 

experimentation described in Chapter 8a meridional node was observed 

to be very close to, but below, the top of the tower. The computed 

results predict a node very close to, but above, the top of the tower. 

Hence, this difference cannot be regarded as an important discrepancy. 

The comparison of Modes 3 and 4 is interesting; while the 

discrepancy between the computed and experimental results is not 

large, the relative magnitude of the frequencies in each case is 

different. This is probably due to the 'sensitivity' of Mode 3 to 

slight imperfections in the geometry of the model, or to similar 

unquantifiable parameters; the basis for this premise is expanded in 

Section 9.6.1. 

The good correlation obtained between the computed and 

measured values for Mode 1 is of particular note. The mode with the 
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lowest frequency is of primary importance in predicting the probable 

dynamic behaviour of a cooling tower under adverse conditions. The 

previous theoretical predictions for this mode in particular have 

been unsatisfactory. (The predicted frequencies for the lower modes, 

in general, have been much higher than the measured values. ) For 

example, the finite element techniques of Webster [ 29 ] and 

Deb Nath C 40 ] (using ring finite elements) predict a frequency 

of approximately 1.3 to 1.4 Hz for Mode 1; i. e. a difference of 

more than +12%. The reason for the higher frequencies predicted 

by previous methods is that the effects of leg-supports were not 

accurately included in the analyses. (In retrospect, contrary to 

suggestions by previous workers, errors due to assigning incorrect 

values to the material properties are of secondary importance. ) 

Comparison of columns 3,5 and 7 in Table 9.2 clearly illustrate 

these points; the first three modes, in particular, are markedly 

affected (note the m and n values associated with the second lowest 

frequency, predicted by the method of Deb Nath [ 40 ]). The 

inclusion of the effects of column supports appears to make a less 

rigid structure. 

It is interesting to note that VACTIL predicts that Modes 

3 and 4 have very similar resonant frequencies; in practice, this 

would make the modes difficult to measure. However, Mode 3 appears 

to be sensitive to small changes in the properties of the tower which 

do not appreciably affect the other modes (see Section 9.6.1). Hence, 

for a practical situation, it is unlikely that Modes 3 and 4 will 

' have very similar resonant frequencies. 



Table 9.2: Comparison of Resonant Frequencies and Mode Shapes 

Obtained Experimentally and Theoretically 

For the Model Cooling Tower at Didcot 

Column Number 

2 3 4 5 6 7 8 

A Previous Finite 

th Scale Model Cooling Tower Finite Element Element Method [403. 

Mode 
250 Method Column Supports Not 

li i l i No. c t y Def Exp ned 
Measured Normalised Frequency 
Frequency Frequency m, n (Hz) m, n Frequency 

m, n (Hz) (Hz) (Hz) 

1 124.5 1.159 2,4 1.155 2,4 1.375 2,4 
(-0.4)* (+18.6) 

2 136.6 1.272 3,5 1.241 3,5 1.451 2,5 
(-2.4) (+14.0) 

3 147.0 1.369 2,3 1.399 2,3 1.730 2,3 
(+2.2) (+26.4) 

4 156.0 
. 
1.452 3,6 1.394 3,6 1.660 3,6 

(-4.0) (+14.3) 

5a 174.0" 1.620 3,7 1.630 3,7 1.836 3,7 
(+2.0) (+13.3) 

5b 180.0 T 1.676 3,5 1.696 3,5 1.872 3,5 
(+1.2) (+11.7) 

6 209.5 1.950 3,8 1.924 2,8 2.040 2,8 
(-1.3) (+4.6) 

The numbers in parentheses refer to the percentage difference from 
the values given in Column 3 
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9.5 Full-Scale and Program Results 

It has been shown in Section 9.4 that the finite element 

method (VACTIL) can be used to analyse accurately the free vibration 

of model cooling towers with legs. It is now opportune to study 

the theoretical analysis of the full-scale cooling tower at Didcot 

and compare the findings with the full-scale experimental data 

obtained by Winney [ 43 ý. 

The values of Young's Modulus, Poisson's Ratio and Mass 

Density used for the finite element analysis are as given in Section 

9.4, for Ef, pf and Mf. An approximate value for the foundation 

elasticity in the vertical direction is given by iiaydon and Winney [ 91 

91 
Nm, although they state that it is likely that the as 1.6 x 10 

elasticity varies, somewhat, around the base of the tower. The 

foundation elasticity must be considered in the finite element analysis 

as discussed in Section 7.1 - this is the crucial difference between 

the model and full-scale structures. Fig. 7.1 gives the dimensions 

of the full-scale cooling tower. The results of the analysis are given 

in columns 5 and 6 of Table 9.3. The experimental data are summarized 

in columns 2 to 4 of the Table. The modal frequencies were found to 

exist as 'orthogonal pairs' [43] and are given in column 2. Apparently, 

the orthogonal pairs are due to the small deviation of the tower shell 

from the geometry of a"perfect shell of revolution. (Probably other 

'parameters' like the variation in foundation elasticity around 

the base of the tower also contribute to this phenomenon. ) A 

consequence of this hypothesis is that the orthogonal pair of frequencies 

should converge to a. single value as the cross-section of the tower 
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shell becomes more symmetrical about the axis of revolution. This 

single value would be approximately equal to the mean of the 

orthogonal pair. The mean values of the orthogonal pairs are 

therefore given in column 3 and are used for comparison with the 

theoretical values. 

The agreement between the experimental and theoretical 

resonant frequencies is good. The maximum discrepancy obtained 

between the computed and measured values is less than 5%. Except 

for Modes 2 and 6, the mode shapes are in agreement. The disagree- 

ment for Mode 6 is not important as explained in Section 9.4. 

As observed in Chapter 8 for the model, the third meridional 

node is sometimes difficult to detect experimentally. Experimentation 

on a full-scale tower is an order of magnitude more difficult than 

for a model structure. Hence, similarly it is possible that the 

third meridional node for Mode 2 was not observed. 

The overall observation is, therefore, that the program 

accurately predicts the behaviour of full-scale cooling towers that 

are geometrically perfect. It would be advantageous, however, if 

the program could be developed to include the effects of geometrical 

imperfections. The theoretical framework employed in VACTIL can, 

with a few modifications, be used to analyse structures which are 

almost, but not perfectly, periodic (e. g. towers with small azimuthal 

variations in the wall thickness, small eccentricities in the tower 

shell cross-section, etc). 



Table 9.3: Comparison of Resonant Frequencies and Mode 

Shapes Obtained by Experimental and Finite 

Element Analysis of Full-scale Cooling Tower 

(at Didcot Power Station) 

Column Number 

1 2 3 4 5 6 

Full-scale Experimental Finite Element 
Results Program (VACTIL) 

Mode 
No. Measured Average Computed 

Frequency Value m, n Frequency m, n 
(Hz) (Hz) (Hz) 

1 
1.06 1.08 2 4 

1_06 2,4 
, 5) 

2 1.16 1.175 2 5 1.180 3,5 
. 19 1 , ( +0.42) 

.3 
1.29 1.30 2 3 1.253 2,3 
1.31 , (-3.6) 

4 
1.40 1.41 3 6 

1.351 3,6 
1.42 , (-4.1) 

5 
1.62 1.65 3 7 

1.589 3,7 
1.68 , (-3.7) 

6 
1.98 1.98 3 8 1.897 2,8 

, 

The numbers in parentheses refer to the precentage difference 
between values given in column 5 and column 3 
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Cracks in the wall of the tower that are almost periodic, 

as sometimes happens [ 38-1, can be analysed by making a few 

modifications to the program. It must be noted that the present 

version of the program utilizes about 300 to 400 K bytes for a typical 

problem - see Appendix 7.1. However, larger finite element 

idealizations can be used (a region size of 750 K bytes is possible), 

subject to other limitations (e. g. maximum number of degrees of freedom). 

Therefore, larger and more complex substructures can be defined, 

compared with that given in Fig. 7.1. 

9.6 Effect of Poisson's Ratio and Foundation Elasticity 

The effects of varying Poisson's Ratio and the foundation 

elasticity on the modes of free vibration of cooling towers have not 

previously been successfully studied. Experimental investigations are 

arduous whereas theoretical methods have not been sufficiently 

reliable. Hence, it is of immediate interest to study these effects. 

Table 9.4 presents the variation of modal frequencies 

(the foundations are assumed to be perfectly rigid) with change in 

Poisson's Ratio. It is observed that, except for Mode 3, the modal 

frequencies increase with Poisson's Ratio, as predicted by simple 

theoretical considerations - see Section 9.4, equation (9.2). Equation 

(9.2) predicts a frequency variation of 0.13% for a change in Poisson's 

Ratio from 0.19 to 0.24. The program shows, however, that the variation 

depends on the mode considered and varies from approxiamtely 0.1% 

to 0.7%. (This information is used in Section 9.6.2. ) The small 

variation of model frequencies with Poisson's Ratio is instructive 

ý' because it vindicates the use of a material in model work that does 

not have the same value of Poisson's Ratio as the full-scale 

structure. However, the difference in the behaviour of Mode 3 
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compared with the other modes must be considered when the relative 

behaviour of Modes 3 and 4 are being examined. 

' The effect of varying the foundation elasticity, in the 

vertical direction, S, on the first four modes of free vibration is 

illustrated in Fig. 9.1. It is observed that when S is much less than 

1010 Nm1 there is a significant decrease in the resonant frequencies 

of these modes; for higher values of S the frequencies are unaffected. 

Further investigation showed that the corresponding effects of varying 

S on the higher modes was less. This is seen in Table 9.5. (This 

can also be deduced from Fig. 9.1, when it is realised that Mode 3 

is an exception; see Section 9.6.1) For example, for Mode 6, 

when S the resonant frequency was 1.91 Hz and when Si0 the 

value was 1.884 Hz. Therefore, with the exception of Mode 3, the 

difference between the resonant frequencies obtained when S is large 

(> 1011 Nm -l. say) and when S is small (< 2x 107 Nm1, say) is 

approximately an inverse function of the number of the mode. 

The effect of foundation elasticity of the free vibration 

of the Didcot Cooling Tower has obvious implications for other 

towers. The foundations at Didcot are relatively inelastic 

(S = 1.6 x 109 N 11-1) when compared with other cooling tower sites. 

Hence, it appears likely that foundation elasticity would be a 

significant factor affecting the resonant behaviour of other cooling 

towers. Foundation elasticity is thus an important factor to be 

considered at the design stage. Very inelastic foundations are 

prohibitively expensive. In practice, the foundation rigidity 

that can be achieved without undue engineering effect will depend 

on the nature of the site chosen. Increasing the value of S 

further would progressively incur a proportionally greater economic 
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penalty in relation to the increase in resonant frequencies achieved. 

Hence, an optimum value of S exists for a given site. This value 

will also depend on other design parameters (see Section 9.7) and 

must be determined after a detailed study. 

The previous discussion has been concerned with foundation 

elasticity in the vertical direction (S) only. Intuitively, 

foundation elasticity in a rotational direction about the vertical 

axis can be argued to have a negligible effect. This was proved by 

assuming an elasticity of 106 N rad 
1 (much smaller than in a practical 

case) in a rotational direction about the vertical axis and computing 

the frequencies (with S=1.6 x 109 N m-1). The change in frequency 

was found to be negligible. Similarly, it is expected that foundation 

elasticities in other d. o. f. s are of secondary importance, and also, 

that the magnitude of the elasticity in these d. o. f. is sufficiently 

large to ensure that the effect on the resonant frequency is neglibible. 

9.6.1 Mode 3 

Mode 3 exhibits different characteristics in comparison 

to the other modes considered in this chapter. It is very sensitive 

to changes in S (see Fig. 9.1), whereas usually the sensitivity of 

the modal frequency to change in S is approximately an inverse 

function of the number of the mode. Moreover, as seen from Table 

9.4, the variation of the resonant frequency of Mode 3 with change 

in Poisson's Ratio is contrary to the behaviour of the other modal 

frequencies. 

Further tests (using VACTIL) have shown that Mode 3 is 

very sensitive (in comparison to the behaviour of the other modes) 

to geometrical changes. When the 'throat' dimension (minimum distance 

from the central axis to the mid-surface of the tower wall) was 

altered slightly, the change in the frequency of Mode 3 was much 



9.21 

more that for Modes 2 and 4. Also, when the meridional section 

was corrugated (i. e. the radii of curvature of the. wall of the tower 

was allowed to oscillate) the effect on the frequency of Mode 3 

was significant and was much larger than the effect on the frequency 

of Mode 1. 

It must be emphasized that during the present investigation 

only a comparitively few modes have been studied (because the modes 

concerned are in the frequency range of engineering interest and also 

in order to optimize the investigative effort required. ) Mode 3 

has the lowest value of n among this limited number. Thus it is 

possible that other modes with n<3 also exhibit similar characteristics. 

It is of interest to study the experimental observations 

made by Armitt [ 37 J when he was determining the resonances of a model 

cooling tower under fluctuating wind pressure. He observed that the 

mode with the lowest frequency had a m-value of 3. Subsequently, 

he learnt that the foundation of the model tower was not rigid as 

the metal plate used to support the structure was not of sufficient 

thickness. 

It would be of interest to ascertain experimentally whether 

the behaviour of Mode 3 relative to the other modes can be used as 

a sensitive indicator of imperfections in geometry and unexpected 

variations in other parameters. 

9.6.2 Normalization of Model Frequencies 

Tables 9.4 and 9.5 show the effect of Poisson's Ratio, p, 

and vertical foundation elasticity, S, on the resonant frequencies 

of the modes of vibration. It would be interesting, therefore, to 

assume the theoretical relationships between the model frequencies 

and S and p, respectively, exhibited in Table 9.4 and 9.5, and then 



9.22 

to normalize the model frequencies. 

That is: 

M 
(measured model frequency) x 250 X Es 

E 
x Mf Fl 

s 

corrected for 
F corrected for F differences in p2 differences in S3 

Table 9.6 summarizes the normalisation procedure. (Note 

that at first sight this discussion may appear to be a 'circular 

argument'. ) 

Table 9.6: Normalization of Resonent Frequencies of Modal Tower After 

Corrections for Effects of Different Values of Poisson's Ratio and 

Vertical Foundation Elasticity 

Model Results Full-scale Results 

Mode` Averaged Measured 

No. 
Measured F 

1 
F 

2 F 3 m n 
Frequency, m, n 

Frequency , (Hz) 
(Hz) (Hz) (Hz) (Hz) 

1 124.5 1.1591 1.1574 1.0672 2,4 1.08 2,4 

2 136.6 1.2718 1.2696 1.2091 3,5 1.175 2,5 
(+2.9) 

3 147.0 1.3686 1.3730 1.2262 2,3 1.30 2,3 
(-5.7) 

4 156.0 1.4524 - 1.4455 1.4074 3,6 1.42 3,6 
(-0.9) 

5 174.0 1.620 1.6108 1.5910 3,7 1.64 3,7 
(-3.0) 

6 209.5 1.9505 1.9379 1.9237 3,8 1.98 3,8 
(-2.8) 

*The numbers in parentheses refer to the percentage difference between 
the values in columns 5 and 7. 
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It is noted that the correlation between the values given 

in column 5 (i. e. F3) and column 7 is good (except for Mode 3) - 

better than 3.5%. The poor agreementt obtained for Mode 3 is 

probably due to the sensitivity of Mode 3 to small geometrical 

and other unquantifiable differences in both model and full-scale 

structures. Also, the dependence of Mode 3 on S is marked; see Fig. 

9.1. For example, if S is taken to be 4.0 x 109 Nm1 (as compared 

with s=1.6 x 109 N m-1 as was assumed for the normalization procedure 

described above), the value of F3 for Mode 3 is 1.3054 Hz and the 

difference becomes -0.421%. (Note-that the other resonant frequencies 

are not significantly affected. ) Thus, the overall conclusion is that 

the results obtained for the model and full-scale are in good agreement, 

if corrections are made for the difference in foundation elasticity 

during the normalization procedure. 

9.7 Cornice and Ring-beam Effects 

An important application of a predictive method is in the 

design procedure. It is interesting to study, as a preliminary step, 

the effects of varying the dimensions of the ring-beam and cornice 

on the resonant behaviour of the Didcot Tower (full-scale). The 

material properties assumed for the tower are as given in Section 9.5. 

Mode 1, which is probably the most important mode, is considered in this 

preliminary study. _ 11 

The thicknesses of the cornice and ring-beam are assumed 

to increase linearly with axial length, as is true for the Didcot 

Cooling Tower, while the thickness of the shell is maintained at 

tNote that earlier workers in the field would have considered this 
to be in excellent agreement - see Chapter 2 and Table 2.2 
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0.17780 metres. The results of this study are summarized in Table 

9.7. It is observed that a significant increase in the resonant 

frequency (of Mode 1) can be obtained by increasing the thicknesses 

of the cornice and ring-beam. On the other hand, the effect of 

changing their lengths is small. However, when both the lengths 

and maximum thicknesses are increased the increase in frequency is 

higher than for an increase in only the maximum thicknesses (Case 

numbers 8 and 9). (It may be noted that the above observations may 

not necessarily apply for other modes of vibration; see item (c) 

in Section 9.1.1. ) 

The dimensions of the cornice and ring-beams and the degree 

of foundation elasticity must be decided after consideration of 

economic and other factors. For example, note that Case 7 in 

Table 9.7 has an equivalent effect to increasing the vertical 

foundation elasticity of the tower to 3.5 x 109 N M-1 ; see Fig. 

9.1 and Section 9.6. ) The effect of changing these dimensions on 

the other modal frequencies should be investigated in the future. 

Also, it would be interesting to verify item (c) in Section 9.1.1. 

9.8 Conclusions 

1. The finite element method that has been derived yields 

the most accurate theoretical prediction to date, as far as the 

author is aware, of the free vibrational behaviour of cooling 

towers. The agreement between theoretical and experimental values 

of resonant frequency is better than 5%. The theoretically pre- 

dicted and experimentally observed mode shapes are almost identical. 

- 2. Foundation elasticity in the vertical direction has an 

important effect on the free vibrational behaviour of cooling towers. 
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The effect of varying this parameter on the first four modes of the 

Didcot cooling tower has been graphically illustrated. The resonant 

frequencies of the lower modes are significantly reduced. However, 

the corresponding decrease in the frequencies of the higher modes is 

very much smaller. Foundation elasticity, other than in the vertical 

direction, does not appear to have a significant effect on the vibration 

of the tower. Judging from the effects of the relatively inelastic 

foundations of the Didcot tower, it appears probable that foundation 

elasticity is a significant factor affecting the behaviour of other 

cooling towers. 

3. The effect of Poisson's Ratio on the modes of vibration of a 

cooling tower is small, and is less than predicted by simple theoretical 

approximations. Except for Mode 3 (see below), there is a small 

increase infrequency with increase in Poisson's Ratio. 

4. When foundation elasticity is considered in the normalisation 

of model frequencies, the correlation between the normalised frequencies 

and corresponding full-scale values is good for all modes except 

Mode 3. 

5. The change in frequency of Mode 3 with change in foundation 

elasticity in the vertical direction is marked. The resonant frequency 

of this mode decreases with increase in Poisson's Ratio. Mode 3 

exhibits different characteristics from those of the limited number 

of other modes investigated, and it also may be relatively more 

sensitive to small unquantifiable differences in the properties of 

the model and full-scale structures. 

6. The magnitude of the dimensions of the ring-beam and cornice 

affects the values of resonant frequency. Increasing the maximum 

thicknesses of the ring-beam and cornice has a greater effect on the 
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resonant frequency of Mode 1 than increasing their extents. (This 

may not be necessarily true for the other modes. ) 

. 7. The finite element method that has been developed is 

ideally suited for evaluating cooling tower designs (from a dynamic 

response viewpoint) during the initial design stages. 

9.9 Recommendations for Future Work 

In view of the success of the method, the finite element 

program VACTIL should be developed further. Whilst the resonant 

frequencies of cooling towers with perfect geometry can be accurately 

predicted, the behaviour of structures with imperfections (cracks, 

thickness irregularities etc. ) should be considered in future work. 

Preliminary investigations have shown that it is possible 

to include the analysis of structures under transient force conditions 

(e. g. seismic disturbances) in the program. This facility should be 

incorporated. 

The program should be used to optimize the design of cooling 

towers with reference to their structural integrity.. 



CHAPTER TEN 

DIFFICULTIES ENCOUNTERED 



V 

10.1 

10. DIFFICULTIES ENCOUNTERED 

This is a short chapter that recounts some of the difficulties 

encountered during the research investigation reported in this thesis, 

and may be of assistance to other workers who may engage in similar 

work. 

10.1 Oscillatory Polynomial Function 

As discussed in Chapter 6 the R and Z values can be related 

by a polynomial function which passes through each point. The order 

of the polynomial is equal to (n - 1) where n is the number of pairs 

of R and Z values entered as data. Note that the use of a least-squares 

method alone to generate a low order polynomial within the program 

is unacceptable because the coordinates of the common node will not 

then be known a priori (see Chapter 6). 

As n is typically about 12 a high order polynomial function 

is obtained. The function passes through each and every data point. 

If one point (say) is outside the fit of a smooth curve the polynomial 

function will still pass through this point; however, this will cause 

the function to oscillate in the vicinity of the point. Moreover, 

the oscillation will not be localised and will be propagated along 

the function (unlike in the case of a cubic spline where the perturbation 

remains localised). 

The problem referred to above occurred during the development 

of the programs VACTIL and RESAP. The wall of a structure analysed 

was then in effect corrugated (due to the oscillatory behaviour of the 

meridional function) and the finite element analysis was for a stiffer 

1* body than was intended. (The doubly curved finite elements discussed 

in this thesis are sensitive to even small perturbations in the 

geometrical parameters. ) This error was discovered during the 
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preparation of Table 9.7. A small variation in the value of one R-value 

resulted in a large, disproportionate, change in the resonant frequency. 

(All the tables were re-calculated once the solution to the difficulty 

was found. ) The solution was to (a) ensure that all data points were 

generated from a smooth curve, or (b) employ a cubic-spline inter- 

polation technique. It was determined that the cubic spline function 

could deal accurately with localised perturbations in one or more 

R-values. The programs (VACTIL, SACTIL and RESAP) were also modified 

to incorporate a check so that the user would be informed if 

oscillations of the function used to represent the meridian took place. 

10.2 Complex Displacements and Stresses 

When complex constraints are applied (for a free vibration 

problem) the eigenvectors are complex. The displacements that have 

been constrained on the right-hand boundary (say) of the structure 

are printed as zero by the eignevalue solution routine - purely due to 

computational convenience - whilst the right-hand displacements are 

printed. The displacements on the left-hand boundary are re-generated 

by the use of equation (3.1). Note, however, that the sign of the 

exponential operator in equation (3.1) (given as + ve in the text) 

is dependent on the direction of travel of the displacement wave (which 

in turn is dependent on the sign of p; see Chapter 3). This fact 

was overlooked during the development of the program and the wrong 

sign used. The error was discovered by observing that the circumfer- 

ential variation of the displacements (and displacement-derivatives) 

for a cylinder were very different from the approximate sinusoidal/ 

cosinusoidal variations expected. When the sign of the exponential 

operator was reversed the circumferential variation of the displacements 

were observed to be almost sinusoidal or cosinusoidal (and were very 
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similar to those given in Fig. 10.1). 

The circumferential variation of the displacements for a 

hyperboloid is given in Fig. 10.1. Complex constraints were not used. 

Instead, the hyperboloid was analysed by applying boundary conditions 

that invoke the symmetry of a section of the structure bounded by 

parallel meridia (symmetry boundary conditions). The displacements 

(and derivatives) are observed to be either approximately sinusoidal 
2 

or cosinusoidal except for the displacement-derivative 2 which is 

ae 
a linear function of 6. This is because a third order polynomial is 

used to interpolate the displacements (see Chapter 4). Hence, double 

differentiation with respect to 6 produces a straight line. However, 

the linear function appears to be an acceptable approximation to a 

sinusoidal function. 

Another difficulty was encountered when it was observed that 

complex stresses generated by the program were not accurate. The 

circumferential displacements for a hyperboloid. analysed using complex 

constraints were obtained and are displayed in Fig. 10.2. These were 

compared to the results obtained for the same hyperboloid (see Fig. 10.1) 

analysed using symmetry-boundary-conditions. It is observed that whilst 

the displacements (eigenvectors) at a node (i. e. 0a 0) are similar 

in both figures the displacements calculated using the displacement 

functions do not agree. When comparing Fig. 10.1 and 10.2 the following 

should be noted. The angle subtended by the parallel meridional 

edges of the symmetrical section (Fig. 10.1) was 45° whilst the angle 

subtended by the substructure (Fig. 10.2) was 90. Thus whilst 

-. displacements at 5=0 can be compared, those for 0>0 cannot be 

directly compared. Also note that different scales have been used 

in Fig. 10.1 and 10.2. It is important to note that the resonant 
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frequencies predicted by both methods were identical to eight 

significant figures. Also, that the orthogonal displacements u, 

v and w were almost identical - i. e. resonant frequencies and values 

of m and n predicted by using complex constraints were identical to 

that obtained using symmetry-boundary-conditions. The reasons for 

the errors in Fig. 10.2 were found to be due to a FORTRAN coding 

anomaly in the library routine that calculated the complex eigen- 

vectors. Small errors were thus obtained in the eigenvectors. 

Thus, when the displacement function was used to calculate the 

displacements at points on the middle-surfaces of the elements the 

very small errors in the eigenvectors, especially in the nodal 

displacement-derivatives, gave rise to the exaggerated errors in the 

circumferential variations shown in Fig. 10.2. The reasons for 

the inaccurate stresses when complex constraints were applied were 

only established after a great deal of time had been expended in 

conclusively establishing the accuracy of the very many other sub- 

routines used in VACTIL. (Unfortunately, the accuracy of the library 

routine was not questioned by the author for much of this period. ) 

The error in the eigenvalue routine was rectified and all values 

given in this thesis checked for accuracy. However, as the fault 

in the eigenvalue routine was rectified only towards the end of 

the work reported in this thesis, time did not allow for the 

calculation of stresses in rotationally periodic structures (such 

as cooling towers. ) Hence, in Chapter 11 the investigation of 

stresses in axisymmetric and shell structures is confined to 

' analysing the structure without the application of complex constraints. 

However, the stress subroutines are dependent only on the nodal 

displacements. (The eigenvectors are copied on backing-up disc 
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for later use by the stress subroutines. ) The method by which the 

displacements are obtained has no direct bearing on the functioning 

of the stress solution routines. Hence, the results obtained in 

Chapter 11 serve as a secure base for validating the accuracy of the 

stress routines. Thus, the stress subroutines can be used with 

confidence to calculate stresses in rotationally periodic structures. 

b 
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11. CALCULATION OF STRESSES, MODE SHAPES AND FREQUENCIES USING DOUBLY 

CURVED FINITE ELEMENTS 

11.1 INTRODUCTION 

Finite element computer programs are powerful tools in 

the analysis of vibrating structures. Programs are now available 

that can accurately predict the resonant frequencies and mode shapes 

of particularly complicated structures such as hyperboloids with 

'cut-outs' and cooling towers with leg-supports. Finite element 

programs can also be used to calculate stress distrubutions in 

structures. However, in common with other theoretical methods, it 

is easier to obtain fairly accurate resonant frequencies for the 

structure being analysed than it is to obtain accurate displacements - 

calculation of stresses are even more difficult. Thus, if a program 

is-unable to predict the vibration frequencies of a structure to the 

desired accuracy, the stresses calculated by the program will be 

subject to even greater error. 

Computer programs that enable the calculation of resonant 

stresses and/or stresses induced by dynamic and static forces of 

axisymmetric structures are not widely available. (SHEL [ 35 ], 

is a program with this capability. Unfortunately the version of this 

program at C. E. R. L. did not execute satisfactorily. ) Programs that 

analyse the dynamic and static stresses of non-axisymmetric structures 

are even less widely available. Now, however, two new finite element 

programs are available that enable the calculation of the frequency of 

vibration, displacements (and thus mode shapes) and stresses in shell 

and axisymnetric structures. The program RESAP [ 72 3 employs a 

doubly curved ring (axisymmetric) finite element and is able to 

-'calculate the resonant frequencies, mode shapes and resonant stresses 

of axisynnnetric shell structures. The accuracy, convergence and 

efficiency (i. e. the accuracy obtainable for a given number of degrees 
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-of-freedom) of the ring element is excellent. The program VACTILo2 

73 D, also called SACTIL, employs a doubly curved shell finite 

element. The program is designed primarily to calculate the resonant 

stresses in cooling towers with leg-supports*. However, it is expected 

to be invaluable in calculating stresses in other non-axisymmetric 

structures. The program can calculate the vibration frequency, 

displacement (and therefore mode shapes), and stresses (both resonant 

and forced) in shell structures. 

11.1.1 Differences in theoretical formulations 

When comparisons are made between the results obtained for 

a shell or axisymmetric shell structure using different theoretical 

methods the following must be noted: various authorities give 

somewhat different expressions for the relationships between the strain 

and the displacements. For example, the expressions given by 

Flügge [ 95 ], Vlasov [9], Kraus [ 62 ] and Novizhilov [8] 

differ. 

In finite element analysis the strains at any point on the 

middle surface of an element are related to the displacements at the 

point. The stress resultants which are functions of strains, would 

therefore be expected to differ if the expressions used for strain 

and displacements are different. (Usually, however, these differences 

are small. ) Also, most authors assume a linear variation of strain 

through the thickness of the wall of the structure. 

The derivation of the ring and shell element are, however, 

based on the same elasticity equations of Vlasov [93, and a 

' quadratic variation of strain through the thickness are assumed for 

Stress results for cooling towers were not available at the time 
of writing this thesis for the reasons given in Chapter 10. 
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both elements. It is therefore informative to compare the stresses 

obtained from the programs RE SAP and SACTIL. The comparison of 

results should be made in the light of the similarities and differences 

between the two elements which are: - 

1. The strain-displacement expressions are the same. 

2. The ring element can be regarded as a special case of the doubly 

curved shell finite element. The ring element has the same number of 

degrees-of-freedom (d. o. f. ) per node (twelve) as the shell element; 

however, the stresses across elemental boundaries are more continuous 

as all the second derivatives of w with respect to s are included as 

nodal variables. This is not so for the shell element (see Section 7.1). 

u 
3' v' 

av 
(The nodal variables of the ring element are u, 

au 
as ' 

au 
as 

as 
2' 

a 

as 
av av aw aw aw3 

, w, as, and .) 
as2 as3 

as as2 as3 

3. For the ring element displacements on the circumference 

are assumed to vary sinusoidally/cosinusoidally. That is the orthogonal 

curvilinear displacements are assumed to be given by the expressions 

u=u cos nO 0 

u=v sin no 
0 

w=w cos n© 0 

The suffix 'o' denotes maximum amplitude-and n is the circumferential wave 

number. The six stress resultants, Na, Nß, Naß, Ma, Mß, Mag, thus 

vary as cos no, cos no, sin no, cos no, cos no and sin no, respectively. 

This simplifies the displacement function (see [ 40, Section 3.13 ) 

' and increases the accuracy of the elcment. On the other hand, no 

assumptions are made a priori regarding the displacements along the 

circumference of the shell element. Hence, the displacemen function 

is correspondingly more complex (see Chapter 4, Section 4.5.2) and the 
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shell element does not appear to converge as quickly as the ring 

element (as will be deduced from the results obtained using both 

elements and reported later in this chapter). 

11.2 Boundary Conditions 

Before using the programs RESAP (with ring elements) and 

SACTIL (with shell elements) to analyse shell structures it is 

important to establish equivalent boundary conditions. Displacement 

boundary conditions and hybrid* boundary conditions for the ring 

element can be readily specified as all the relevant displacement- 

derivatives such as 
a2 

and 
a2 

are available as nodal degrees-of- 
as a82 

0 

freedom (d. o. f. ). However, these d. o. f. are not available as nodal 

variables in the shell element. Hence approximations to the required 

boundary conditionst may be obtained. These approximate boundary 

conditions are of a debatable nature. For example Thomas C 15 D 

is in-disagreement with some of the approximate constraint conditions 

recommended by Deb Nath [ 97 3. 

11.2.1 Simply supported 

For the ring element we define a 'simply supported' edge 

when the bending moments and direct forces are zero together with 

the displacements v and w. (The supporting surface is taken to be 

normal to the axis-of-revolution. ) This is the same as that defined 

be Herrmann and Shaw [96 3 and Webster [ 29 ]. The support conditions 

can thus be expressed as: - 
2 

°°w=äs°a2 
as 

Hybrid boundary conditions describes the attempt to equate forces 
or moments as well as displacements to zero. See for example Herrman 
and Shaw [ 96, equation (5) ], or Webster C 29, page 565 ]. 

Note that 'boundary conditions per se', refer to any type of boundary 
constraint. 
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For the shell element it has been recommended [ 97 3 that the following 

constants are applied: - 

u=w== au = av 
ae 

aw 
... (11.1) =o ae a ae 000 

However, it can he argued that a better approximation is 

W=° ae = ae °0... (11.2) 
00 

Therefore, in order to resolve this uncertainty the free vibration of 

a cylinder for the n=4 mode was analysed using SACTIL with the 

clamping conditions given by equations (11.1) and (11.2), respectively 

and compared with the results obtained by RESAP and an analytical 

method. The analytical solution for a cylinder simply supported at 

both ends is documented in the well known paper by Arnold and Warburton 

109 1. The properties of the cylinder are given in Table 11.1. 

6 

Table 11.1: Properties of Cylinder 

Length 0.3048 m (12 in) 

Thickness 0.254 x 10-3 m (. 01 in) 

Radius 0.0762 m (3 in) 

Mass Density 7839.8 kg m3 
(0.733 x 10 lb s2/in4) 

Young's Modulus 204.085 MN m2 

(29.6 x 106 lb/in2) 

Poisson's Ratio 0.29 
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The cylinder given in Table 11.1 has been analysed in detail by 

Smith and Haft [ 99 ] and Vronay and Smith [ 32 ] 
.' (The latter 

present a particularly interesting discussion on the effects of 

different clamping conditions on the cylinder. ) The axis-of- 

revolution of the cylinder was assumed to be vertical and both ends 

were simply supported. The results of the analyses are given in 

Table 11.2. 

Table 11.2: Frequencies for Simply Supported Cylinder 

Resonant Frequencies 
(llz) 

h Met od 
First Eignevaluc Second Eigenvalue 

(m=2) (m'3) 

Analytical solution [ 109 ] 415.94 1388.47 

RESAP (ring element) 415.98 1388.50 

SACTIL (Shell element) with 
boundary conditions given by 762.00 1750.20 
equation (11.1) 

SACTIL with boundary conditions 417 90 1389.71 
given by equation (11.2) . 

Four elements were used in both programs. In the case of SACTIL 

complex constraints were used. 

From a comparison of the results it is clear that the 

constraints prescribed by equation (11.2) are a better approximate 

to those boundary conditions described as simply supported than 

the constraints defined by equation (11.2). 
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11.2.2 Clamped 

For the ring element a 'clamped' edge is here defined as 

8w 
uv=w=0 as ... (11.3) 

(This is identical to the constraints recommended in Reference 98, 

for a similar axisymmetric element. ) The approximate boundary conditions 

recommended in Reference 97 for the shell element about an edge 

parallel to the circumference are: - 

uaVaWa 
au aV aW aW a2W 

a© ae 
a 

ae 
= 

as 
a 

asa0 o000 

Again, in order to confirm that similar if not identical boundary 

conditions are imposed on both types of element meshes, the cylinder 

described in Section 11.2.1 was analysed for the n-4 mode using 

both programs. Both ends of the cylinder are clamped. The results 

from both programs were compared to that obtaingd by Smith and Haft 

99 D. The results of this investigation are given in Table 11.3. 

Table 11.3: Frequencies for Clamped Cylinder 

Resonant Frequencies 

Method 
010 

First Eigenvalue Second Eigenvalue 
(m=2) (m=3) 

Solution by Smith and 
haft [99] 769.73 1770.2 

RESAP (ring element) 763.54 1754.89 

SACTIL (shell element) 782.57 1826.0 
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The clamping conditions for the shell element appear to be reasonably 

satisfactory though it is noted that the approximationsin the 

constraints for the shell element, probably tend to give a structure 

somewhat less rigid that that analysed. 

11.3. Dynamic Analysis of Cylinders 

11.3.1 Cylinder with both ends clamped 

A cylinder identical to that analysed by Adelman et al. [ 98 

was first considered. The properties of the cylinder are given in 

Table 11.4. 

Table 11.4: Properties of "Adelman's Cylinder" 

Length 12 inches 

(3.048 x 10 4 
m) 

Thickness 0.01 ins 

(0.254 x 10 6 
m) 

Radius 3 inches 

(76.2 x 10b m) 

Mass density 7.33 x 10-4 lb s2 in 4 

7839.924 kg m3 

Young's Modulus 3x 107 lb in2 

(206.8428 MN m 
2) 

Poisson's Ratio 0.3 

The cylinder was clamped at each end. The mode chosen by Adelman 

et al. [ 98 ] for investigation, i. e. the na3 mode, exhibited 

almost discontinuous changes in stress near to the constrained edges. 

This mode was also chosen for the present investigation as steep 

changes in stress constitute a severe test of a finite element. 
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It should be noted that though the stress distribution in this mode 

is quite complicated near the edges, no attempt was made in the 

present investigation to use more elements in these regions. The 

elements were ordered so that they were of almost equal meridional 

length. This enabled a more realistic appraisal of the elements. 

However, when the elements are used to analyse a structure it is 

recommended that more elements are used in the region of the stress 

concentrations. 

The exact solutions for the cylinder, obtained by Adelman 

et al. 
[ 98 ], were based on ideas originally advanced by Flügge 

95 3 and then developed further by Forsberg [ 100 ]. However, 

Adelman et al. used Novozhilov's [8] shell theory in preference 

to that of Flügge's. The clamping conditions used by Adelman et al. 

are those defined by equation (11.3). 

The exact solutions together with the solutions obtained by 

the programs RESAP and SACTIL are presented in Fig. 11.2 to 11.6. 

For comparison the finite element solutions also obtained by Adelman 

et al. are given in Fig. 11.2 and 11.6. Note that different criteria 

are used for the normalisation of displacements and hence stresses 

for each method. Therefore the value of the stresses at the middle 

of the meridian of the cylinder (Lo ' 0.5) was used as a reference. 

That is, the stresses from each method were multiplied by a scale 

factor so that the valueSat L-0.5 were coincident. 0 
. The values of direct stress, Na, along the meridian of the 

cylinder predicted by the exact solution are given in Fig. 11.1. 

ý' The stress distribution is smooth and does not exhibit steep or 

sudden variations. The values of Na predicted by RESAP using four 

ring elements were found to be indistinguishable from the values 
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predicted by the exact solution and are therefore not displayed. A 

mesh of eighteen shell elements was used in the analysis using 

SACTIL - six elements along the meridian of the cylinder and three 

elements along the circumference. The angle subtended by the meridional 

edges of the element mesh was 450. Boundary conditions involving 

the symmetry of the cylinder were employed. The angular (or circumfer- 

ential) dimensions of all the elements were equal. (For typographical 

convenience we. will refer to the mesh as having (6 x 3) elements. 

A (6 x 3) mesh is illustrated in Fig. 11.29. ) 

The results for the circumferential stress resultant, Nß, 

are given in Fig. 11.2. The exact solution is depicted as a continuous 

line. It will be noted that there is a steep change of stress near 

the clamped edges (i. e. a stress boundary is present). The stresses 

predicted by SACTIL are observed to oscillate about the exact values. 

This is somewhat similar to the oscillation exhibited by the stresses 

obtained by the finite element method of Adelman et al. - see Fig. 

11.2. However the stresses due to Adelman et al. exhibit discontinuities 

at the element boundaries. The values predicted by RESAP also 

oscillate about the exact values. In Fig. 11.2, the Point D, is the 

maximum negative stress given by the exact solution, B that predicted 

by RESAP, A the value given by SACTIL and C the maximum negative value 

predicted by the finite_element method of Adelman et al. (This 

nomenclature is also used in the Fig. 11.3 to 11.6. ) It is observed 

that the maGimum. negative! tress resultant predicted by the three 

finite e1eznents. (i. e. Points A, B and C) are reasonably accurate 

when compared with the exact solution (point D). The oscillatory 

behaviour of the stresses predicted by all three finite element 

: '+ý 
. tiý , 
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methods is due to employing too few elements in the analyses, 

especially near the stress boundary. When eight ring elements were 

used the stresses predicted by RESAP were observed to lie very close 

to the exact values (see Fig. 11.2) - over most of the meridian the 

predicted stresses are indistinguishable from the exact solution. 

When twenty* ring elements were used the predicted stresses and 

exact values were seen to be coincident over the whole meridian. A 

similar test was not conducted with the shell element as the computer 

storage required for the (6 x 3) mesh was nearing the limits imposed 

by the computing system. (Complex constraints will enable the 

same problem to be analysed with an appreciable reduction in core 

storage and c. p. u. time. ) Note that more accurate stress values 

could have been obtained with the (6 x 3) element mesh by a judicious 

choice of the meridional lengths of the elements. Adelman et al. 

obtained values of Nß that were identical to the exact values by 

(a) increasing the number of elements used, (b)'by carefully selecting 

the meridional length of each element and (c) by increasing the order 

of the interpolation polynomials used in the displacement function 

of their element. In Chapter 12 a detailed method of increasing the 

order of the polynomials used in the shell element is given. 

This would probably result in an increase in efficiency in predicting 

stresses (using the shell element) in a similar manner to that 

observed by Adelman et al. when implementing (c) above. 

The variation in values of M (resultant moment about the 
a 

meridional direction) along the meridian of the cylinder is given 

*Note 
that twenty ring elements were chosen so as to be reasonable 

sure that convergence had occurred. The convergence of the ring 
element is discussed in detail later in the text. 
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in Fig. 11.3. Again, the exact solution shows that a stress boundary 

layer is present. The stress moment, Ma, predicted by SACTIL is 

now seen to be discontinuous at element boundaries. It will be 

noticed in Fig. 11.1 to 11.6 that only the moments predicted by 

SACTIL, not the direct stresses, exhibit discontinuities. The 

explanation for this is given in the next chapter. Adelman et al. 

also obtained stress discontinuities (not shown in Fig. 11.3) when 

employing third order polynomials in the displacement function of 

the finite element - they reported that when the order of the poly- 

nomial was increased to order five, the discontinuities were no 

longer obtained: however, a limited degree of oscillation near the 

ends of the cylinder was noticed. (These observations directly 

support the proposals made in Chapter 12. ) The values of Ma 

predicted by RESAP do not exhibit discontinuities unlike the values 

obtained from SACTIL. This is because the ring element is more 

accurate than the shell element for a given number of d. o. f. - see 

Section 11.1.1. The maximum negative value of Ma predicted by RESAP 

(Point B) is grossly in error when compared to the value given by 

the exact solution (Point D). (Note that the maximum stress 

predicted by SACTIL is almost coincident with the value for Point 

D. However, this is considered to be a chance result and of no 

real consequence - see Fig. 11.4, Point A. ) The oscillating 

behaviour of Ma predicted by RESAP was observed to die-out and 

the maximum negative stress approach D as the number of ring 

elements were increased. When fourteen ring elements were used, 

the predicted values of Ma and the exact values were indistinguishable. 

The variation of 11 
ß along the meridian of the cylinder 
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is depicted in rig. 11.4. The comments made for It 
a 

also apply to 

this figure. In addition, however, it is seen that the maximum 

negative value predicted by SACTIL (Point A) is in gross error. 

In Fig. 11.5 the variation of the meridional stress 

components as (see Chapter 4, Section 4.6.1 for the definition of 

stress components) at the surface of the cylinder along the meridian 

is given. The variation of as is somewhat similar to Na. However, 

near each end there is a rapid change in stress; also there is a 

'ledge'. Consequently, the correlation between the exact stresses 

and values predicted by both programs is not perfect. However, a 

reasonable approximation to the exact curve is observable, expecially 

in the middle region of the cylinder. The maximum negative values of 

stress at the ends of the cylinder are predicted incorrectly by 

both programs.. (As expected it was noted that as the number of ring 

elements were increased the predicted maximum negative stress 

approached the exact value. ) 

The variation of the outer fibre circumferential stress 

component (aa) along the meridian is shown in Fig. 11.6. Because 

of the very steep stress gradients near the ends of the cylinder, 

the stresses predicted by RESAP and SACTIL oscillate about the exact 

value. This oscillatory behaviour is somewhat similar to the stresses 

predicted by the finite element method of Adelman et al. (values from 

which are also given in Fig. 11.6). The values obtained by Adelman, 

however, exhibited discontinuous behaviour at element boundaries. 

_ The maximum negative stresses predicted by Adelman et al. (Point 

SACTIL (Point A) and RESAP (Point B) are in error when compared 
AC- 

with/exact value (Point D). 
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It is now opportune to discuss the convergence of the ring 

element. (The detailed examination of the convergence of the shell 

element must be deferred for a future investigation. ) With reference 

to Fig. 11.7 the resonant frequencies predicted by RESAP, using 

several different element meshes show that the convergence is 

monotonic and rapid. Note that the resonant frequency predicted 

with 172 and 240 d. o. f. respectively were identical to the accuracy 

of the print-out (six significant places). This implies that 

complete convergence has, or very nearly has occurred. The exact 

solution is 1159.1026 Hz for the first engenvalue*. There is a 

difference of 0.002% between the value predicted by RESAP and the 

exact value. This very small difference is not of singificant 

importance; it could be due to the small differences in the 

theoretical' assumptions of both techniques (as discussed in Section 

11.1.1). Hence, the resonant frequency obtained with twenty elements 

(244 d. o. f. ) is very probably the value for complete convergence. 

In Fig. 11.7 the percentage difference is therefore with respect to 

the resonant frequency obtained with twenty elements. It is observed 

that for both the first and second eigenvalues the convergence of 

the resonant frequency is rapid. (This is satisfactory especially 

as the mode selected is a particularly difficult one. ) When the 

d. o. f. exceed 100 the frequency has almost converged (i. e. error 

« 0.026%). 

In order to obtain an estimate of the probable convergence 

characteristics of the stresses predicted by RESAP a test was 

devised. The outer fibre stress component aß was chosen for the test, 

For archival purposes it should be noted that SACTIL predicted a 
frequency of 1181.09 IIz, i. e. a difference of 1.9%. 
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albeit a severe one. As seen in Fig. 11.6, the maximum negative 

stress predicted by RESAP is in error by about 26%. It was assumed 

that the rate at which the predicted value (i. e. the maximum negative 

stress) approached the exact value would be an indication of the 

convergence characteristics. The oß values, for the first eigenvalue 

is seen to converge monotonically; for d. o. f. > 180 this error 

is probably acceptably small. The aß values obtained for the second 

eigenvalue is seen to converge monotonically, but even with twenty 

elements the convergence gradient is steep. However, as a particularly 

difficult example has been considered this is probably reasonable. 

To complete the study of the cylinder clamped at both ends 

the variation of the orthogonal displacement u, v and w along the 

meridian are given in Fig. 11.9. These displacements were obtained 

using RESAP-with twenty elements. Note that the scales used for each 

displacement component are different. 

11.3.2 Cylinder clamped at one end , 

It is of interest to observe the stresses present in a 

resonating cylinder clamped at one end for anO4 mode. This is a 

less severe case than that described in Section 11.3.1. The cylinder 

chosen for the test is that described in Section 11.2.1; it was 

deemed to be clamped at one end. A mesh of (4 x 3) elements was 

chosen for SACTIL and tour ring elements were used with RESAP. 

In Section 11.3.1 it was seen that a large number of ring 

elements yield a solution indistinguishable to the exact solution, 

even for the severe case examined. Therefore, for the less severe 

case examined here it was considered unnecessary to obtain an exact 

solution. Instead, results were obtained using twenty ring elements 

, and these results were considered to be the 'correct solution'. 
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The resonant frequency (for the first eigenvalue) given 

by the correct solution was 209.872 Hz. The frequency predicted by 

RESAP (with 4 elements) was 210.05 IIz (i. e. 0.085% error). SACTIL 

predicted a frequency of 211.12 Hz; i. e. an error or 0.592. (Previously, 

in Section 11.3.1, a larger number of shell elements were used and the 

error was greater - 1.9%. ) 

Fig. 11.10 gives the variation of Na along the meridian. 

At a free edge elementary theoretical considerations predict that 

the values of Na, Ma and Naß are zero. (The correct solution gives 

Na 0 at the free end. ) The value of Na predicted by RESAP at the 

free end is almost zero. The value predicted by SACTIL is reasonably 

close given the greater approximations involved in the formulation 

of the shell element. The overall conclusion is that the N values 
a 

predicted by both programs are reasonably close to the correct 

solution. 

The outer fibre circumferential stress aß is depicted in 

Fig. 11.11. Reasonable agreement is obtained. 

The outer fibre circumferential shear stress aaß is depicted 

in Fig. ' 11.12. The correct solution shows sharp changes in stress 

near the ends of the cylinder. The values predicted by RESAP 

are not very close to the correct values, especially near the stress 

boundary and more ring elements could probably be employed. The 

values predicted by SACTIL clearly show that the element mesh used, 

i. e. a (4 x 3), should be refined Lf reasonable agreement is to be 

achieved. 

The resultant moments were seen to be very small for the 

cylinder and are not presented. 
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The orthogonal displacements along the meridian of the cylinder 

are given in Fig. 11.13. (This was obtained using RESAP with twenty 

elements. ) 

11.3.3 Closure for Section 11.3 

The programs RESAP and SACTIL predict reasonably accurate 

stresses for a stress distribution that exhibits gradual variations. 

When steep stress gradients are encountered and the mesh is sparse, 

the element displacement function cannot adequately represent the 

true solution in that region and hence the stress values predicted by 

the finite element mesh tend to oscillate about the true values. Tests 

using the program RESAP show that the convergence of the ring element 

is-excellent - when a large number of ring elements were used the 

predicted values were indistinguishable from the exact solution. 

11.4 Static Force Response 

The purpose of this section is to (a) show that the 

'applied force response' subroutines in SACTIL function correctly 

and (d) to determine whether the stress subroutines execute correctly 

for structures with meridional curvature. (The stress subroutines 

are dependent only on the nodal displacements. These nodal displace- 

ments can be obtained by any method and can even be entered by the user. 

The method by which the displacements are obtained, therefore, have 

no direct bearing on the functioning of the stress solution routines. ) 

A translational thin shell with two constant radii of curvature 

(spherical cap) under a central load was investigated. The dimensions 

and material properties of the spherical cap are given in Fig. 11.14. 

'. This particular problem is well documented. It was initially solved 

by Gallagher [101]. Yang C 66 ] then investigated the shell by 

, using two methods which were the series solution method due to 
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Vlasov [ 9, page 495-514 ] 
and a shell finite element method. 

(Yang's finite element is similar to the shell finite element 

described in this thesis. ) The problem was then solved by Dawe [ 102 

who incorporated a shell element in the finite element program suite 

BERSAFE (Phase 1) [ 103 ] for the purpose. 

The spherical cap, which is illustrated in Fig. 114, 

was deemed to be simply supported (see equation 11.2). As the spherical 

cap is doubly symmetrical only a quadrant of the shell was analysed. 

The mesh used for the problem is also given in Fig. 11.14. The centre 

of the cap was subjected to a point load of 100 lbs. Smaller elements 

were used near to the point load. 

The orthogonal displacements were calculated using SACTIL 

and compared to those obtained by the series solution of Yang [ 66 

and Dawe 1023. The correlation between the result obtained from 

SACTIL and that given by the series solution is good as can be seen 

in Fig. 11.15. The results obtained by Dawe are also very similar and 

are therefore not reproduced in the figure. 

Fig. 11.16 shows the variation of the meridional and 

circumferential stress resultants Na and Nß along AB. The correlation 

between the series solution and the values predicted by SACTIL is 

good. The stresses predicted by the finite element method of Dawe are 

very similar and are therefore not reproduced in the figure. 

The resultant moments predicted by SACTIL are given in 

Fig. 11.17. Note that there is a sharp bend or 'elbow' in the values 

near to the point load. Note also that there is a discontinuity in 

the stress moments - Point G (in Fig. 11.17) denotes the moment 

predicted by SACTIL at the end of Element 8 (see Fig. 11.14) whilst 

Point II denotes the moments at the beginning of Element 9. The reason 

for this is discussed in the next chapter. Note that the terms of 
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the series solution was increased to (250 x 250) terms as the 

(100 x 100) term series solution did not yield a satisfactory 

result. The finite element solutions of Yang [ 66 3 and Dawe [ 102 

gave very similar values to that predicted by SACTIL and are therefore 

not given in the figure. 

The outer fibre stresses as and as are given in Fig. 11.18. 

These components were not calculated by previous workers and therefore 

values for comparison are not available. The stress components exhibit 

a sharp elbow near to the point load. The variation in stress values 

appear to be reasonable. That is, there is almost no (surface) stress 

away from the point load; the stress then increases sharply as the 

point load is approached and then becomes very large (values not plotted) 

when very near to the point load. Again notice the discontinuity in 

the value of-aß at the element boundaries - Points G and 11 on Fig. 11.18. 

11.5 Dynamic Analysis of a Hyperboloid 

Accurate resonant stresses for a doubly curved structure 

(with meridional curvature) are very difficult to obtain analytically. 

The author was unable to obtain a reference from the literature which 

gave the values of resonant stress for the free vibration of a doubly 

curved shell, such as a hyperboloid. It was therefore considered to be 

of interest to use the program RESAP and SACTIL to analyse a thin 

hyperboloid of constant thickness clamped at the base (where the 

base was deemed to be the end-circle of larger diameter). The 

dimensions of the hyperboloid are very roughly, smiliar to those for 

the shell of the full-scale cooling tower analysed in Chapter 9. 

R2 Z2 Given the equation of the hyperbola, -2 -2=1, then the dimensions 

of the hyperboloid are defined by the parameters given in Table 11.5. 
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Table 11.5: Properties of the llyperboloid 

a 25.6032 m 

b 63.9064 m 

Wall thickness 0.127 m 

Axial length of neck of 
hyperboloid from end- 18.5928 in circle of smaller dia- 
meter 

Mass density 2404.4 kg m3 

Young's Modulus 20.648 MN m2 

Poisson's Ratio 0.15 

The resonant frequency calculated by the analytical solution 

of Carter, Robinson and Schnobrich [ 13 was 1.1808 Hz for m-2 

and n=4. 

A convergence test for the hyperboloid using RESAP was 

conducted. The resonant frequency is seen to converge monotonically 

in Fig. 11.19. It is observed that when 180 d. o. f. are exceeded 

the resonant frequency has completely converged. However, even the 

value predicted using 56 d. o. f. (four elements) differs from the 

answer obtained with 180 d. o. f. only by the small percentage of - 0.007%, 

from the value predicted using 236 d. o. f. (i. e. ninteen elements). 

The reader will observe that the frequency predicted with 56 d. o. f., 

i. e. 1.18081 Hz, is nearer to the value of 1.1808 Hz predicted by solving 

," the differential equations of Carter et al. C1], then the value 

of 1.18072 HIz given by using 236 d. o. f. At first sight this appears 
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to imply that the value obtained using 56 d. o. f. is more accurate. 

However, this is regarded as a coincidence. Small differences due 

to rounding errors in the solution routines, or in the theoretical 

formulation of the analytical and numerical methods may be present 

that give rise to the above result. (In any event the difference 

is small; - 0.0077. ) 

The convergence behaviour of the meridional stress resultant, 

Na, is also depicted in Fig. 11.19. The convergence appears to be complete 

for more than 180 d. o. f. The convergence characteristics exhibited 

by Na are, however, unusual. The reason for this is not understood. 

The variations of the orthogonal displacements u, v and w 

along the meridian of the hyperboloid are given in Fig. 11.20. Note 

that for reasons of clarity, different scales have been used for all 

three displacements. 

The stress resultants for the hyperboloid are given in Fig. 

11.21. The resultant moments are given in Fig. 11.22. The stress 

components at the outer surface of the structure are given in Fig. 11.23 

where it is seen that the meridional outer fibre stress a is 
a 

dominant. Note that the above values were obtained using nineteen 

ring elements (236 d. o. f. ) thus ensuring that convergence had occurred. 

In this section we will regard the above values as representative 

of the true or exact values. 

The hyperboloid was then analysed by SACTIL using a (4 x 3) 

element mesh. The results for the stress resultants are given in 

Fig. 11.24. The stresses do not vary uniformly over the meridian 

and the overall picture bears little resemblance to the stresses 

given in Fig. 11.21. Note that the agreement in the 'shapes' of 
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Naß given in Fig. 11.24 and Fig. 11.21 is especially poor. The 

element mesh was refined so that a (6 x 3) element mesh was employed 

(see Fig. 11.29). The result is given in Fig. 11.25. It is now 

observed that the correlation between the values given in Fig. 11.21 

and the stresses predicted by SACTIL is appreciably better. The 

interpolation lines shown in Fig. 11.25 show somewhat non-uniform 

variation. However, if the values predicted by SACTIL, using the 

(6 x 3) mesh, are superimposed on the stress distribution given in 

Fig. 11.21, it will be seen that reasonable agreement has been 

achieved. The unsatisfactory results depicted in Fig. 11.24 are 

due to the use of an inadequate number of shell elements. The somewhat 

non-uniform variation exhibited in Fig. 11.25 implies that more elements 

could be profitably employed in analysing the structure. The overall 

observation is that the stresses predicted by the shell element are 

accurate if a sufficient number of elements required for adequate 

convergence are employed. 

The analysis of the hyperboloid using four ring elements is 

summarised by Fig. 11.27 and 11.28. The stress distribution is almost 

identical to that produced with nineteen ring elements. Hence, it is 

concluded that usually.. four ring elements can be used to accurately 

analyse the free vibration of doubly curved axisymmetric structures. 

11.6 Conclusions 

Cylinders with two different support conditions have been 

analysed using the two finite element programs RESAP and VACTILo2. 

It has been shown that the resonant stresses predicted by the ring 

' and shell element are in reasonable agreement with published information. 

It has been shown that the ring finite element can be used to obtain 
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very accurate stresses; when a large number of elements were used, 

the predicted stresses were virtually identical to that given by 

an exact solution (even though a difficult case was considered). 

The analysis of a spherical cap with a static point load has 

been analysed by the shell element and shown to be in good agreement 

with published information. Finally, the resonant stresses obtained 

for a hyperboloid using the ring and shell elements have been 

compared and shown to be in good agreement. 
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12. PROPOSALS FOR IMPROVED DOUBLY CURVED SHELL FINITE ELEMENTS 

In this chapter it is argued that a significant increase in 

" the accuracy convergence and efficiency (i. e. the accuracy obtainable 

for a given number of degrees of freedom) of a doubly curved shell 

finite element can be achieved by comparatively small changes in its. 

derivation. Several alternate formulations have been presented. The 

theoretical and computational considerations have been discussed in 

detail. 

12.1 Introduction 

Finite elements are widely used in the static and dynamic 

analysis of structures. In finite element analyses the structure is 

represented by an assemblage of elements. The accuracy of the solution 

depends on the number of finite elements employed as well as the 

sophistication of the element itself. Whilst in principle, it is 

possible to achieve very high accuracies by using as many finite 

elements as it necessary for convergence, practically this is not 

always a viable solution. A large number of elements require a 

correspondingly large computer region and execution time is increased. 

(The computer time and region required can be said to vary as a power 

law of the degrees of freedom (d. o. f. ) of the finite element mesh 

employed. ) Generally, elements using a simple displacement function 

(e. g. low-order interpolation polynomials) and consequently a few 

nodal degrees of freedom would yield a less accurate solution, when 

compared to the use of elements employing high-order polynomial 

displacement functions. For example, McLeod 01043 states that a 

' crucial factor affecting the accuracy and rate of convergence in the 

0 

finite element method is the maximum degree of polynomial used in 
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the displacement function. (Note that the use of high-order poly- 

nomial displacement functions usually, but does not necessarily, implies 

that the 'effective' d. o. f. of the element are correspondingly 

increased - see Section 12.3. ) 

The development of new finite elements is also influenced 

by the above considerations. The impetus is to develop finite 

elements that yield accurate results without excessive use of computer 

facilities. Elements that fall within this category are said to have 

a high efficiency. 

one method of increasing the efficiency of finite elements 

is to derive elements whose shapes resemble the portion of the 

structure to be analysed. Conical frustum elements* [ 19 D, cylindrical 

elements [ 105 ] and geometrically exact elements [ 29 3 are typical 

examples. Unfortunately, such elements are not versatile - there is 

a serious loss of efficiency when using, for example, a conical 

frustum element for the analysis of a hyperboloiu - or they are 

inconvenient to use. 

With regard to optimizing computing facilities and the 

accuracy of the solutions required there is some debate as to whether 

it is preferable to use a large number of simple elements of a 

smaller number of more sophisticated elements. Percy, Pian et al. 

19 ] and Klein [ 106 D; suggest that the use of a large number of 

, simple elements is the preferable alternative. On the other hand, 

Webster C 29 ] showed that for a cylindrical shell a small number 

of elements with high-order displacement polynomials achieved better 

accuracy whilst requiring less computing facilities than a larger 

This element is used in the finite element computer program BACTo2 
[20]. 



12.3 

number of simpler elements. Adelman, Catherines and Walton [ 98 3 have 

also investigated cylindrical structures in order to contribute 

to the debate. Their firm conclusions support the observations made 

by Webster [ 29 3. 

The doubly curved shell finite element used in VACTIL and 

SACTIL have been discussed in Chapter 4- it has four nodes with 

twelve degrees of freedom per node. It employs a complicated dis- 

placement function (see Section 12.3) and the strain is assumed to 

vary quadratically through the thickness. Whilst the convergence 

of this element is not as good as that of its sister element, a doubly 

curved ring element (see Section 4.6.3. ) for reasons that will be 

discussed in Section 12.2 - it is much more versatile. The shell 

element can be used to analyse cylinders and hyperboloids as well 

as non-axisymmetric structures such as cooling towers with leg- 

supports. It is now being employed in calculating stresses in shell 

structures (Chapter 11). Results show, however, that the convergence 

of the shell element, whilst being satisfactory for reasonably accurate 

stress results could profitable be improved as mesh sizes required 

for reasonable convergence approach the present limit (i. e. 750 kilo- 

dytes of storage) on the IBM 370, M. V. T. (Multiprogramming Variable 

Task) system, for certain problems. Recalling the conclusions of 

Webster [ 29 ] and Adelman, Catherines and Walton [ 98 3 it is felt 

that an increase in the order of the polynomials used in the dis- 

placement function of the shell element would improve its convergence. 

Moreover, by the technique of 'Nodal Condensation' (see Section 

, "12.3) the efficiency of the element can probably be significantly 

improved. (Arguments to support this hypothesis are presented in 

Section 12.2. ) 
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12.2 Preliminary Observations 

The doubly curved ring finite element can be regarded as a 

special case of the doubly curved shell finite element (Section 

4.6.3). The convergence of the ring element is superior to the 

shell element. It is therefore instructive to compare relevant 
I 

characteristics of the two elements. 

When a structure is axisymmetric, as for example, a cylinder 

or hyperboloid, the assumption is usually made that the displacements 

vary sinsoidally (or cosinusoidally) around a circumferential line. 

This assumption allows a simpler definition of the displacement 

function than would otherwise have been possible. (The displacement 

function relates the displacements at any point on the middle-surface 

of the element to the displacement at the nodes. ) That is, the 

displacement function is only a function of the meridional coordinate 

s (see Notation). The degrees of freedom (d. o. f. ) of the element are 

thus not functions of the circumferential coordinate, 0. For 

example, Wilson [ 107 ] employs a third order polynomial in s and 

the technique of nodal condensation to obtain an axisytnmetric finite 

element (used in the program DVISOR3, [ 107 D) having four d. o. f. 

per node. Deb Nath [ 40, Section 3.13 uses a polynomial in a of 

order seven in the derivation of an axisymmetric or ring finite element 

with twelve d. o. f. per node. As all the twelve nodal d. o. f. of the 

ring element are used to describe the variations of the displacements 

with respect to s, and as a high-order polynomial of order seven 

is employed in the displacement function, the convergence and 

," efficiency of the ring element is excellent. The disadvantage, however, 

of not explicitly including d. o. f. that are functions of 0 is that 
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non-axisymmetric structures cannot be analysed. This restriction is 

removed by defining a displacement function that is not subject to 

the prior assumption that displacements vary sinusoidally/cosinusoidally 

about the circumference. 

One of the better examples of this type of function has been 

defined by Bognor, Fox and Schmitt [ 105 3 and used by Woodman 

and Severn C 32 ], Schmit, Bognor and Fox [ 109 ] and Deb Nath [ 40, 

Section 3.2 ]. This displacement function represents the displacement 

patterns in each element in terms of the products of one-dimensional, 

third order Hermite interpolation polynomials and undetermined nodal 

displacements. (A similar, though less convenient, displacement 

function using Legendre polynomials has also been described by Butlin 

and Leckie E67 ] and Mason E114 ]. ) The displacement function of 

Bognor et al. [ 116 ] is used in the shell element and is much more 

complicated than that used in the ring element. Note, however, that 

the order of the polynomials used in the displacement function for 

the shell element is three, which is less than the order (seven) 

employed in the function of the ring element. Finite elements using 

the function of Bogner et al. [ 105 ] must designate some d. o. f. 

to describe the circumferential variation of the displacements. Thus, 

either the stiffness and mass matrices of the finite element are 

increased in size, or some d. o. f. which are derivatives with respect 

to s (and as a consequence, probably some d. o. f. which are also 

derivatives with respect to A) must be omitted. The latter alternative 

has been chosen in the derivation of the shell element. The d. o. f. 

that have been omitted (in comparison to the d. o. f. of the ring element) 

a2 a 
are 2 and 3 with respect to u, v and w. Of these six d. o. f. 

as as 
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2 
the displacement derivative a22 

, and consequently 
a2, 

are used in 
as a62 

0 
the expression that relates the strain at the middle-surface of the 

element to the corresponding displacements - see equations 4.9(a) and 

4.9(b). These displacement-derivatives therefore enter into the 

expressions for the stress components and resultants (see Chapter 4). 

The resultant moments about the meridional and circumferential direction, 

especially, are affected. When the present shell element was used to 

calculate the stresses in a spherical cap in Chapter 11 the moments 

were observed to be markedly discontinuous at the element common 

boundaries. Admittedly, the particular example referred to exhibited 

steep changes in the moments, but it is felt that a significant 

contribution to the discontinuity is due to the absence of the second 

derivatives of the radial displacement (w). An alternate description 

of the above is to state that the second derivatives of w involve the 

double differentiation of the cubic interpolation polynomials (see 

Section 12.3) used in the displacement function which then results in 

linear functions in s and 6; consequently, steep changes in w and related 

functions cannot be accurately represented. Thus if the d. o. f. of 

the shell element can be increased to include the two relevant d. o. f., 

without explicitly* admitting the other four d. o. f., it is expected 

that the convergence and efficiency of the elements will be significantly 

improved. The implementation of this scheme is discussed in the 

following sections. 

The four d. o. f. must be at least implicit in the formulation of 
the element if they have been introduced by virtue of the displace- 
ment function. This concept will be made clearer when discussing 
the technique of 'Node Condensation'. In this context an implicit 
d. o. f. will be equivalent to a 'slave' d. o. f. and an explicit d. o. f. 
will be equivalent to a 'master' d. o. f. - see Section 12.3. 
Alternatively the four d. o. f. can be omitted during derivation of the 
displacement function. 
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12.3 Theory 

The shell finite element has already been discussed in 

detail in Chapter 4. We shall develop the theme in this section by 

initially considering the displacement function used in the shell 

element. 

It is assumed that the three orthogonal displacements, i. e. 

u(s, e) ° u, say, v and w can be written as the products of one-dimensional, 

cubic interpolation polynomials and undetermined displacements at the 

nodes of the element. For w the expression is: 

i 
in 

w 
1ý1 

fagb(wi) +L f(a+l) Sb a 
im w 

s+ Refs g(b+1) 880 

1i 

+ LRý(a+1) g(b+1) asaea2W0 ... 
(12.1) 

Here, 00 =Rx0. The expressions for u and v are similar. (Note that 

the variables (Rý) and L appear in the equation due to the following 

normalization: - 

LXa= 
äs and Rx 

a= 
° ae 

as ýý ae o 

In equation (12.1), 

al when i=1or2 

`3when i-3or4 

and b- 1 when i= 1 or 3 

=3 when i-2 or 4 
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Also, fI(s) = f1 (say) a1 -'3s2 + 2s3. 

- 1-302 + 253 

Similarly g1(0) Q gl (say) 

f2=s-2s2+s3 

f3 = 3s2 - 2s3 

f4_s2+s3 

g2-e-252+e3 

Q- 352 - 253 

S4°-©2+i3 

The interpolation polynomials given here are known as Hermite polynomials. 

(Hermite interpolation is a special case of Lagrange interpolation 

and is discussed in detail by Ciarlet and Raviart [ 108 3). The 

accuracy, and usefulness, of the above displacement function has been 

verified by several authors [ 66,40,32,7 ]. Thus, several 

important requisites, like for example, the continuity of displace- 

ments and slopes between adjacent elements along an entire edge, 

are satisfied. 

We now need to develop the displacement function so that the 

second differentials of w with respect to S and 8, are introduced 

as nodal variables. As Hermite interpolation is a convenient and 

accurate technique which has been used successfully with finite elements 

we can extend the shell element by adopting higher-order llermite 

polynomials. Thus the displacement function w is written as 

4 (2-W 

w wi fa gb + Lf (a+l) gb 

2w 
aw R2 

(3s2 

+ aeo ý' fa s(b+l) +Lfcbii 

2 azw 
(22w 

+ (Rý) fa gd 
a©2+R 

Lf(a+l) R(b+l) asaeo 
i 0. /1 

... (12.2) 
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The expressions for u and v are similar. 

Hermite"s interpolation formulae (or the formulae for 

oscillating interpolation) C 110 ] are now used to obtain the 

required Hermite polynomials. (Alternatively, the polynomials of 

required order can be subject to the desired boundary conditions and 

the coefficients obtained by solving the ensuing simultaneous 

equations. ) Note that the degree of the polynomials is determined by 

the maximum value of the derivative of the variable to be interpolated. 

These are found to be: - 

fl n (1 - 10 s3 + 15 s4 -6 s5) 

f2 (s-6 s3+8s4-3 s-5) 

f3=(los3-15 s4+6s5) 

f4= (-4s3+7s4-3s-5) 

fs =I (s2 -3 s3 +3 s4 - ss) 

f6 Q 1(; 3 
- 

6 

The 'g-polynomials' are similar to the above with 6 being 

substituted for s. 

In equation (12.2) a and b vary with i as defined for 

equation (12.1). However, c and d vary as given below: 

C 5when in1or2 

and c-6when ie3or4 

Also, d= 5 when ia1 or 3 

and d-6when i=2or4. 
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An interpolation displacement function should, and usually 

has, the property that at any node the displacements (and 

displacement-derivatives) predicted by the function are identical to 

the nodal displacements. The displacement function used in equation 

(12.1) is at variance with this particular criterion for certain d. o. f. 
2 

such as asae -see Appendix 12.1. However, it can be seen (by 
0 

differentiating the Hermite polynomials and substituting for is and 

8) that the displacement function introduced in equation (12.2) 

is now in agreement with the above criterion, as displacement- 
2 

derivatives such as 
a2 

are explicitly included in the formulation 
as 

prescribed in equation (12.2). 

The variation in the values of the Hermite interpolation 

polynomials with s are depicted in Fig. 12.1. Note that the poly- 

nomials fl and f3 are mirrored about the central meridional point 

(i. e. where s=0.5). Similarly, f5 and f6 are mirror-pairs. f2 

and f4 are mirror-pairs but with sign reversals. 

We now have an eighteen degree of freedom per node, four- 

noded shell finite element which untilizes interpolation polynomials 

of order five and which includes the important nodal variables such 
22 

as 
a2w 

and 
a w2 

. However, the less important variables such as 
as 30 

0 
2222 

aua u2 a2v 
and 

a y2 
are also included. The inclusion of the 

as 
2 

Be0 as aeo 
latter four d. o. f. would increase the region size and computing 

time required, for a given number of elements, without contributing 

'appreciably to the convergence. 

It is not admissible to merely neglect these terms in 
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the formation of the stiffness and mass matrices as coefficients 

of the interpolation polynomials will be mathematically unspecified. 

On initial considerations it appears feasible to employ the 'Node 

Condensation' or 'Eigenvalue Economizer' technique. The method has 

been well documented by Guyan [111] and Irons [1123. This technique 

will allow the reduction of the nodal d. o. f. from eighteen to 

fourteen while maintaining mathematical consistency. The d. o. f. 

'condensed-out' are referred to as 'slave' d. o. f.; the remaining 

d. o. f. are knovi as 'master' d. o. f. (The technique is mathematically 

accurate for static problems and is a good approximation for 

dynamic problems for the lower eigenvalues. ) 

Note, however, that the condensation technique can only 

be applied in the present case, to the system stiffness and mass 

matrices - it is not admissable to condense out the four d. o. f. 

from the element matrices. This is because the continuity of these 

four displacement-derivatives along the element edges is important 

to obtain a conforming element. (Condensation of system matrices, 

however, preserves continuity of displacements and derivatives. ) 

Non-conforming element (e. g. in the first-differentials of the 

radial displacements) have been developed that yield good results. 

However, in the present case if the four displacement-derivatives 

referred to are not made continuous across element common edges, 

the physical representation of the structure being analysed would 

include gaps or holes. This would probably result in a significant 

reduction in the potential accuracy of the proposed element. Thus 

one criticism that can be levied at the above formulation is that 

the nodal condensation technique is applied to the system matrices 



12.12 

and the d. o. f. that are to be condensed-out are defined a priori; 

however, these very d. o. f. may be of importance in the particular structure 

being investigated. The optimum d. o. f. to be retained as masters and 

those to be condensed-out should ideally-be selected using the technique 

described by Henshell and Ong [ 113 3. 

An alternative method is now proposed that does not require 

the use of the nodal conden 
22 

ment-derivatives 
auau 

ae 
2 as2 

0 

cation technique. That is, the displace- 
22 

a v2 and 
a2 

are not included even 
ae as 0 

implicitly as nodal variables. In this formulation the displacement 

function defined by equation (12.2) is used to describe the variation of 

the w displacement (and its derivatives) only, giving six nodal variables 

per node. The in-plane displacements u and v are described by the 

existing displacement function (given by equation (12.1)) resulting 

in eight nodal variables. This proposal would result in a finite 

element with fourteen d. o. f. per node which utilizes a 'mixed 

order polynomial' displacement function. The advantage of this 

formulation is that the application of the condensation technique 

to the system stiffness and mass matrices is unnecessary, and the 

maximum size of the system matrices is smaller than for the previous 

formulation. The disadvantage, however, is that two types of 

interpolation functions have to be processed. Thus the numerical 

scheme required to form the element matrices becomes somewhat more 

sophisticated with an attendant increase in computing time. Also, 

the anomaly inherent in the displacement function used for the current 

shell finite element is now present for the in-plane displacements. 

(It should be noted,, however, that an investigation by the author 

indicates that the performance of the element is not adversely 
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affected to any significant degree by the anomaly. Also, for the 

element proposed above the important radial displacements are not 

subjected to the anomaly. ) 

In addition to the advantages outlined above in including 

22 
a2w 

and 
a w2 as nodal variables there is the advantage that various 

as aeo 
boundary conditions can usually be specified more accurately. When 

a structure is 'simply supported' some analysists prefer to stipulate 

'hybrid' boundary 
2 

required that 
a2 

as 

displacement-deri' 

conditions (see Section 11.2). It would then be 
2 

or 
a w2 is zero (together with other lower order 
ae 0 

natives), depending on the direction of the 

support. (This is because the relevant direct forces and bending 

moments and the corresponding displacement-derivatives at the 

supported edge should be specified as zero. ) In the present element 

it is not possible to constrain these d. o. f. Consequently these 

boundary conditions involve arguable approximations. 

It is now interesting to examine the d. o. f. 
au 

and asae 0 

a2v These d. o. f. are used in the present element and are asae 0 

included as nodal variables in the two formulations proposed above. 

However, these two d. o. f. are not used in the expression that 

relates the strain at the middle surface to the corresponding 

displacements. Moreover, it is not important for these two d. o. f. 

to be continuous across common element boundaries. Thus, condensing 

these d. o. f. out at the element stage will increase the efficiency 

," of the element. This process can be applied to both formulations 

referred to above. One disadvantage, albeit small, is that 
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specification of certain boundary conditions may then involve some 

approximations. 

Table 12.1 presents several different types and forms 

of doubly curved shell finite elements: - 

11 



Table 12.1: Different Types (or Forms) of Doubly Curved 

Shell Finite Elements 

Nodal Order of Element D. O. F. Interpolation Condensed 
Ref. in final Polynomials D. O. F. Comments 
No. Element 

uvw 

A 12 333 - An anomaly exists in the displacement 
function. (However, the performance of 
the element does not appear to be 
affected, to any noticeable degree, by 
the anomaly. ) Efficiency of the element 
is moderate. Hybrid boundary conditions 
cannot always be specified accurately. 

B 18 555 - Element is theoretically sound. However, 
too many d. o. f. detract from the 
efficiency of the element. Maximum size 
of system matrices is large. Boundary 
conditions can be accurately specified. 

C 16 555 (a2u/asae ) Efficiency of element may be better 
o 

? than for element B. Maximum size of 
V- system matrices smaller than for B. 

asae Some uncommon boundary conditions 
o cannot be accurately specified. 

D 14 335 - Efficiency of element high. Maximum 
size of system matrices smaller than 
for B and C. Anomaly is present for 
displacements in the in-plane direc- 
tions. Some uncommon boundary 
conditions cannot be specified accurately. 

2 
E 12 335 

asa9 Efficiency of element is probably 
o higher than for element D. (Other 

a2v comments as for element D. ) 

asae 0 
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Those elements will be discussed further in Section 12.5. 

12.4 Programming Considerations 

The computing task will be greatly assisted by using the 

subroutines written to assemble the element stiffness and mass matrices 

of the present version of the shell finite element - see Chapter 5. 

Due to the modular, structured nature of the subroutines it will be 

required, in principle, to modify only a few of the subroutines. The 

subroutines to be modified are small; they perform simple manipulations 

on the Hermite interpolation polynomials. 

It is recommended that the modular nature of the subroutines 

is maintained to facilitate any further development of the element. 

Also that the user shall be allowed to specify the form of the shell 

element he requires. That is, by specifying '12' the present shell 

finite element is obtained, by specifying '14' the shell element Type 

D is. obtained; by specifying '18' the shell element Type B is obtained. 

Also, it is desirable to have an option that enhbles the user to 

request twelve d. o. f. per node but where the displacement function 

utilizes the fifth order interpolation polynomials in the radial 

direction (i. e. the nodal condensation technique is used to reduce the 

nodal d. o. f. from fourteen to twelve). It is recommended that the 

modified subroutine package be incorporated in the finite element 

program VACTILo2. 

12.5 Discussion 

In this chapter four shell elements have been proposed. The 

shell element currently used in the programs VACTIL and SACTIL element 

Type A in the Table in Section 12.4 - has been reported to have a 

moderate degree of efficiency. This is probably due to the use of a 

- comparatively low-order polynomial in the important radial direction w. 
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Also an anomaly is present in its displacement function. Consequently 

an eighteen nodal d. o. f. element, Type B, has been'proposed. Whilst 

the anomaly in the displacement function is no longer present and the 
22 

displacement-derivatives a2 
and 

aw 
are included as nodal 

as 2 
0 

variables, the nodal d. o. f. include variables that are not thought 

to contribute to the efficiency of the element. The efficiency of 

element B can be improved by internal nodal condensation of two not 

particularly important d. o. f. to give element C. The element type D 

is of interest as it employs a fifth order interpolation polynomial 

for the important radial displacement and the less important in-plane 

displacements use third order polynomials. Thus the anticipated 

efficiency of the element is high and the technique of node condensation 

is not required. The element Type E is an attempt to improve the 

efficiency of element D even further. 

Of the four new elements proposed in this text elements B 

and D are the basis for the other elements (i. e. the elements, 

excluding A, are different forms of the basic elements B and D). 

In an investigation to decide the most useful and efficient element, 

initial preference should be given to elements D and E. Whilst 

at this stage it would be premature to select a particular clement 

as the best, the element Type E appears to satisfy most of the 

theoretical and other requirements necessary for fast convergence 

with optimum use of computing resources. 11 

Whilst the primary purpose of this chapter is to advocate 

the increase of the displacement expansion in the radial direction 

from cubic to quintic polynomials, it would be of theoretical 

interest to use the node condensation technique to also investigate 
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the effects of varying explicit (i. e. 'master') and implicit 

(i. e. 'slave') d. o. f. on the behaviour of the element. For example, 

it would be instructive to specify quintic polynomials to represent 

the variation of all three orthogonal displacements and to then 

condense out all the six newly introduced d. o. f. and observe whether 

an increase in the accuracy and/or efficiency of the element is 

obtained. It must be noted that no difference was observed when a 

similar investigation was conducted with a beam element by Thomas 

115 ]. However, the displacement function of the beam element 

is simpler than that of the shell element. Moreover, the anomaly 

referred to in the Appendix 12.1 for the lower-order displacement 

function of the shell element is removed by the use of the higher- 

order displacement function. 

12.6 Conclusions 

It has been argued that the efficiency of a finite element 

is improved by the use of higher-order interpolation polynomials in 

the displacement function. The efficiency and convergence of a 

doubly curved shell finite element has been critically compared to 

that of'a sister element, a doubly curved axisymmetric (ring) finite 

element. It is therefore postulated that an increase in the efficiency 

of the shell element can be obtained by increasing the displacement 

expansion in the radial direction from a cubic to a quintic polynomial. 

Several alternate elements that embody this requirement have been 

derived. The comparative advantages of these elements have 

been discussed. The theoretical and computational aspects have 

been discussed in detail. Finally it is expected that implementation 

of the implied recommendations in this chapter will result in a useful 

insight into the characteristics of the shell finite element 
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13. CONCLUSIONS 

As far as the author is aware the finite element method 

described in this thesis yields the most accurate prediction, to 

date, of the resonant frequencies and mode shapes of cooling tower 

shells supported on columns. It has been shown that for the cooling 

tower at Didcot Power Station the resonant frequencies predicted by 

the method are within 5% of the corresponding experimental values 

for both model and full-scale structures. 

With reference to the resonant behaviour of cooling towers, 

foundation elasticity has been shown to be very important. The 

effect of Poisson's Ratio, however, has been shown to be small. An 

important observation is that the small discrepancies that exist 

between the experimental data obtained for both model and full-scale 

structures can be explained on a rational basis. 

The finite element method described in this thesis is a 

useful design tool. As a preliminary study and. as an illustrative 

example the dimensions of the ring-beam and cornice of a cooling tower 

have been shown to have an affect on the values of resonant frequency 

of an important mode. 

Though not as convenient as the finite element method 

that has been described, the investigation of model cooling towers 

has been shown to be a iseful adjunct to understanding the behaviour 

of full-scale structures. An important finding is that a realistic 

simulation of foundation elasticity of the model structure is 

necessary if reliable results are to be obtained. The multipoint 

' excitation system, originally developed at Farnborough (R. A. E. ), 

has been shown to be useful in the experimental investigation of 
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cooling towers. However, it was observed that even six exciters 

were not sufficient in number to excite, in isolation, some of the 

cooling tower modes. 

'Non-classical' modes of vibration were probably not 

experimentally observed by the author. Admittedly, some modes were 

observed to exhibit characteristics associated with non-classical 

modes. This is thought, however, to be due to harmonic interference 

between neighbouring modes. On theoretical grounds it is argued 

that the manner in which n (circumferential wave number) is defined 

can be a probable reason for stating that non-classical modes exist 

for cooling towers. 

The use of a laser as a displacement measuring device for 

the model structure has been found to be highly satisfactory, 

provided a few simple precautions are observed. Such measurements 

are more speedily and accurately obtained, when compared with the use 

of other devices such as capacitance transducers. 
11 

The finite element method described in this thesis has 

been developed primarily for the analysis 'of cooling towers. 

However, the method has applications in the analysis of similar 

structures. (For example chimneys with appendages. ) 

Stress-displacement matrices were derived for the doubly 

curved finite elements used in the project. The analyses of several 

structures have established that accurate stresses are predicted. 

Following from a detailed study of the elements, proposals were made 

for the improvement of their accuracy and convergence. An 

'' algorithm has been developed that should enable the reliable coding 

of the new elements. The algorithm is at present being successfully 
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employed in evaluating the stiffness and mass matrices of the finite 

elements used in this thesis. 

The mechanics of wave propagation in periodic and symmetric 

structures have been shown to be well established in the literature. 

Wave propagation methods have been used in recent years for studying 

vibration of structures such as aircraft wings. It has been shown 

that these techniques can be successfully applied to the analysis 

of cooling towers by regarding such structures as rotationally 

periodic. (Thus the approximations involved in assuming the tower 

to be an idealized axisymmetric structure are not necessary. ) In 

this thesis the finite element method has been applied to 

rotationally periodic structures. However, it is deemed possible to 

analyse structures that are almost but not quite rotationally 

periodic by regarding the structure as periodic, but with small 

perturbations (involving the parameter concerned). 

ýb 
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14. SUGGESTIONS FOR FUTURE RESEARCH 

In view of the success of the finite element method 

described in this thesis the method should be developed further. 

One important limitation of the present method is that only 'perfect' 

cooling towers can be accurately analysed. Kemp and Croll [117] 

claim that even moderate imperfections in the meridian of a tower 

induce hoop stresses in the vicinity of the imperfection that are 

of the same order of magnitude as the meridional stresses that would 

occur in the corresponding area of the perfect shell. Soare [ 118 

supports this claim; he states that meridional imperfections contribute 

little to the meridional and shear forces, but that the hoop forces 

are strongly influenced. Tentative proposals have been made in this 

thesis to develop the finite element method to enable imperfect 

cooling towers to be analysed. 

Another important aspect that is gaining relative importance 

at the present time is the behaviour of cooling towers under transient 

force conditions (e. g. seismic disturbances). The Beta-Newmark 

method 
E119D has been used in VACTIL and preliminary results are 

promising. 

The optimum shape of cooling towers is another topic 

that is of interest [120] 
. The shape of a tower is dictated not 

only by its structural integrity but by its cooling performance. 

The program VACTIL would be a useful aid in studying the structural 

aspects. 

The doubly curved shell element used in the project has 

'been shown to give good results. However, as discussed in Chapter 

12 the element can probably be improved further. It was suggested 
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for example that the use of mixed-order interpolation polynomials in 

the displacement function together with the nodal condensation 

technique could probably improve the efficiency of the shell element 

and is therefore worthy of investigation. 

With respect to the experimental work on cooling towers described 

in this thesis it is recommended that twelve exciters are employed 

in the multi-point excitation system to enable more satisfactory 

excitation of some of the more complex modes, as this will reduce 

unwanted harmonic interference from neighbouring modes. Also, that 

phase shifters are employed to correct the small phase difference 

that exists between the output of the voltage-tuned oscillator and 

excitation force. 

I 

J 



APPENDIX 5.1 

EXPRESSION FOR DUO-OPERATORS 

In Fig. 5.1 the term C11 is associated with the mono- 

operator 
a. However, the term C35 is associated with three 

as 
differential operators; namely 'no differentiation', 

a 
and 

as ail 
It can be shown that dealing with such operators introduces only a 

little more computing sophistication. As an example the derivation 

of the expression for duo-operators is given below: 

Consider equation (5.7). 

Assume that duo-operators are present. We can then write equation 

(5.7) as: 

1166 

k'j =J_ 
j_ 

GHA tl +HA tl k_ 

s=0 0=0 k=1 h=1 
12 

mk 
2 

mk ih 

H_ 1A_ tl + 2H_ 2A_ t ds. d8 
... 

(A5.1) 
h2. ht hR hR, 

where the pre-suffix is used to distinguish between different operators 

of the same term in the matrix C. 

Equation (A5.1) can be expanded as 

klj _ 
ff 

HA tl z_ H_ A tj +HA 
mQ tmk 

mk khhlC1ht 
lmk lmk 

' ti zHAt+ 2H 2A tl z 1H lA t 
ill ht hR mk mk kh hR F, t 

+ 211 - 2A _ 
tl z 2H_ 2A_ 2A_ t d;. d5 

mk mk hk h£ ht ht "' (A5'2) 



v 

A5.1.2. 

Note that each of the four terms given in Equation (A5.2) is in a 

form similar to that given by equation (5.7) for mono-operators. 

Each term is thus evaluated as for a mono-operator. The numerical 

values for each of the terms are then summed. Thus the procedure 

is very similar to that for mono-operators. 
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SAMPLE DATA AND OUTPUT 

This example is an analysis of the full-scale cooling 

tower at Didcot. The meridian of the tower is treated as a 

'general curve'. Complex constraints are applied. The matrix 

modification option has been used to include a term in the overall 

stiffness matrix to represent foundation elasticity in the vertical 

direction. 

The finite element mesh used for the analysis is as depicted 

in Fig. 7.1. Note that five shell elements have been used; if the 

tower had been of uniform thickness, four such elements would have 

been'satisfactory. (Two elements are required to represent the cornice 

and ring-beam, respectively. Three shell elements are then used 

to ensure that the 'middle' of the tower is adequately represented. ) 

The following material properties have been used. (Acknowledge- 

ments are due to Mr H. L. Burrough for these values which were obtained 

from measurements made on a sample from the Didcot Tower. ) 

Young's Modulus 

Mass Density 

Poisson's Ratio 

Other data: - 

= 29.5 x 109 Nm2 

= 2323 kg m3 

= 0.19 

Number of pairs of leg-supports = 40 
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Angle subtended by a pair of 360 o 
'V-legs' at the axis of the 40 =9 
symmetry 

Angle the tangent makes with 
the horizontal at point where 710 
leg-support meets tower 

Maximum thickness of cornice = 0.3818 m 

Maximum thickness of ring-beam = 0.5842 m 

Thickness of 'middle' of tower = 0.1778 m 

Foundation elasticity in 
_ 

vertical direction (i. e. 1.6 x 109 Nm1 
d. o. f. 1) 

The Z and R data are as given in the sample output. 

Interpretation of Results 

The complex angle is 360. Hence the number of circumferential 

wavelengths,. n is 96 
= 4. From the value of w at nodes 1,2,3,4, 

5 and 6 the number of meridional nodes is seen to be 2. The resonant 

frequency of this mode for the first eigenvalue is 1.064 Hz. 

It will be noticed that the displacements printed by the 

program for the right-hand nodes of the substructure are zero. This 

is only. because of programming convenience. The actual displacements 

at these nodes can easily be calculated. For example the 'w-displace- 

went' (due to one of the orthogonal modes) at node 8 

Real part of {(24.6 -ix0.43 x 10-5 )(cos 36° +i sin 36°)) 

= 19.9 

(The displacement due to the other mode is given by the imaginary part 

and is 14.46. ) 

Note that the program-calculated length of a leg-support 

is 8.813 m. 



A7.1.3 

The pseudo-nodes printed by the program were calculated 

within the program. The real nodes were specified by the user. 
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ALL NOD4L INPUT E DISPLACEMENT OUTPUT IS IN CYLINDRICAL COCRDIAATES A7.1.10 

END OF INPUT IN SUS: "TYPED" FOR [l(NEN1S IN CROUP 7 

If1: ATICN TO OVERALL STIFFNESS AND/OR MASS MATRICES 

RUDE IREEDCM 2ND NODE FREEDOM KASS 
I1000.0 

STIFFNESS 
0.36000D 10 

DCOT TOW. SEC ANG"9. C0N ANG"9S41N"41. FDUND ELAST"9D9 A 

1NPLEX CONSTRAINTS ARE USED 

if DEGREES OF FRE(DOM BELOW HAVE BEEN CUUPLEO TOGETHER 

-M --COMPLEX_1NG--(DEGREES) - 
45 6_Nr 7 a1 10-_ 11 

-- - 
12 IDDE NODffZ 3 

9323451719 10 11 32 36.0000 

12 l23456719 10 11 12 36.3000 

d1234S67$9 
10 11 12 36.0000 

11 I234S67"1.9 10 11 12 36.0000 

13 1234567 1" 9 10 11 12 36.0000 

10 1234567$9 10 11 12 36.0000 

HUXSER OF DEGREES OF FREEODM NOW- 73 

IDCOT IOW-SEC AAG"9. COM ANG"904(N-41. FCUND ELAST"909 A 

I6INVXLUE I: U19Et 1 1.064 HERTZ 
3iRE SPO': JI%G EIGENVECTORU 
ACDE U CU/OX DU/DY D2U/CXCY V OV/DX DV/OY D2V/DXCY V DV/OX DM/DY 02W/CXDY 

1R 2.20 -31.6.320-05-6.160-03 2.3! 0D-05-1.740-0) -1.0 16. 24.6 2.0 3.900-05 3.74C-C3 
11 0.5460-04-0.610-02 -1.1 100 . -5.99 -3.6 -0.140-04 0.160-02 -0.4260-05 0.610-C2 -4.1 70. 
2R 2.53 -21.1.320-C4-1.270-04 4.7060-05-4.640-05 -1.2 0.28 26.2 3.7 -4.27D-05 2.700-04 
21 0.13C0-03-0.100-03 -2.3 6.5 -6.58 -0.42 -0.340-04 0.440-04 -0.7610-04 0.290-03 -S. 2 -0.32 
3R 4.10 7.8 -2.360-04-2.990-04 -6.2557-C5-6.140-05 0.63 0.56 -12.3 -3.3 6.230-05 -2.150-OS 
31 -0.264D-33-0.370-03-3.72 -0.1b 3.07 1.4 0.550-04 0.590-04 0.1330-03-0.1CO-04 2.8 2.6 
4% 3.33 11 . -5.930-34-1.040-03 -1.9160-04-2.590-04 0.90 0.16 -3?. 7 3.6 1.230-04 6.070-03 
41 -0.7770-03-0.13902 1.17 -0.2? 0.130-03 0.220-33 0.2! 00-03 0.220-03 3.6 0.39 
SR 2.10 -0.21 0170-03-1.490-03 

59 7" 
ý w1 uýý 

ýv 
-0 

0.32 -9.. 6O-03 
0 150-02 0 110-02 

-12.0 3 
0 3290-02 ' 

1.560-03 
2 

7.43D-04 
-0. e1r-: 1 51 ý -ý. s64o-o2-0. 0 . . . . 

62 1.65 r '13-2.490-02 0.11 -0.21 -10.3 `-02 -9.760-C2 
61 -0.7573-0' 

SýQ 
C 

ýlu e -1.3 -0.33D-02 0.2CD-01 
3 0 00 

-0.1430-' 
0 0 

-1.6 
4 7R -3.626 v . . . 

71 0,20 " 0.0 0.0 
LR 0 
$1 DIOCOT 10W. SEC ANG" 9. C0. -4 ANG. 9s41N"4)., 0UKO lU5T., 09 A 

EJGENVALUE NO. HERTZ RAD/SEC REY/M1R 
I 1.56,61 6.6161 63.347 
2 1.7745 11.150 106.47 
3 2.3707 34.396 142.24 

IHF CPU TIME FOR PROBLEM I WAS 39750 KIlli-SECS 

PROOL[N RUKOERIYLC1IL1 2 

kO NORE CAIA - EXECU1lON IERMIkATEO 



APPENDIX 12.1 

ANOMALY OF THE DISPLACEMENT FUNCTION 

The displacement function has been referred to in Section 

12.3. To simplify this discussion we consider only one of the 

orthogonal displacements, say w. Let the displacement w be written 

as 

W CTJCaweJ 
... (A12.1) 

where 
[ Ewe ] is the nodal displacements in w only; that is, it is 

a column vector of order 16 of the form: 

T 

aW aW a2W a2W 
äs ae asae """ asae 

1°1°1°4 

An interpolation displacement function usually has the 

property that at any node the displacements predicted by the function 

are'identical to the nodal displacements. For example, for the first 

node of the shell element, when s-0 and 00 - 0, equation (A12.1) 

reduces to: 

Ei 0.......... 0106W©J. 

Similarly this is seen to be true for all the d. o. f. 

predicted by the displacement function except for the cross-derivative 

a2w 

aSae 
Differentiating equation (A12.1) with respect to s and 8, 

0 (the bar sign signifies normalisation) gives 

2 a[ Tý aWseJ 

W .. 
(A12.2) 

asa© asae 



A12.1.2 

At Node one s=0 and 8=0 and equation (A12.2) gives 

2 
Zwa L0 0 Rey xL cos e LeR 0....... 03C6 el 

asae 
... (A12.3) 

It would be expected that the third term that is ýR xL coRs 
' 

would reduce to zero so that the expression on the right-hand side 
2 

of equation (A12.3) reduces to Lý, R xaw, which is then equal asae 
0 2 

to 
a ýý 

. That is, the predicted displacement-derivative would 
asae 

be identical to the nodal displacement-derivative (normalised). 

hIowever, the third term (referred to in equation (A12.3) does. in 

fact not appear. This appears to be an anomaly of the displacement 

function when interpolation polynomials of order three are employed. 
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