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This thesis presents a rational and unified approach 

for determining the strength of reinforced and prestressed 

concrete rectangular beams subjected to combined bending, 

torsion and shear. In this study failures have been 

classified into three broad categories: 

1) yield modes (3 cases) 

2) partial yield modes (6 cases) 

3) over-reinforced modes (3 cases) 

The effect of dowel action, aggregate interlock, 

uncracked concrete and spacing of stirrups on the resistance 

of app]. icd torque have been examined. 

The predictions of the proposed theories have been 

compared with more than a thousand test results available 
in literature. In general the agreement is good. 

A method for predicting cracking strength for 

reinforced and prestressed concrete beams subjected to 

bending, torsion and shear is given. 

The results of tests on 25 thin-walled prestressed 

concrete box-beams subjected to torsion, bending and shear 
are presented. 

Experimental and theoretical investigations on the 

behaviour and strength of dowels in concrete are given. 
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CHAPTER 1 

INTRODUCTION 

1.1 Structural Concrete Members Subjected to Combined 

Torsion, Bending and Shear 

In the past two decades considerable develop- 

ment has taken place in"the fields of Structural 

analysis, construction techniques and properties 

of building materials due to which it is now 

possible to create forms of greater structural 

efficiency and beauty. This development has 

resulted in many structural forms where torsion 

can no longer be ignored. 

The importance or otherwise of any particular 

force system on the behaviour of structures or 

structural components depends on the structural 

form, type of applied loads, physical properties, 

boundary conditions and modes of connection. In 

most traditional framing systems, the arrangement 

of the members minimises torsional effects, but 

the range of structures in which torsional forces 

are significant is growing. The following are 

examples of such structures: 

1. Spine box beam bridges. 

2. Other bridge-deck constructions 

3. Bow girders. 

4. Spiral and free standing staircases. 
5. Multi-storey core structures. 

Spine box beam bridges have gained increasing 

popularity and constitute by far the largest group 

of structures where torsion is important. A 

detailed examination has been made by Swann (1.1) 

of the characteristics of 173 bridges built in the 

13. 



last 15 years reflecting the recent trend in. the 

use of box beams. 

The period has also witnessed a shift in 

design philosophy from allowable stress methods 

towards the limit state design concept which 

recognises the need to provide a safe and service- 

able structure at economic cost. Therefore, the 

designer must be able to predict the performance 

of these structures under various loading stages. 

It is generally recognised that these structures 

behave reasonably elastic up to cracking and hence 

available elastic methods of analysis are adequate 

for assessing the response of these structures under 

service loads. The validity of the elastic methods 

diminish as the ultimate load is approached - hence 

these methods are inadequate in assessing the 

ultimate strength of these structures. 

No general method of analysis presently 

available, is valid for all stages of loading, 

therefore attention is concentrated on the study 

of the behaviour of these structures 'cat two 

essential types of loading: 

A, Service loads. 

B. Ultimate loads. 

1.2 Elastic Behaviour 

The 1960s saw intensive research primarily on 

the study of elastic response of structures where 

it is possible to analyse with the aid of 

computer., varieties of complex structural systems 

that were hitherto impossible to analyse. 

14. 



It has become clear that structural members 

exhibit two ways of resisting torsion in the 

elastic range. The first way denotes pure torsion 

or St. Venant torsion resulting in a shear stress 

field in the section while the second way denotes 

warping torsion producing longitudinal stresses. 

Depending on the type of cross-sectional shape 

of the member, span, mode of support and boundary 

conditions, the resistance to torsion may range 

from the pure St. Venant torsion to warping torsion. 

The relative importance of these two ways of 

resisting torsion is demonstrated by reference to 

the three' cases of simply supported beams with 

rigid cross-section shown in Fig. 1.1. 

It is seen that the magnitudes of the warping 
moment Mw at the centre of span are directly 

dependant on the parameter X which in turn is a 

function of the span, St. Venant torsional rigidity 
(GJ) and the warping torsional regidity ( Imo. ) . If 

% is small, the warping torsion predominates as in 

the case of a thin-walled cross-sectional beam such 

as cold formed steel profiles where the St. Venant 

torsion can be ignored. However, if J is large, 

St. Venant torsion predominates as in the case of 

the solid section where the warping torsion can be 

ignored. The exact theory of torsion for the case 

of prismatic members which are free to warp was 

first presented in 1.886 by St. Venant. The theory 

was then extended by Vlasov (1.2) to cover the 

general case of restrained thin-walled beams. 

Structural concrete members can be classified 
into two main groups according to their behaviour 
. in torsion. The first group comprises box-beams 

15. 
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with thick-walled rigid cross-section in which 

the profile's cross-section does not change under 

load. The second group comprises thin-walled 

box beams with deformable cross-sections. 

/ 

The torsional deformation of a thin-walled 

box-beam will result in further warping stresses 

arising from in-plane displacement of the walls 

of the beam and transverse flexural distorsional 

moment arising from the out of plane displacement 

of the walls. Various analytical techniques have 

been developed in the past decade which consider 

the cross-sectional deformation of a thin-walled 

beam. These may be classified as follows: 

a. Beam methods. 

b. Folded plate methods. 

c. Finite segment methods. 

d. Finite strip methods. 

e. Finite element methods. 

f. Equivalent gridwork methods. 

A review giving the advantages, disadvantages, 

adequacy and limitation of these methods has been 

published by Maisel (1.3). The validity of some 

of these theories has been tested against the 

behaviour of concrete model box beams by Mitwally 

(1.4). it is clear from the available analytical 

and experimental evidence that the torsional and 

distorsional response must be considered in the 

design of thin-walled box beams. 

1.3 Ultimate Strength 

At the inception of this research programme 

it was recognised that although considerable 

progress has been made in the field of elastic 

17 



analysis, knowledge of the ultimate strength of thick 

and thin-walled box members subjected to combined 

torsion, bending and shear was almost non-existant. 

The scarcity of research information on the ultimate 

strength of these members has delayed the develop- 

ment of a rational design method for box beam bridges. 

Collapse of various important steel box beam bridges 

highlighted the need for and gave impetus to 

research workers to study the ultimate strength 

of steel box beams. 

Study of the ultimate strength of reinforced 

and prestressed concrete beams under bending and 

shear has been so extensive that its logical 

outcome has now been incorporated in the code of 

practice of many countries including the U. K.; 

whereas study of these beams under combined torsion, 

bending and shear has been lacking. Furthermore, 

considerable disagreement exists among researchers 

on how torsion is resisted at ultimate load even 

for the simple loading case of reinforced concrete 

beams subjected to pure torsion. 

The earliest contribution to the study of 

ultimate strength of concrete members subjected to 

torsion is due to Morsch (1.5) in 1903. Another 

important early contributor is Rausch (1.6) who in 

1929 studied the strength of reinforced concrete 

beams under pure torsion. Nylander (1.7) in 1945 

was the first to publish test results of the strength 

of reinforced concrete beams under combined torsion, 

bending and shear. Between 1950.1955, Cowan (1.8) 

developed an elastic approach to the-design of 

reinforced concrete beams under combined loading 

systems. 

18. 



The most important theoretical and 

experimental contribution in the study of reinforced 

concrete beams under combined torsion, bending and 

shear was made by Lessig (1.9) and Colleagues in 

Russia. in this work, a new approach based on 

the equilibrium conditions of an observed failure 

mechanism was presented. 

In 1966, the American Concrete Institute 

organised a symposium on this subject at which 18 

papers were presented (1.10). These papers 

illustrate the extent of disagreement that existed 

among the authors on how torsion is resisted in 

reinforced concrete members. 

Lampert and Thurlimann (1.11) have proposed 

the space truss analogy for the case of combined 

bending and torsion. The validity of the Lessig and 

Lampert theories is restricted by the yielding of 

reinforcement. To satisfy this requirement various 

empirical limits on certain parameters have been 

suggested by these authors. 

Lessig's theory was extended by Goode and 

Helmy (1.12) and Collins et al (1.13) to include 

the case for yielding of longitudinal bars located 

on the top of the beam. In addition Goode and 

Helmy considered other modes of failure of reinforced 

concrete beams subjected to bending and torsion in 

which the transverse and/or the longitudinal steel 

do not yield. Collins et al also suggested semi 

empirical formulae to predict the ultimate strength 

of members subjected to combined torsion, bending and 

shear. Alternative skew bending approach was 

developed in 1965 by Evans and Sarkar (1.14) for 

the case of reinforced concrete beams under combined 

bending and torsion. Another paper was published 

19. 
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by Evans and Khalil (1.15) for the case of pre- 

stressed concrete beamsunder bending and torsion. 

In 1970 Zia (1.16) published a short state 

of the art review on the subject of torsion in 

concrete members. in this paper Zia pointed out 

that there was no general theory for predicting 

the strength of concrete members under combined 

torsion, bending and shear. He also pointed out 

the need for further research on prestressed 

concrete beams under torsion bending and shear. 

in 1972 Lampert and Collins (1.17) attempted 

to clarify the confusion that had been created by 

the large number of contradictory papers about 

torsion in reinforced concrete beams subjected 

to bending and torsion. 

1.3.2 Comments on Ultimate Strength Methods 

From the above brief review the following 

comments can be made: 

a. Confusion still exists with regard to the 

mechanism of transfer of torsion in rein- 

forced and prestressed concrete beams. 

b. Research information on the strength of 

reinforced and prestressed concrete beams 

under the combined action of torsion, bend- 

ing and shear is scarce. 

C, The effect of warping and transverse moments 

due to distorsion of the cross section on 

ultimate strength has not been investigated. 

(a) may be attributed to the fact that shear 
' or torsion can be resisted by one or more of the 

following: 

20. 



1. Uncracked concrete. 

2. By interlocking of aggregate in 

cracked concrete. 

3. Reinforcement acting as a dowel. 

4. Reinforcement in the form of longitudinal 

and transverse reinforcement. 

This confusion may be due to the failure of 

reinforced and prestressed concrete beams under 

combined torsion, bending and shear produced by 

failure of one or more of the four possible shear 

paths. Therefore, the following twelve modes of 

failure are envisaged for rectangular beams: 

i Three modes characterised by yielding of 

longitudinal. and transverse reinforcement. 

ii Three nodes characterised by yielding of 

longitudinal reinforcement and the failure 

of-aggregate interlock or failure due to 

dowel forces. 

iii Three modes characterised by yielding of 

transverse reinforcement and failure of 

aggregate interlock or failure due to 

dowel forces. 

iv Three modes characterised by failure of 

concrete prior to yielding of reinforcement. 

There is no one general theoretical treatment 

to all of the above modes of failure neither is 

there any information on the mechanism of transfer 

of torsion for the various modes of failure. 

21 



1.4 Object and Scope 

From the above short review it is evident 

that although considerable progress has been 

made for the case of elastic behaviour, relatively 

small volume of research has been published on 

ultimate strength of reinforced and prestressed 

concrete members under combined torsion and shear. 

The object of this research. is: 

1. To propound a rational approach for predicting 

cracking and ultimate strength of reinforced 

and prestressed concrete membcrs subjected to 

combined torsion, bending and shear. 

2. To investigate mechanisms of transfer of 

torsion for reinforced concrete beams under 

pure torsion. 

3. To present test results on the behaviour and 

strength of thin-walled prestressed concrete 

box beams under the action of in-plane forces 

. generated by torsion, bending and shear. 

It has been the aim throughout the development 

of this work that the proposed theories should not 

only be rational but also simple and accurate so 

t'nat they could be of direct use to the practicing 

structural engineer. In order to achieve this 

objective, the effect of various parameters which 

are known to influence the strength of reinforced 

and prestressed concrete members under torsion, 

bending and shear were examined. Parameters 

found to have secondary contributionswere 

eliminated. 
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A method for predicting the cracking strength 

for reinforced and prestressed concrete beams 

subjected to torsion bending and shear is given 

in Chapter 2. Chapter 3 presents a theoretical 

study of the mecahnism of transfer of torsion and 

the strength of reinforced and prestressed concrete 

members under pure torsion. 

In Chapter 4, theoretical expressions for 

predicting the ultimate strength of reinforced and 

prestressed concrete members ar e given for three 

yield modes of failure for beams subjected to 

torsion, bending and shear. In Chapter 5, 

theoretical expressions for predicting the ultimate 

strength of reinforced and prestressed concrete 

members under torsion, bending and shear are given 

for modes other than yield failure. 

In Chapters 2-5, the proposed theories have 

been compared with a large number of test results 

reported in literature. 

The test results from 25 thin-walled prestress- 

ed concrete beams subjected to pure torsion, torsion 

and bending, torsion bending and shear are given in 

Chapter 6. Chapter 7 contains a theoretical and 

experimental study of the behaviour of dowels. 

Chapter 8 contains the summary of conclusions of 

this thesis. 
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CHAPTER 2 

CRACKING STRENGTH OF PLAIN AND PRESTRESSED CONCRETE 

MEMBERS SUBJECTED TO BENDING TORSION AND SHEAR 

Summary 

The existing methods for calculating cracking 

strength are reviewed. A lower bound method for 

calculating the cracking resistance for beams 

subjected to bending, torsion and shear is presented 

which is based on an acceptable elastic stress field, 

maximum stress failure criterion and modified tensile 

strength for concrete. 

The predictions of the theory are compared with 

about 400 test results available in literature. 

In general the agreement is good. 
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2.1 Introduction 

All available research information on the 

behaviour of structural concrete members subjected 

to torsion, indicate that there are fundamental 

changes in the response of these members after the 

formation of the first crack such as a drastic drop 

in the torsional stiffness which in some cases may 

lead to immediate failure. Hence since cracking 

affects the serviceability and strength of these 

structural members, it is essential that the 

cracking torque be accurately predicted by simple 

and rational theory. 

Although a number of theories are now avail- 

able for predicting the cracking torque, they all 

lack the necessary consistency when compared with 

test results. This discrepancy could be attributed 

to one or more of the following reasons: 

a) The stress distribution across the section 

is incorrectly assumed. 

b) The use of incorrect failure criterion. 

c) Wrong assessment of tensile strength of 

concrete. 

It is therefore, the object of this chapter 

to review these theoriesrto examine their accuracy 

and limitations and to develop a rational approach 

to this problem which will yield a better correlation 

with available test results. This subject will be 

dealt with according to the manner of loading i. e. 

pure torsion, combined bending and torsion, 

combined bending, torsion and shear. 

2.2 Pure Torsion 

A summary of the cracking torque theories for 
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concrete beams under pure torsion is given in 

Table 2.1. 

2.2.1 Stress Distribution Prior To Cracking 

It is not surprising to find the first cracking 

strength theories utilizing the St. Venant elastic 

theory for pure torsion, this theory assumes that 

the concrete is homogeneous and obeys Hook's law 

up to the point of cracking. Bach (1), for 

example, utilized this theory and assumed that 

cracks occur when the maximum principal tensile 

stress in the section reaches the uniaxial tensile 

strength of concrete. Experimental evidence 

indicates that the torque-rotation relationship 

for concrete remains almost linear up to cracking 

and for unreinforced concrete beams, failure 

usually occurs suddenly in a brittle manner hence, 

confirming the validity of the assumptions made 

in this theory. On the other hand this approach 

usually underestimates the cracking torque of test 

results by almost 50%. Further criticism of this 

approach is the difficulty encountered in solving 

the St. Venant equation for any practical problems. 

To account for these discrepancies between 

predicted and test results, Marshall (8,9) and 

others utilized the Nadia plastic theory of torsion. 

In this theory the materials are assumed to undergo 
infinite plastic deformation and cracking is assumed 
to occur when the maximum principal tensile stress 

reaches the uniaxial tensile strength of concrete. 
This theory was selected on the basis of its ability 
to predict the results in the tests they carried out. 
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TABLE 2.1 Summary of cracking strength theories forbeams under pure torsion 

Investigator 
Ref- 

erence Year 
Stress 

Distribution 
-Failure 

criterion 

Concrete 
Strength 

Appli 
cation 

Graf and Bach 1 St. Venant Max. Pr Stress ft P 

Cowan 2,3 1950 St. Venant Max. Pr Stress ft RC & 

and Nadia P. S. C 

Humphreys 4 1957 St. Venant Max. Pr Stress ft P& 
P. S. C. 

Zia 5 1961 St. Venant Simplified Mohrs ft P& 
Internal friction P. S. C. 

Evans & Khalil 6 1970 Adjusted Max. Pr Stress ft P. S. C. 

St. Venant 

Collins M. P. 7 1968 Nadia Max. Pr Stress ft R. C 

et al 

Gausel E. 8 1970 Nadia Max. Pr Stress ft P. S. C. 

Marshall W. T. 10,11 1944 Nadia Max. Pr Stress ft R. C. 
1974 

E 
Navaratnarajah 12 1968 St. Venant Max. Pr Stress C R. C. 

and Nadia 

Hsu. T. C. 13,14, 1966 Skew bending Mchrs Internal f. 
r 

P. & 
15 1968 friction P. S. C. 

Martin L. H. 17 1971 Skew bending Max. Pr Stress fr P. 

Martin L. H. & 18 1973 Skew bending Max. Pr Stress fr P. S. C. 

Wainwright P. J. 

P= Plain Concrete beams 

R. C. = Reinforced Concrete beams 

P. S. C. = Prestressed Concrete beams 

Max. Pr = Maximum Principal 

ft = Tensile Strength of Concrete 

fr = Modulus of rupture of concrete 
E0 = Young's Modulus for concrete 
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These authors justified the use of their theory 

by reference to the non-linear relationship obtained 

between torque and strains. In general this 

non-linearity is insignificant and does not justify 

the use of the plastic theory. In addition this 

method appears to overestimate the cracking torque 

particularly for the larger size members encountered 

in practice. 

In 1966 Hsu (11,12) introduced a new elastic 

.1 

approach for predicting the cracking torque for 

rectangular solid sections. He argued that torsional 

cracking occurs as a result of bending about skewed 

axes. Failure was assumed to occur when the 

maximum bending stress on this section reached the 

modulus of rupture of the concrete. Hsu verified 

his approach by the use of high speed photography 

and by comparison with his test results. 

. It can be shown that this method usually yields 

an upper bound prediction to the cracking strength 

since it is based on an assumed fracture plane i. e. 

it is always possible that a lower value for cracking 

can be obtained by considering other fracture planes. 

Although this approach was successfully applied to solid 

rectangular beams by Hsu and was further refined and 

extended to solid circular sections by Martin (17), 

it is doubtful whether this approach could accurately 

be applied to other sections which are commonly 

encountered in practice such as ,T or box sections. 

These limitations may be illustrated by considering 

a square hollow section beam shown in Fig. 2.1. 

Using first the Skew bending theory as proposed by 

Hsu and taking moments of forces about the neutral 

axis on the Skew failure plane as shown in Fig. 2.1: 
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T Cos 
Z. ft 

cr Sin 

where Z is the section modulus of the cross section. 

Re-arranging this equation we get: 

T= 
cr 

Z. ft 

Cos (9 Sin 
2.1 

It can be shown that T 
cr 

has a minimum value when 

= 450 . Substituting this value of into 

equation 2.1 

Tcr =2Z: t 
2.2 

For t <<h, z=3t h2 and the cracking 

torque becomes 

82 
Tyr= 3th £t 

v 

It is interesting to note that this expression 

over estimates the cracking torque by 33% when com- 

pared with the Bret Batho theory. 

An alternative solution to this problem may be 

found by considering the helical mode of failure and 

the stress distribution prior to failure as shown in 

Fig. 2.2. 

Taking moments of the forces about the longitud- 

inal axis, we get: 

T=4ht ft Cos &h 
cr Sin 8-2 
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Tcr 2t h2 ft Cot 
9 2.3 

T. may be shown to have a minimum value when 
0= 450 when equation 2.3 becomes: 

T, r =2t h2 ft 2.4 

This equation is identical to the Bret Batho 

expression. 

If a longitudinal crack is introduced in this 

beam, the response of this member to pure torque 

will be drastically altered and the cracking torque 

using the St. Venant theory for this open section is: 

Tar ±h 
t2 ft 

3 

and the ratio of the cracking torque for the closed 

and the open sections is 

Tcr closed 
_3 -h and for 

h= 10, This ratio = 15. 

Tcr Open 2tt 

Although the St. Venant torsion theory deals with 

these problems accurately, it is doubtful whether the 

open section can be solved satisfactorily and 

rationally by the Skew bending theory. In addition 

to these limitations to the Skew bending theory, 

experimental evidence indicates that the cracks 

usually take a helical form in contrast to what has 

been assumed by Hsu. The measurements of longitudinal 

strains in beams also does not support the stress 

distribution assumed in Hsu's theory, hence this 

concept is inferior to the St. Venant. theory of 

torsion. 

2.2.2 Failure Criterion 
i 

As stated earlier, all the experimental evidence 
fr 
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on the cracking of plain and prestressed concrete 

(where > 0.5) indicates that failure of beams 
f 

these beans occurs immediately after cracking with 

a cleavage made of fracture being exhibited. Hence 

the universal use of the maximum principal stress 

failure criterion is fully justified. 

2.2.3 Tensile Strength of Concrete 

All available research data on the tensile 

strength of concrete indicates that it varies 

considerably with the testing technique. For 

example the direct tensile strength and the 

strength obtained from the modulus of rupture test 

may differ by more than 100% for the same concrete. 

consequently the accuracy of prediction of cracking 

in any given situation depends on the appropriate 

selection of the tensile strength of the concrete, 

for instance in the case of a thin-walled box 

section subjected to bending a direct tensile 

strength may be more appropriate whereas for cracking 

resistance of a solid section in bending it may be 

preferable to utilize the flexural tensile strength. 

Similarly the flexural tensile strength is 

more appropriate for the prediction of cracking for 

beams with rectangular solid sections subjected to 

pure torque. For example Ifor rectangular beams 

with high aspect ratio, the principal stresses due 

to pure torsion follow closely the stress 

distribution due to bending, except at the ends 

of the shorter sides of the cross section as shown 

in Fig. 2.4. On the other hand for thin-walled 
beams subjected to pure torque the principal stresses 

are almost uniformly distributed across the thickness 

of the wall and along the walls of the bean. Hence, 

in this situation the direct tensile strength is 
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more appropriate. 

It is interesting to point out in passing 

that the agreement obtained by Hsu between his test 

results and theory is due to the appropriate 

selection of tensile strength of concrete rather 

than the use of his new skew bending theory. 

The variation between the modulus of rupture 

as a measure of tensile strength and the direct 

tensile strength has been attributed (21) to the 

following: 

a) The volume of concrete subjected to maximum 

stress is small, being limited to the 

extreme fibres, and therefore, the probability 

of a flaw being present at the critical location 

is smaller in the flexural test than the direct 

test. 

b) Due to some plastic deformations occuring as 

failure is approached. 

Since the flexural test similates the type of 

stress system imposed on a rectangular solid section 

subjected to bending and or torsion, it is the most 

useful test to apply if cracking is to be predicted 

under these conditions. 

Experimental investigations-(12) aimed at 

measuring direct tensile strength and modulus of 

rupture show that the modulus of rupture for the 

same concrete decreases with increase in depth of 

beam. Hsu attributed this effect to the variation 

in the strain gradient and he argued that when the 

size of the modulus of rupture beam becomes very 
large the strain gradient diminishes and the modulus 

of rupture, fr, approaches the tensile strength, f t. 

The experimental results obtained by Hsu are 
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plotted in Fig. 2.3 as a ratio of fr/ft against 

depth h mm together with data obtained by 

Gonnermant (19), Reagel (20, Wright (21) , and 

Komlas (22). Some of these investigations did 

not report the tensile strength, ft and their data 

are plotted using Hsu' s fr/ft value of 1.34 for the 

150 mm beam size as a reference. 

it is seen that the experimental relationship 

between fr/ft and h varies between the limits 

1+ 
35 <fr <i+L 

h ft h 

Hence the following average relationship between 
f r and h is recommended ft 

fr=1+ 55 
but not greater than 1.55 --- 2.5 

ft h 

<- 

a similar expression has been suggested by Hsu (13). 

In general only the cylinder compressive strength, 

fc , or the cube strength, fcu, are measured, hence, 

the relationship between the compressive strength 

and tensile strength is needed. Among the many 

empirical expressions relating the tensile strength 

to the compressive strength of concrete which are 

available, the following expression has received 

wide recognition and it has been included in CP 110. 

ft=0.36 f cu 2.6 

This expression is compared with test results in 

Fig. 2.6 where it is seen that it provides a safe 
limit for the test results and bence, a safe 

prediction of cracking strength is expected when 
this relationship is used. 

The scatter in the test results has been 
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attributed by Johnston (23) to the many parameters 
that usually influence this relationship. There- 

fore, a similar scatter in the ratio of experimental 
to theoretical cracking strength of a concrete member 
is expected if this expression is used. 

In cases where the cylinder strength f' is 

given, the relationship f=0.8 f cu is used. 

if the bending stress distribution occuring 
just before cracking for the rectangular beam shown 
in Fig. 2.4 is compared with the stress distribution 

due to pure torsion occuring just before cracking, 

then it will be seen that the surface area on the 

wide face of this beam which is under maximum stress 

is smaller for the torsional case then for bending 

and this discrepancy increases with a decrease in 

the aspect ratio of the section. This discrepancy 

has a maximum value for a square section and is 

negligible for rectangular beams with b 
11 > 10. 

Therefore, the cracking torque for rectangular 

beams having 
b> 

10 would be predicted accurately 

if the modulus of rupture is used as a measure of 
tensile strength. On the other hand the use of 

modulus of rupture is expected to underestimate 

the cracking torque for rectangular beams having 
h 
b 

<10. 

In order to obtain accurate prediction of 

cracking torque-for rectangular beams, a correct 

estimate of the tensile strength is essential and 

under this condition the tensile strength of 

concrete appeared to be a function of 
h. 

This 

can be shown by plotting all experimental results 
available in literature on plain` rectangular 
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concrete beams sibjected to pure torque as a ratio 

of maximum St. Venant stress (ft., ) occuring at 

cracking to the modulus of rupture of concrete (fr) 

against the aspect ratio of the section 
h 

as shown in 

Fig. 2.5. Regression analysis for these results 

indicates that the ratio ft2/fr tend to unity as 
h 

approaches zero. Regression lines for the test 

results of Hsu and Humphreys are also obtained as 

follows : 

. 
t2 

fr = 1.01 + 0.4 
h 

1.2 + 0.15 
b 

1'. 1+0.22 
h 

for all the test results 

for Hsu results 

for Humphreys results 

From this analysis and the test results shovm 
in Fig. 2.5, it appears that accurate assessment 

of the influence of the aspect ratio on the value 

of ft2 may take the following form: 
r 

ft2 
b 

fr ý1+ 4h 2.7 

2.3 Rectangular Concrete Beams Subjected to Bending 

Torsion and Shear 

Some of the research work sunarized in Table 

2.1 contains theories for predicting the cracking 

torque for beams subjected to bending and torsion. 

Cowan (3) derived an expression for predicting 

cracking strength for rectangular beams subjected 
to bending and torsion by assuming an elastic- 

plastic stress distribution in bending (i. e. he 

assumed a linear stress distribution in the 

compression zone and a second degree parabolic 

f 
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variation of the tensile stresses), together 

with a plastic shear stress distribution due to 

torsion. The cracking strength was then obtained 

by equating the maximum principal tensile stress 

to the uni-axial tensile strength of concrete. 

This approach was adopted by Evans and Sarker 

(24) and Fairbairn (25) for calculating the inclin- 

ation of the cracks for rectangular reinforced 

concrete beams subjected to torsion and bending 

which was necessary for their ultimate strength 

theories. 

Martin's skew bending theory which was mention- 

ed earlier has been developed for the case of 

combined bending and torsion. A linear stress 

distribution across the skew plane was assumed. 

This theory has been extended recently by Wainwright 

to prestressed concrete beams subjected to bending 

and torsion. 

These theories, however, have the same limitations 

and inaccuracies of their pure torsion counterpart. 

In addition no published theoretical work is at 

present available for predicting the cracking torque 

for beams subjected to the combined action of 

bending, torsion and shear. 

All research evidence on the behaviour of 

concrete beams subjected to bending, torsion and 

shear indicates that this behaviour is reasonably 

elastic up to cracking. Hence if this behaviour 

is assumed and cracking is taken to be governed 

by the criterion of maximum stress then cracking 

would occur when the maximum principal stress 

reaches the appropriate tensile strength of concrete. 
For expediency, cracking is taken to be initiated 
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only at three possible critical points on the cross 

section. These points are located at the centre 

line of the bottom face, web and top face of the 

cross section of the beam. These possible modes 

of cracking will be referred to in the following 

as mode 1, mode 2 and mode 3 as shown in Fig. 2.6. 

2.3.1 Mode 1 

If the equilibrium of forces acting on element 

1 shown in Fig. 2.6 are considered just prior to 

cracking, then: 

From vertical equilibrium we obtain 

T=f ttl 
Cos B1 = 

ftl 
cot 2.8 

Sin & 

From horizontal equilibrium we obtain 

Cot 6), = 
ft1 

. 
(fzi - fPl ) 2.9 

eleminating B, between these two equations and 

rearranging we obtain: 
1 

'ßj_' 2+=1+ fp1 2.10 
fýl ftl ftl 

Now using the following relationship between applied 

moments and stresses: 
T 

cr and f= Mcr 
z zti zl 

where Z1 and Z '*1 are the section modulus and 

St. Venant modulus for point 1 respectively. 

Substituting these expressions into equation 2.10 

and rearranging into a non dimensional interaction 

form: 

Tcr 2 

Tcrl 

Mcr 
-t- 

Mcrl 
1 2.11 
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where 
f 

T cr1 = Ztl f tl 1+ P1 2.12 

ftl 

which is the cracking torque of element 1 under 

pure torsion and 
f 

Mcrl Z1 f tl 1+ P1 2.13 

ftl 

which is the cracking moment of element 1 under 

pure bending. 

if the torque and moment are applied 

simultaneously according to a predetermined ratio 

1cr = 
Tcr 

. Then the cracking torque may be 

found by solving equation 2.11 

Tcr 
= j1 + Q( Y' 2 

. _, 
C Cr 2.14 

Tyrl 

where O` = 
Zti 

2Z 
1ý1+ ft l 

The angle of this crack from the longitudinal axis 

of the beam (ý 1) may be found by combining equation 

2.8 and 2.14 as follows: 

Cot e1=1+ pl + 
Ztl4r 

_tl 
Cr 2 , 15 

ftl 2Z1 2Z1 

For a rectangular solid section subjected to bending 

and torsion and where fp = zero, then equation 2.15 

may be shown to approximate to the following: 

expression: 

Cot &, 
.I 

1+ 
ýcr 

2.16 
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2.3.2 Mode 2 

If we consider the vertical and horizontal 

equilibrium of forces acting on the element 2 shown 

in Fig. 2.6 we get 

T= t2 Cot 191 

2.17 ~Cot B2=f 
t2 + fP2 

combining these two equations and rearranging we 

obtain: 

= ft2 1+f P2 2.18 

ft2 

Substituting in this equation in terms of the 

applied torque and shear force: 

TV 

= 
cr + cr 2.19 

Zt2 S2 

where Zt2is the St. Venant torsional modulus for 

Point. 2 and S2 is the "Shear Area" of the section 

we obtain 

T1 cr 
Z2 V 

cr2 1+ cr 2.20 
S2 Tcr 

or 

T 
cr 

= 
Rcr2 

Tcr 
1+ r 2.21 

1 S2 Tcr 

where 

! g2 
I 

Tr2 1+= 
Rcr2 = 

Zt2 f t2 ft2 

Tcrl Zti ftl 
1+ fPI 

fti 
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and for the case of a beam subjected to a single 

point load Vcr can be written: 

vCr 
= 

Mcr 
where a is the shear span hence 

equation 2.21 may be written as follows: 

rý Tcr Rcr2 q Cr , cr 2.22 

T 
crl 

rscrL 

Zt2 
Mcr2 

where tý(Cr 

S2 aT cr2 

The crack angle (ýZ may be found from equation 

2.17 and 2.18 as follows: 

Cot 02 
= Ji + ft2 

2.23 

2.3.3 Mode 3 

The torque causing cracking at element 3 in 

fig. 2.6 may be found by considering the change in 

direction of the bending stresses from that of mode 

1. This will lead to the following general non 

interaction equation 

T cr 
2 M. cr 2.24 

Tara A4cr3 

and for a doubly symmetrical section we have 

1+ =`- 
Mcr3 ft3 

_ Rcr3 

Mcrl 1+ fPý. 
ftl 

and 

cri 
1 

ft3 T+ 

T crl 1+ fP1 
f ti 
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Hence, equation 2.24 may be written as follows 

Tcr TZ 
cr-r= Rcr3 2.25 

T crl Mcrl 

This equation may be solved for the cracking torque 

as follows: 

Tr 
= 

Rcr + cr 
2+ Ol 2.26 J3 fcr 

T cri 

and 

Cot =1+ 
fP3 

+ 
(z3 

/ cr 
2+ Zt. 3 

, Cr ý3 

t3 
2Z3 2Z3 -: 

E, 

2.27 

The relationships between these modes of 

cracking are shown in Fig. 2.8 on which it can be 

seen that the shape of the interaction diagram will 

depend on the values of Rcr and that for reinforced 

and prestressed concrete beams which are uniformly 

stressed, Rcr3 
=1. This means that mode 3 cracking 

will not occur for these beams. Mode 3 cracking 

would only occur in an eccentrically prestressed 

beam and only when the prestress at the top of the 

beam is low. 

The effect of shear is seen to extend mode 2 

cracking over a wider range of the load combinations. 

2.4 Application of Proposed Method to Rectangular 

Concrete Beams 

2.4.1 Box Beam 

For thin-walled box beams, the cracking 
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resistance may be simply obtained by substituting 

the appropriate section properties in equations 

2.14,2.22 and 2.26. The St. Venant modulus 

may be obtained from the Bret-Batho expression 

given in equation 2.4. The tensile strength for 

the concrete may be taken as the uniaxial tensile 

strength given in expression 2.6 for all these 

three critical points. 

2.4.2 Rectangular Solid Section Beam 

The prediction of cracking strength for these 

mertbers has given rise to many controversies and 

disagreements between research. workers in this 

field. As mentioned earlier, the correct assess- 

ment of cracking strength depends on the method 

of calculating the sectional properties and the 

selection of the appropriate 1 nsile strength 

of concrete. Among the required sectional 

properties the calculation of. the St. Venant 

modulus is very difficult to obtain without 

the aid of a computer. However, for rectangular 

sections the St. Venant modulus may be written as: 

Zý 
=k b2 h 

where k is coefficient which depends on the 
h 

ratio and the position of the point under con- 

sideration. 

Many simplified expressions have been 

suggested for evaluation of k for' a point located 

on the middle ofýthe wider face of the rectangular 

beam. For example Bach (1) suggested the following 

expression: 
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k2 

3+2.6 

i+0.45 

This expression is found to give a good correlation 

with the exact solution. No such simplified express- 

ions are available however in literature for other 

points of the section so the following expression is 

suggested for the determination of a point located 

at the middle of the shorter side of a rectangular 

beam: 

k1 
=1 

2.24 + 
1.65 

h_0.35 

This expression can be shown to give good correlation 

with exact values. 

The second required parameter for the calculation 

of cracking strength is the correct assessment value 

of the tensile strength of concrete. For a point 

located on the middle of the beam, the tensile 

strength may be obtained from equations 2.5,2.6 

and 2.7 as follows: 

ft2 = 0.36 fcu 1+ 
55 1+1b2.28 

b4h 

Similarly the tensile strength for a point located 

at the middle of the shorter face of the rectangular 

beams will depend on the strain gradients across the 

section due to bending and torsion. In the case 

when the section is subjected to bending only, the 

tensile strength may be taken as the modulus of 

rupture as given by expression 2.5 and 2.6. On 
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the other hand when the beam is subjected to a 

pure torque, the strain gradient will be equivalent 

to the case of that of a square beam cross section 

and the tensile strength may be found from 

expression 2.28 by putting h= unity. When the 

section is under combined torsion and bending the 

tensile strength is expected to lie between these 

limits and is a function of the 
T ratio. Hence 

the following expression is suggested: 

55 0.25 
ftl 0.36 fcu 1+hl+l+ 1P 2.29 

10 

2.5 Correlation of Proposed Method With Test Results 

The cracking strength equations developed in 

this chapter are compared with published data listed 

in Tables 2.2 to 2.5 and shown in Fig. 2.9 to 

Fig. 2.12. 

2.5.1 Plain Concrete Beams Subjected to Pure Torque 

Table 2.2 compares the theoretical and 

experimental results of 70 rectangular plain 

concrete beams having different aspect ratios, sizes 

and concrete strength subjected to pure torque. 

The mean value of Tcr (exp) /'rcr (th) is 1.08 with 

a coefficient of variation of 14.62 percent. The 

accuracy of prediction obtained from this theory 

may be compared with values obtained from other 

theories. For example Martin found the ratio 

T (exp) /'r (th) = 1.04 with a coefficient of variation 

of 21 percent for these test results. Hence the 

proposed method gives a better coefficient of 

variation than the Skew bending theory. The reason 

. for the shift in the ratio of T (exp) /'r (th) from 

unity can be attributed to the safe predictions of the 
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TABLE 2.2 Correlation of Theory to Experimental Results 

For Rectangular Plain Concrete Beams Subjected 

to Pure Torsion 

Investigator Ref Number 
of 

Beams 

Mean 

Tcr (exp 
Tcr (th) 

Coefficient 
of 

Variation 
/o 

Humphreys 4 20 1.08 3.71 

Zia 5 9 0.85 7.4 

Evans & Khalil 6 2 0.93 - 

Collins et al 7 8 1.23 20 

Marshall, & 9 12 1 . 13 11.9 
Tembe 

Hsu 12 10 1.13 9.53 

Iyenar & 26 3 1.04 4.34 
Rangan 

Navaratnaraj ah 27 6 1.17 4.23 

Total 70 1.08 14.62 
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tensile strength as obtained from equation 2.6 

and illustrated in Fig. 2.6. 

2.5.2 Reinforced Concrete Beams Without Web Reinforcement 

Subjected to Pure Torque 

Table2.3compares the theoretical and experi- 

mental results of 49 rectangular beams with 

longitudinal reinforcement only subjected to pure 

torsion. The mean value of T 
cr 

(exp) /'rcr (th) is 

1.12 with a coefficient of variation of 7.6 percent. 

These results indicate that the presence of 

longitudinal reinforcement has little effect on 

the cracking resistance of the beam. The cracking 

strength of these beams also correspond to their 

ultimate strength. 

Fig. 2.9 shows that the ratio of the experimental 

cracking torque to the predicted values is independent 

of the aspect ratio of the beam cross section. This 

is unlike the ratios of Tcr (exp)frcr (th) obtained 

from all other theories which can be shown to be 

influenced by the aspect ratio of the bean. 

2.5.3 Reinforced Concrete Beams With Web Reinforcement 

Subjected to Pure Torque 

Table 2.3 also gives a comparison between the 

theoretical and experimental results for 61 rein- 
forced concrete beams containing varying amounts 

of reinforcement and having different concrete 

strengths, aspect ratios and sizes.. The. mean 

value of Tcr (exp) /'1'ßr (th) is 1.2 and the 

coefficient of variations is 10.08 percent. These 

results indicate that the web reinforcement increases 

the cracking torque by an average value of 12 percent. 
This increase in cracking resistance due to the 
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TABLE 2.3 Correlation of Theory to Experimental Results For 

Rectangular Reinforced Concrete Beams Subjected 

to Pure Torsion 

Number Mean Coefficient Details 
Investigator Ref of Tcr (ex p) Of of 

Beams 
cr (th) Variation Beams 

Humphreys 4 17 1.11 5.1 Without Web 
reinf . 

Marshall and 9 6 1.14 4.8 
Tembe 

Iyengar and 26 24 1.14 5.7 " 
Rangan 

Goode and 27 2 0.96 - 
Helmey 

Total 49 1.12 . 7.26 

Hsu 16 49 1.23 8.6 With Web 
reinf . 

Okada 29 12 1.06 9.33 

Total 61 1.2 10.08 

Mitchell et al 30 9 0.75 8.9 Box Beams 
With Web 
reinf. 

Lampert and 31 3 0.89 6.34 
Thurlimann 

Total 12 0.78 11.05 
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presence of reinforcement has been reported by 

Hsu (16) who found that the cracking resistance 

increased with increase in the volume of reinforce- 

ment in the beam. 

Table 2.3 also contains the results of 12 

reinforced concrete box beams. The mean value 

of Tcr (exp) /'rcr (th) is 0.78 and the coefficient 

of variation is 11.05 percent. it is interesting to 

note that the cracking strength of these beams were 

consistantly lower than the predicted values. This 

may be due to the additional stresses occuring as 

a result of shrinkage restraint developing as a 

result of the method of fabrication which was adopted 

for these specimens. The wall-thickness of these 

-boxes may well have been smaller in certain parts of 

the beams than the design wall-thickness of these 

specimens. However, these results deserve further 

investigation to find the actual reason for. this 

reduction in the cracking strength. 

2.5.4 Prestressed Concrete Beams Without Web Reinforcement 

Subjected to Pure Torsion .- 
Torsion and Bending. 

Table 2.4 compares theoretical and experimental 

results for 101 available tests. 
. 

The mean ratio 

of T. cr (exp) fr cr (th) = 1.07 with coefficient of 

variation 12.06 percent. 

The ratio of Tcr (exp) /'rcr (th) for the beams 

subjected to pure torsion has been plotted in Fig. 

2.10 against the, ratio of fp/f 
cu. It can be seen 

that the increase in the compressive principal 

stresses as a result-. of increase in prestress has 

no effect on the 
Tcr ehp 

ratio up to a limiting 
cr th 

value of fp/fcu = 0.7, therefore, the assumption 

made regarding the use of maximum stress failure 
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criterion is fully justified and since for all 

practical prestressed concrete beams, fp/fcu is 

unlikely to exceed 0.5, the use of this comparatively 

simple failure criterion will lead to a simple 

method for predicting cracking strength. For a 

ratio fp/fcu exceeding 0.7 the maximum stress 

criterion is seen to overestimate the cracking 

resistance of prestressed concrete beams. For 

this reason an upper limit on this ratio of 0.7 

is suggested. 

Mode 2 cracking for prestressed concrete beams 

always leads to immediate failure. 

The ratio of T cr (exp) A cr (th) is plotted in 

Fig. 2.11 against moment/torque for beams subjected 

to bending and torsion for all cracking modes. It 

is seen that the ratio ri/'r has no significant 

influence on the correlations between the theoretical 

predictions and the experimental cracking torque. 

For beams cracking according to mode 1, cracking 

usually did not precipitate failure and they continued 

to sustain a further increase in torque as a result 

of redistribution of stresses in the beams. Beams 

cracking in mode 3 continued to take further increase 

in torque up to the occurrence of mode 2 cracking. 

Using the skew bending concept, Wainwright found 

that for the beams given in Table 2.4 which cracked 

. 
according to mode 2, the ratio T (exp)/T (th) = 1.01 

and the coefficient of variation was 14 percent. 

Therefore, the proposed approach has a narrower band 

width for the scatter in the Ter (exp)/T 
cr 

(th) 

values than other theories, hence confirming the 

soundness of this approach. The reason for the 
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TABLE 2.4 Correlation of Theory to Experimental Results 

For Rectangular Prestressed Concrete Beams - 

Without Web Reinforcement - Subjected to Pure 

Torsion, Bending and Torsion. 

Mode Number Mean Coefficient 
Investigator Ref of of Tcr (e:; p) of 

Cracking Beams Tcr (th) Variation 

Humphreys 4 2 56 1.05 10.51 

3 4 1.30 8.70 

Zia 5 2 3 0.79 2.8 

3 6 1.2 8.59 

Evans and 6 1 18 1.1 8.75, 
Khalil 2 2 1.06 

3 1 1.29 

Okada 29 1 4 1.1 11.85 

2 4 0.96 8.10 

Nylander 32 2 3 1.19 4.10 

1 22 1.09 9.34 

2 68 1.03 11.75 

Total 
3 11 1.26 8.60 

- 1,2& 3 101 1.07 13.06 
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TABLE 2.5 Correlation of Theory to Experimental Results 

For Rectangular Prestressed Concrete Beams with 

Web reinforcement Subjected to Bending, Torsion 

and Shear 

Mode Number Mean Coeffi - 
investigator Ref of of Tcr cr (exp) 

. 
Loading, 

Cracking Beams T cr (th) of 
Variation 

Evans and 6 1 10 1.08 8.0 
Khalil 2 2 1.10 - B&T 

3 2 1.26 - 

Okada 29 1 4 1.32 13.80 B&T 

2 4 1.15 2.60 

Ranga Rao 33 1 30 1.24 12.23 B&T 

and Zia 2 10 1.12 10.40 

Henry and 34 1 24 1.11 13.13 B, T 
Zia & Sheaz 

2 7 1.17 10.40 

1 68 1.18 14.03 

Total 2 24 1.14 9.5 

1,2 & 94 1.17 13.06 
3 
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high value of cr (exp) /Tcr (th) has already been 

explained. 

2.5.5 Prestressed Concrete Beams With Web Reinforcement - 

i Subjected to Bending and Torsion, and Bending, 

Torsion and Shear. 

Table 2.5 contains the results of 94 rectangular 

prestressed concrete beams with web reinforcement 

and subjected to bending and torsion. The details 

of the beams reported by Henry and Zia are similar 

in detail to the beams tested by Ranga Rao and Zia, 

but subjected to bending, torsion and shear. The 

mean ratio of Tcr (exp) /'Tcr. (th) = 1.17 and the 

coefficient of variation is 13.06 percent for all 

the experimental results. The ratio of T 
cr 

(exp)/ 

T cr 
(th) has been plotted against the M/T. ratio. 

These results appear to reflect the same picture 

as in the case of beams. without reinforcement with 

the exception that beams with web reinforcement 

appear to have higher cracking strengths than beams 

without web reinforcement. 

Henry and Zia describe the mode of cracking bf 

their beams. it can be shown that the proposed 

theory predicts these cracking modes satisfactorily. 

2.6 Conclusions 

From this study of the cracking strength of 

reinforced and prestressed concrete beams which 

are subjected to bending, torsion and shear, the 

following conclusions are drawn: 

1. Elastic theories accurately predict the 

stress distribution in the beam up to cracking. 
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2. The maximum stress failure criterion gives 

a simple and accurate prediction of the 

cracking strength. 

3. Cracking strength for concrete and pre- 

stressed beams under combined bending, torsion 

and shear can be accurately predicted with the 

use of elastic stress field, maximum stress 

failure criterion and a modified tensile 

strength. 

4. Of the various methods of specifying the 

tensile strength of, concrete, the modulus 

of rupture was found to be the most appropriate 

for predictions of cracking of rectangular 

solid sections. 

5. The modifications for modulus of rupture 

proposed in this study are based on the in- 

fluence of the strain gradient on the tensile 

strength which has been found to be a function 

of the height, h 
and 

T 
ratios. 

6. Computation of the cracking resistance based 

on an assumed plane of fracture (Hsu and Martin 

theory) has been shown to give an upper bound 

solution to the problem. In contrast the 

proposed method of calculating the cracking 

resistance based on assumed elastic stress 

field would produce a good lower bound solution. 

7. The cracking torque may be increased substantially 

by prestressing. This increase in torsional 

resistance has an upper value at = 0.7. 
t 

8. For reinforced and plain concrete beams, cracking 

according to mode 2 leads to immediate failure. 

9. The presence of longitudinal reinforcement has 

little effect on cracking resistance. 11 
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10. The addition of web reinforcement may 

increase the crack resistance by 12 percent. 

11. The proposed method has been compared with 

the results of 387 tests reported in 

literature. In general the agreement is 

good. - 
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CHAPTER 3 

ULTIMATE STRENGTH OF REINFORCED AND PRESTRESSED CONCRETE 

BEAMS WITH TRANSVERSE REINFORCEMENT SUBJECTED TO PURE 

TORSION. 

Summary 

Theoretical studies of the behaviour and strength 

of reinforced and prestressed concrete beams having web 

reinforcement and subjected to pure torsion are 

presented in this chapter. 

The effect of 

a) spacing of stirrups, 

b) dowel forces, 

c) resistance of concrete and 

d) aggregate interlock 

have been examined. 

Rational theories for predicting various modes of 

failure have been developed and these have been compared 

with test results of about two hundred reinforced and 

prestressed concrete beams published in technical. 

literature. 
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3.1 Introduction 

Since the pioneering work of Marsch (3.1) in 

1904 it has been known that the addition of 

transverse reinforcement to a reinforced or 

prestressed concrete beam subjected to pure torsion 

improves their behaviour-and can increase their 

strength beyond cracking. 

In 1929 Rausch (3.2) suggested the sp. ce truss 

analogy as a way of calculating the ultimate 

strength of beams under pure torque. 

The research study on the behaviour of concrete 

beams subjected to pure torsion has been sporadic 

during the first half of this century and it is only 

in the last decade that research activities on this 

subject have been intensified. 

In 1970, Zia (3.3) published a short "state of 

the art" review examining all important published 

data on the subject. In this paper, Zia stated 

that no generally accepted theory has yet been 

developed for the prediction of the ultimate torque 

carrying capacity of reinforced concrete beams (let 

alone prestressed concrete beams); although many 

approaches have been suggested in. the published 

literature. This maybe attributed to the large 

number of factors that are known to affect the 

ultimate torque capacity, leading to a variety of 

modes of failure. In 1966 Hsu (. 3.5) identified 

the following modes of failure:. 

1. Under-reinforced failure (U. R) 

This mode of failure is said to occur when 
both the longitudinal and transverse rein- 

forcement reach their full axial yield 
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strength at failure. 

2. Partially over-reinforced failure (POR) 

When only the longitudinal or the transverse 

reinforcement reaches its. full axial yield strength 

at failure. This mode of failure will be 

designated in the following as POR. 

3. Over-reinforced failure (OR) 

When both the longitudinal and transverse 

reinforcement do not reach their full axial 

yield strength at failure. This mode of 

failure will be designated as OR. 

4. Inadequate reinforcement failure 

In this mode, failure occurs immediately'after 

cracking due to an inadequate volume of 

reinforcement. 

The object of this chapter is to examine in 

detail these modes'of failure and the existing 

methods that are used for calculating the ultimate 

torque carrying capacity of-reinforced and 

prestressed concrete beams, to study the importance 

or otherwise of some phenomena that have been 

observed in tests which could not be explained by 

existing theories, and finally to develop rational 

theories for these modes of failures. 

N 
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3.2 Under-reinforced Failure 

All existing experimental evidence on: this 'subject 

suggests that this mode of failure is usually gradual 

and the member exhibits considerable ductility and is 

therefore desirable in practical situations. Many 

methods for calculating the ultimate torque of 

reinforced concrete beams for this mode of failure 

can be found in literature and these maybe classified 

into three main categories as follows: 

1. Empirical approaches 

2. Semi-rational methods 

3. Yield or equilibrium theories. 

This classification may indicate the range of 

the opinions which exist among investigators on how 

torque is resisted by reinforced concrete beams after 

cracking has occurred. This disagreement between 

the theories and the inability of any of them to 

predict satisfactorily the ultimate torque carrying 

capacity for beams within a practical range of 

variable maybe attributed to either wrong assurptions, 

erroneous interpretation of test results or lack of 

experimental evidence. The following discussion 

traces the broad development of these methods and 

examines the validity and limitations of the various 

assumptions which have been. made in their development. 

3.2.1 Empirical Approaches 

Among the pioneers who conducted experimental 

investigation on this subject are Turner and Davis 

(3.8), Marshall and Tembe (3.9) who provided 

valuable research data on this subject. In recent 

years extensive tests programmes have been carried 

out by Hsu (3.5) at the Portland Cement Association 
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in America. Further experimental data has been 

published by Rangan (3.10) and Pandit (3.11). 

All these investigators have suggested an 

empirical expression for predicting the ultimate 

torsional strength for reinforced concrete beams 

which take the following form: 

Tu -ý1Tcr+Qiý2Ts 
3.1 

where Tu is the ultimate torque 

pal Tcr represent the torque resisted by 

concrete which was taken as the cracking 

torque (except in Hsu's method) 

2 
Ts is the torque resisted by the web 

reinforcement and W1 and (k2 are factors 

which were determined empirically. 

A summary of all the methods used for calculat- 

ing the ultimate torque for reinforced and pre- 

stressed concrete beams are given in Table 3.1. 

It must be pointed out that although these 

expressions were intended for beams failing-in this 

mode only, the experimental techniques used to 

ascertain the occurrence of this mode were either 

suspect or did not exist. For example readings 

from E. R. S gauges attached to one side of the 

reinforcement do not necessarily indicate that the 

reinforcement reached its full axial yield strength. 

65. 



ro 
0 
E) 
0 

w 

m 

0 
4-I 
N 
0 

$4 
0 

H 
U 

C" 

GJ 
N 

co 
d 
4) 

14 
14 P 

44 
0 

Cl) 

ri 

N 

ro m 4) U 
d 

41 
0 
U 

U 
U 

0 
w 

d 
P4 
A 

4J 

N 

d 
4) 
m 
U 

0 
W 

m N 
N 
d 

43 

d 
$4 

104 

N 

O 
H 
N 

O 

a 0 
.a ) V U U U 

U U U U U U U UU V U U vý ýn cn vý ä ä ä ä ä ä c ää ä ä as w w w w 

ä 

º 

EP 
v E-PI EVI EVI N 6. r 

Qr I -X 

44 
CD 

Z. 
- 

V O O 
ET 

ý. k 
m 

ý} >4 IP ET 
ýa ý{ w 

E+ 
7n 
E+ 

N I 44 
1X 

i 
a aD N 

" u MM . M ýýä o 0 00 1-` o E"I N 

P 4-4 

cl, 14 Ix 

ÜN 
J 

i3 
! t. 01 

M 
ko 

ýwl>o 

,r 
N O 

i 

II 
oO Q + v 

,r KO r_ 
+ 

M ko 

. is it 1 .01 
it 

tn 
4 11 4? 

144 
0 

O H 
V 

E' 0 0` O 
V 

I14 
Ü 

E+ 

$4 

E4 E+" 

O 

+ 

Ö 
4J LAI ý 

, 1I M in I 

"H 0 

wü 
U 

- 
-wu 

All- N 
Ä 

N 
, qp 1 a A 

N 

A 
0 

. 

NN NIM N 'IM M 
N 

$4 
fJ 

(A 
N 

r- 
M 

in 
, f1 

OD to 
%O 

> ý 
ý O's ON 

ä N N . -1 M r-1 a 
. "ý U1 rl N 

'-1 
"-i 

f1 
. -1 

M 
Nr 

LA 
ý 

w 
N 

M M M 
4 

MM M M M 
" 

M cl M M M 

N 

M 

1- 

M 

14 
0 S 

tit C: 
N t 

N 0 
0 

10 
1 

i° 
1 

J. 1 IC "r1 
ro v ') 9 

Nl .j .3 
ro ä SI SIC 

4°, 
x aý ro oo 

Hä v ä U) 

w 
a+ n) 
Z 

u SI W ,yt 
xý º 

F rd or IG u 41 -. i RS . rts 

N 
ri 

r: I 
". 
'-i 41 

:3 43 
ý , a as to H a. >Z N C7 ro ,` ý; 

U 

0 

N 

N 
.,. l 

N 
C) 

d 
0 U 0 

. "4 ". 4 .4 43 41 3 
A A 

4j 14 
W N 

ý 

b u 

N U) 0 
N to 44 
d d q 
14 w -4 
4) 4) G) £ 
to to H U 

U U 0 
i 1 0 

4) 4) i) H 
to w 43 0 
° ( ° 8 44 

- . a aý a 14 4) 0 w 
0 0 a a 
to v 0 a N 4J $4 N 

$4 

w rd m C) ", q 
A A ý 

co 
G d N 

44 44 

rý 4 31 
0 4) 0) 41 
13 U+ tT 

14 to it 
a) 0 tp 4. ) 4j 

d ri N N 

U U 

w ä ä 0 14 
N c .ý 

11 '- IT H H 
w a 

--4 -> a a 

0 iD 

9 
b+ 

p 

W 41 
x a, u C) N 
Ri 44 U 
ÜH0 

UU 

V4 
0v 

ýI U C) 
xNN 

UU 
N 1J 

C) 0N 

0 Ný ä 

aHa 11 
t4 q 
11 UU 

üU U) 
E! tý'i W 



111 

3.2.2 Serai-Rational methods: 

The methods suggested by Anderson (3.12), 

Cowan (3.13) and Hsu (3.5) can be classified under 

this heading. These methods require an equal 

volume of longitudinal and transverse reinforcement 

and consider the torsional resistance of a reinforc- 

ed concrete member as the sum of the resistance of 

the concrete member and the contribution of the 

reinforcement. These theories can be expressed 

for rectangular sections as follows: 

T. = Tc + t(2 sý X1 y1) 3.2 

v 

where 
Tc 

= the torque resisted by the concrete 

alone. 
Asv 

= the cross sectional area of one leg 

of the stirrups. 
fyv 

= the yield stress for the stirrups 

9v ý the pitch of the stirrups 

eil and Yl = the smaller and larger centre--line 

dimension of the closed stirrups 

efficiency factorfor the reinforcement. 

Anderson and Cowan further assumed that the 

shear stress distribution after cracking varies 

according to the St. Venant theory of the 

uncracked section, therefore, the tensile stresses 

in the reinforcement were assumed to vary along 

each face of the rectangular sections, with a 

maximum'stress occuring at the centre of the wider 

face and zero at the. corner: of the section, hence, 

obtaining an efficiency-factor O<for the contribu- 

tion of the reinforcement. Anderson gave this 

factor as a function of the volume of the 

reinforcement and the height to width ratio of 
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the cross section whereas, Cowan found that this 

factor is a function of the height to width ratio 

only. For practical applications Anderson 

suggested that O(be taken as 0.67, whereas, 

Cowan suggested N should be O. 8. 

The validity of these theories has been 

contested by Marshall and Tombe (3.9) on the basis 

that these theories overestimated their test 

results. Swann (3.24) pointed out that the 

inclusion of the concrete contribution in these 

methods was introduced-arbitrarily and did not 

appear in their mathematical analysis. Hsu (3.6) 

listed the following test observations that were 

in disagreement with the basic assumptions of 

these theories. 

i) At cracking, a reinforced concrete beam 

continues to twist under a constant torque 

until the reinforcement is brought into 

action. This indicates a transition from 

the St. Venant equilibrium condition to a 
-0 new one. 

ii) After cracking the stresses in the-reinforce- 

ment do not follow the St. Venant stress 

distribution. For example, the strain in 

the stirrups yield both at the centre and 

at the cornersas the ultimate torque is 

approached. This indicates that there 

is a considerable stress redistribution 

after cracking. 

iii) After cracking the distribution of principal 

compressive strains in the concrete do not,,, 
follow the St.; Venant theory, and maybe 
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several times greater than those predicted 

by the St. Venant theory. 

iv) Solid and hollow beams having indentical 

reinforcement are found to have an 

identical ultimate torsional strength. 

Therefore, the concrete core of a reinforced 

concrete beam failing in this mode does not 

contribute to the resistance of the beam 

which is contrary to the assumptions made 

in the above theories. 

This evidence therefore, suggests without any 

doubt that the assumptions made in these theories 

are incorrect. 

In 1968 Hsu (3.6) obtained an expression for 

ultimate torque by assuming that failure would 

occur as a result of bending about skew axes as 

shown in Fig. 3.1. - The ultimate torque was 

obtained from the equilibrium of forces acting 

on this skew plane which was taken at 45° to the 

longitudinal axis of the beam. in this theory 

Hsi assumed that the forces in the shorter side 

of the stirrups are negligible and may be ignored 

but that the contribution of the dowel action of 

longitudinal reinforcement was to be considered. 

Swann (3.24) argued that this theory does not 

correctly satisfy equilibrium. This theory 

appears to have been developed so that the final 

solution corresponds to an empirical expression 

which had been previously obtained by the same 

author. As mentioned earlier, the method used 

for identifying under-reinforced failure in this 

investigation is open to question and the empirical 

expression could well cover the partially over- 
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reinforced mode of failure. It can also be 

shown that the magnitude of the dowel forces 

which were assumed in this method cannot develop, 

therefore, the validity of the assumptions made 

in this theory are suspect. 

3.2.3 Yield or Equilibrium Theories 

These theories are the most rational of all 

the methods that have been developed up to now. 

Many seemingly different yield theories have been 

published under different names but in general 

they are all based on the following assumptions: 

a. All the reinforcement reaches full axial 

tensile yield strength before failure. 

b. Dowel forces of reinforcement are ignored. 

C, The aggregate interlock action between 

cracks is neglected. 

d. The tensile strength of concrete is neglected 

e. The concrete does not resist any torsion. 

f. There is no "kinking" of reinforcement. 

g. The beam is prismatic. 

h. No warping or longitudinal restraint is 

allowed for. 

i. The internal forces are in equilibrium with 

the applied torque. 

j. No secondary failure will occur due to improper 

detailing of the reinforcement. 

k. The only disputed assumption among the 

advocates of the yield theory is that of the 

inclination of the failure surface or the 

direction of the diagonal compressive field. 

There are two school of thoughts regarding 

this assumption: 
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i) The angle of the failure surface on the 

direction of the compressive stress 

field is equal to the angle of cracking 

which is 450 for reinforced concrete 

beans. 

ii) This angle is a function of the ratio of 

the volume of the longitudinal to the 

transverse reinforcement. 

Not all of these assumptions were clearly stated 

by the various authors but the remainder of the 

assumptions is implicit in their analysis therefore, 

it is not surprising if these methods produce the 

same results. 

The only variation that exists between the 

various yield theories is the way in which the 

equilibrium equations have been manipulated. 

Two methods have been suggested in the past for 

the solution of this problem: 

1. The space truss analogy 

2. The skew bending theory. 

1. Space truss analogy 

This anology was first suggested in 1929 by 

Rausch (3.2) who devised a mathematical model 

which consists of a network of bars to represent 

the action of a reinforced concrete member 

resisting pure torque. In this model, the concrete 
is represented by compression struts and the 

reinforcement by tension bars. The struts are 

assumed to be inclined at 450 and from consider- 

ation of equilibrium condition, he obtained the 

following formula for a rectangular section: 
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= 
2A Y Ty sv v X1 Y1 

Sv 
3.3 

Despite the ability of this method to explain the 

behaviour of a reinforced concrete beam containing 

an equal volume of longitudinal and transverse 

reinforcement, it was not found to fit test 

results obtained from beams that contained 

different ratios of volume of longitudinal to 

transverse reinforcement. 

The concept of the space truss analogy has 

been generalized quite recently by many European 

research workers such as Lampert and Thurlimann 

(3.18) of Switzerland, Kuyt (3.28) of Holland, 

Inge Karlsson (3.29) and Elfgren of Sweden (3.30). 

These investigators assumed that the angle of the 

concrete struts or the diagonal compressive stress 

field depend on the ratio of the volume of the 

longitudinal to the transverse reinforcement. 

They have also extended this theory to beams 

having any cross sectional shape. From consider- 

ation of equilibrium of forces the following' 

expression was obtained: 

2A f ý-ý 
Ty =. sv. yv Al 

F Asi fyl Sv 3.4 
Sv P AY f 

sv yv 

where A1 is the area of the cross-section within 

the stirrups and for rectangular section = X1 Y1 

T A-. 1 fyt is the yield force of the longitudinal 

reinforcement. 

P is the perimeter of the cross-section and for 

rectangular section =2 (X1 + Y1) 

It can be shown that equation 3.3 is a 

particular case of this general equation 3.4. 
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Lampert and Thurlimann have also applied 

the limit theorum of plastic collapse and 

obtained an upper bound solution to the problem 

by considering the kinematic approach for an 

assumed mechanism of failure and a lower bound 

solution by considering the static approach in 

deriving equation 3.4. 

2. The Skew Bending Theory 

The present intensive research activities 

on torsional resistance of reinforced concrete 

beams started in 1958 following the publication 

of a new approach to the problem by Lessig (3.14). 

Lessig chose the failure surface shown in Fig. 3.2 

formed by a continuous diagonal crack on three 

faces of a rectangular beam and a straight line 

AB on the fourth face. The region close to AB 

is considered to be in compression and the steel 
in this region is ignored. Lessig formulated 

two equilibrium equations for the forces acting 

on this failure surface: (1) equilibrium of 

moments about the neutral axis x-x, and the 

equilibrium of foreces along an axis perpendicular 

to the compression zone. By minimizing the 

moment equilibrium equation, she found that the 

theoretical minimum torsional resistance occurs 

when the neutral axis x-x is parallel to the 

wider face of the rectangular section. 

In 1962 Yudin (3.31) simplified Lessig's 
theory by assuming the diagonal crack to be 
inclined at 450 to the longitudinal axis. 
From consideration of the equilibrium of forces 
he obtained an expression identical to equation 
3.3. 
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Lessig's approach has been modified and used 

during the last decade by Collins et al (3.32) 

and Kuyt (3.28) who demonstrated that the skew 

bending approach would yield an identical 

expression to that given in equation 3.4. 

It is worth noting in passing that these 

two methods of formulation of equilibrium 

equations correspond to the two wellknown methods 

of statics used in simple truss analysis. These 

methods are the method of joint resolution and 

the method of sections. 

3.2.4 Alternative Methods for Determining the Yield 

Equation 

It is evident from the previous review that 

the yield theory is receiving more recognition by 

research workers than other methods, hence in order 

to provide a better understanding to this problem, 

it will be shown that it is possible to obtain the 

yield equation by other treatments as follows: 

Method A 

The torsional resistance of a prismatic 

rectangular thin walled box beam will be considered 

in this method. The beam is reinforced with close 

stirrups equally spaced with four equal longitudinal 

bars each located in one corner of the beam as shown 

in Fig. 3.3. 

When the applied torque exceeds the cracking 
torque, diagonal cracks will appear at an angle 

to the longitudinal axis. These cracks will 

spiral around all four sides from one end of the 

beam to the other. 
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If we consider the failure surface shown in 

Fig. 3.3 which is formed by a continuous crack 

on four faces then the ends of the spiral crack 

are linked by a longitudinal shear compression 

zone running parallel to the longitudinal axis 

of the beam and located at one of the corners. 

The internal forces acting on this failure 

surface are also shown in Fig. 3.3. Adopting 

the assumptions made for the yield theory given 

in section 3.23, and from consideration of 

equilibrium of forces, the ultimate torque 

resistance of this section can be determined. 

From equilibrium of the direct forces along 

the x- axis, the direct force per unit length 

(qd) acting on the shear compression zone may 

be obtained: 

2qd( xi + Y1) Cot 0=A 
sv f yv 2 (X1+ Yl) Cot 

Sv 

Af 
qd = sv yv 

sv 3.5 

From the equilibrium of the direct forces acting 

along the Z- axis, the following equation may 
be obtained: 

qt 2 (`X1+Y1) cotO =4ASlf' 

qt =2 Aslfr l_ 
(X1 + Y1) Cot V 

3.6 

where qt is the shear flow acting on the shear 

compression zone. 
1 

From moment equilibrium about the x- axis 

we get: 
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qt 2 (X1 + Y1) Cot & Yj 
=A sv f yv. Yl Cot (9 (Xl + Yl) Cot 

2' Sv 

. 

.. q_A sv f, cot 
9 

3.7 
Sv 

From moment equilibrium about y- axis we get: 

qt 2 (X1 + Y1) cote. 
X1 

= Asv f Vv X1 Cot lI) (X1 + Y1) Cot G 

2 Sw 

or qt =A sv f yv Cote 3.8 
Sýr 

Taking moment about the"Z - axis we get: 

Ty =2A tv ¬-y X1 Yl Cot 19 3.9 
SV 

From equations 3.7,3.8 and 3.9 we get: 

qt Ty 3.10 
2 X1 Y1 

This equation is identical to the relationship 

between applied torque and internal shear flow 

obtained in the previous chapter for thin-walled 

uncracked beams (Bredt Batho formula). 

From equations 3.6 and 3.7 the angle of 
inclination of cracks may be determined as follows: 

As fS 
Cot2Q = 

ýX 

1+Y1 
)1 A. sv f yv = m' 3.11 

--7 A 
or Cot L9 = 

[m" 

Hence equation 3.9 becomes: 

Ty=2AývfVv 
xY m' 

/ 
3.12 Sv11 

This equation is identical to equation 3.4 which 

was obtained from the space truss theory. 
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Method B 

For this method, the prismatic thin walled 

beam of polygonal cross-section shown in Fig. 3.4a 

is considered. The walls of the beam are orth- 

ogonaly reinforced with longitudinal reinforcement 
ZAs f 

equal to uniformly distributed around 

the circumference of the equally spaced closed 

stirrups. 

Consider a 

cracked wall of 

The element has 

circumference o 

Cot 0, where c9 
cracks. 

small rectangular element in the 

this beam as shown in Fig. 3.4. 

a unit length measured along the 

f the beam and a width equal to 

is the angle of inclination of the 

It is assumed that the applied torque on the beam 

is replaced by an equivalent force system which 

consists of a constant shear flow qt uniformly 

distributed around the circumference where 

qt = T/2A1. 

It is also assumed that the behaviour of the 

cracked element is equivalent to the behaviour of 

the single truss panel shown in Fig. 3.4c and the 

concrete in this element is assumed to be concentrat- 

ed around the diagonal BD which acts as a strut. 

The longitudinal reinforcement is divided equally 

into two bands which are concentrated at the top 

and bottom of the element, representing the booms 

of the truss. Transverse reinforcement is also 

equally divided into two bands which are concentrat- 

ed and placed on both sides of the element 

representing the vertical component of the truss. 
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In order to find the relationship between 

the applied shear force and the internal forces, 

it is necessary to replace the shear flow which 

is acting on this element by an equivalent force 

system which consists of concentrated forces 

applied at the modes of the truss system as shown 

in Fig. 3.4c. 

From the equilibrium of forces at joint A of 

the truss we get: 

qt cot L9 = 
A. s1 

f 
Y1 3.13 

2 2p 

and qt sv 
£yv Cot (9 3.14 

2 2S 

Equating these two equations and eliminating 

cot (9 we get: 

qt = sv f yv 
.. 

s ifyi Sv 3.15 
As P- sv ý 

Using the Brett-Batho expressions we get: 

1 
Ty =2A sv fv. A m' 3.16 

Sv 

where m' = Cot & as shown earlier. 

This equation is identical to equation 3.4. 

From the equilibrium of joint B we may obtain 
the diagonal compressive force (Fc) as follows: 

F= qt 
=T 

c2 Sin 9- 4A1 Sin 

taking B as the width of the strut, tw is the 

thickness of. the wall and fc as the diagonal 

3.17 
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compressive stresses in the beam, equation 3.17 

becomes: 

fc =T 
Al t Sin 2 

3.18 

3.2.5 Examination of the Assumptions of the Yield Theory 

Although the general yield theory provides a 

better explanation of test results than the elastic 

theory proposed by Cowan (3.13), it does not explain 

the following observed phenomena: 

a. The general yield theory usually overestimates 

the torsional resistance of most of the 

reinforced concrete beams tested up to now under 

pure torsion. For this reason some of the 

advocates of this theory (2.23 and 2.32) 

suggest the use of a reduction or efficiency 

factor °( = 0.8. 

b. Hsu (3.5) found that the tensile stresses in 

the shorter legs of the stirrups are usually 

smaller than the tensile stresses in the 

larger legs of rectangular beams. These 

stresses in the shorter legs of the stirrups 

do not reach yield stress at failure. 

Whereas in the yield theory these stresses 

are assumed to reach their yield value at 

failure. 

c. The concrete on both sides of a crack undergo 

relative shear displacement indicating the 

possibility of development of dowel forces 

in the longitudinal'reinforcement. The 

presence of these dowel forces was confirmed 
by the bending stress measured by Hsu (3.5) 
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from diametrically opposite ERS gauges 

attached to a longitudinal corner bar. 

d. In general, crack width measurements and 

rotations of a symmetrically reinforced 

rectangular beam indicates that the beam 

rotates about an axis located at the centre 

of the beam and not as assumed by Lassig's 

theory. 

e. The balance ratio of m' where yielding takes 

place simultaneously for all the reinforcement 
is shown by Hsu to be 1.2 in contrast to what 
had been assumed by the Rausch yield'theory. 

f. The yield theory requires the concrete strut 
to be a function of m'. However, tests show 
thatthe inclination of cracks under pure 
torsion is consistantly close to 450 for 

reinforced concrete beams and is a function 

of the level of prestressing force for 

prestressed concrete beams and is independent 

of the ratio ml. Therefore,. if the diagonal 

compressive stress field in a beam differs 

from the angle of cracking, shear transfer 

across the crack must develop. These 

stresses can only be transfered by aggregate 
interlock. 

g. Tests indicate that for beam with equal volume 

of reinforcement (m = 1) the measure strain 
of the longitudinal reinforcement are always 

greater than the, strains measured on the stirrups. 
This discrepancy between-these strains was 
found to increase as 

XI 
approached unity. 

YZ 
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h. The stresses in the longitudinal reinforce- 

ment do not reach the yield value at 

failure for beams with m' > 2., 

It is possible that some of these phenomena 

may have little effect on the general behaviour 

of concrete beams subjected to pure torsion 

whereas others may have more serious consequences 

causing premature secondary modes of failure and 

hence restricting the general application of the 

yield theory. The importance or otherwise of 

each of these observed phenomena and their 

influence to the resistance and strength of 

concrete structural members has not been studied 

adequately therefore, it is intended to examine 

their effects in more detail as follows. These 

discrepancies between the observed and the assumed 

behaviour maybe attributed to one or more of the 

following factors: 

1. The discreet nature of the reinforcement 

2. The occurrence of the dowel forces 

3. The development of stresses in the remaining 

uncracked part of the concrete beam 

4. The development of the aggregate interlock. 

3.3 Factors Influencing Torsional Behaviour of Concrete 

Members 

3.3.1 Effect of Stirrup Spacing 

Several research workers, (3.5,3.11,3.33, 

3.34) have found that the torsional capacity of 

similar beams with equal volumes of reinforcement, 
decreases with increase in the stirrup spacing. 
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No rational assessment, however, of this effect 

has yet been produced, although some researchers 

have suggested arbitrary reduction, factors and 

rules on detailing reinforcement to minimize the 

effect of this factor. For example Lampert and 

Thurlimann (3.18) have suggested that the maximum' 

spacing of the stirrups should be limited to half 

the smaller dimension of the stirrups or. 200 mm 

later Mitchell et al (3.33) proposed the following: 

Sv - 300 mm 

P 
>8 

Sv 

Ast Sv SV 

Asl Ost P 
25 orrv 

$" -Sf- 
16 

where 
¢ 

s1 is the diameter of the corner bar and 

the other symbols are as previously defined. 

Pandit (11) suggested an empirical reduction 

factor: s=1- 
$v for the contribution of the 
Yl 

steel in his empirical torsional strength equation. 

It has also been reported by these investigators 

that where failure occurs as a result of excessive 

spacing, the stresses in the stirrup reinforcement 
does not reach the yield value. 

If we assume for the purpose of this study 
that the torque is resisted primarily by truss 

action and consider the rectangular hollow beam 

shown in Fig. 3.3 with equal volumes of reinforce- 

ment i. e. m' =1 and a= 450. if fs is taken as 

the tensile stress in the stirrups at failure, 

then equation 3.6,3.7 and 3.12 becomes: 
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q=S ý' AS fy 
t (xl + Y1) 

q=A sv 
es 

t sv 

Tu =2A. sv 
fsI X1 Y1 3.19 

sv 
1" 1 

where Ot s is a factor which represents the effect 

of the spacing of the stirrups which is determined 

as follows. 

If we assume that the diagonal compressive 

forces to be resisted mainly by the usual space 

truss action and partly by the longitudinal 

reinforcement acting as a continuous beam which 

is supported by the stirrups, the maximum 

bending moment induced in the longitudinal rein- 

forcement at failure due to this action maybe taken 

as: 

M=n Sv 
16 

3.20 

where n is the average lateral force acting on the 

longitudinal reinforcement per linear length. 

Therefore, °ts may be taken as a factor which 

represents the effect of reduction in the axial 

yield strength of the longitudinal bar due to 

these secondary moments. 

From equations 3.19 and 3.16 we get 

as =fsl m wherem=2As Sv 
fyl (X1 + Y1) A sv 

and for fy, 1= fyv = fy and m=1 

we get Tu s 
Ty 

3.21 



it can be shown that for a bar subjected 

to a combined action of moment (M) and axial 

force (F), the ultimate strength is given by 

the following interaction equation 

F_ 
2+M=13.22 

F M. 
P P. 

where Pp and Mp are the full axial tensile 

yield strength and the full plastic moment of the 

bar respectively-Combining equations 3.21 and 

3.22 we get : 

Tu 
=1-M3.23 

Ty T 

The lateral force acting on the longitudinal 

reinforcement-(n) in equation 3.20 maybe written 

as follows: 

n=3qt 
Tu 

2Al 

where p is a factor, which represents the percent- 

age of shear flow that is sustained by the 

longitudinal reinforcement spanning as a beam 

between the stirrups. 

The maximum moment induced in the longitudinal 

reinforcement becomes: 

M=13Sv Tu 3.24 
32 Al 

Also the full plastic moment of resistance of the 

bar is 

d, 3 f 

6 

Hence, M' =3 
-5 --v 

T 3.25 
MP 64 A, S1 fy se Al 
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This equation maybe written as: 

M=3A. sv 
Sv Tu 

Mp 32 As 1sLT. 

es� ,=1 using the relationship in =ps 
P Ast 

This equation maybe written as follows: 

r4 = k1 ks 
Tu 3.26 

mp Ty 

.,.. " 4ýZ"' ASS 
where kl = 31I and ks = ý- sL vv 

323 As, P jo st 

substituting equation 3.26 into equation 3.23 we 

get: 

Tu 
=1- kl ks 

Tu 

Ty Ty 

solving this equation we obtain: 

T (kiks) 2 
., 

kl ks 
u= +22=s 

Ty 

1 
In this equation kl Rs is usually small, hence, 

the second term under the square root is very 

small compared with unity, therefore, this equation 

maybe simplified to the following: 

Tü = (1 - 
kl ks ) Ty 3.27 

2 

This equation shows the effect of stirrups spacing 

on the ultimate strength of the beam relative to 

its torsional strength predicted by the yield 

theory. Therefore, the reduction in the 

torsional capacity of the beam due to stirrup 

spacing is a function of 3 and ks, p may also 

be influenced by the crack spacing the strength 

88. 



of concrete, etc. A value for 
kl 

of 25O maybe 
2 

taken for practical purposes as shown on Fig. 3.5. 

Although the proposed theory allows for vari- 

ations in the value of Ks it is suggested that for 

practical purposes <s may be taken as a constant 

with a value of 0.9, it is further recommended 

that the maximum stirrup spacing Sv should be 

limited to $. These recommended values. are shown 

on Fig. 3.5. 

3.3.2 Effects on Dowel Forces 

The dowel forces which are known to develop 

across longitudinal bars when they intersect cracks 

have been either.. completely ignored, as in the 

yield theory or considered to play a major role 

in resisting torque according to Hsu (3.6), 

Gresund et al (3.35,3.36) and Martin (3.37 and 

3.38). These forces must have certain effects 

on the strength and behaviour of the beam and the 

opposing extreme views on the contribution of 

dowel forces illustrate the lack of understanding 

on this subject and the unreliability of the 

assumption associated with dowel forces made in 

all existing torsional strength theory for 

concrete members. Hence, in the'following a 

detailed study of this subject has been carried 

out. 

Consider the internal, forces in the 

rectangular concrete box beam shown in Fig. 3.6, 

where Sv Sv 
F sx, F- 

are the axial forces per unit 

length measured along the beam axis of the' 

stirrups which are intersecting the crack in 

the smaller and larger dimension of the box beam 
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cross-section respectively. F 
sd 

is the dowel 

force per unit length resisted by the stirrups. 

Fl is the axial force in each of the longitudinal 

corner bars. F dx and F dy are the components 

of the dowel force induced in each longitudinal 

bar in the XI and Y1 direction respectively. 

The stirrup forces are assumed to be uniformly 

distributed along each side of the box beam. 

The sectional properties of the beam as defined 

earlier in Fig. 3.3. Assuming that Xl = X2 and 

Yl = Y2. 

From equilibrium of forces along the Z axis 

we get: 

qt 2 (X1 + Y1) Cot =4 F1 + 
Fsd 2 (X1 + Y1) Cot 

. Sv 
. 

qt = 
2F1 

+ 
Fsd 

(Xl + Yl) Coto 
. 

SV 
3.28 

From moment equilibrium about the x- axis we get: 

qt = (X1 + Yl) cot & Yl 
_ 

Fsd (x1 + Y1) cot© Y1 Cot 
2 sv 

+2 Fldy (X1 + Yl) Cot i9 

or qt = Fsd Cot +2 Fidy 3.29 

S° Y1 

From moment equilibrium about the Y- axis we get: 

qt 2 (X1 + Y1) Cot 
0 

Xl F 
sx 

(X +Y Coto X1 Cot 19 

2 Sv 

+2F dx 
(X1 + Y1) Coto 

or q=F Cot +2F3.30 t sx dx 
sv Xl 
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taking moment about the z- axis we obtain: 

T= 
Fsy 

X1Y1 Cot O+ Fsx 
X1Y1 Cot +F ldx Yl + 2Fldy X1 

sv sv 

or 

T =Fsy. Cot0+Fsx Cot& +2 Fldx+Fldy 3.31 
Al S. Sv X1 y1 

Equating equations 3.29,3.30 and 3.31 we obtain: 

qt T 
2A1 

Hence this relationship is invariable. 

If the materials are assumed to behave 

elastically and the displacement (crack width)along 

any typical crack is to be uniform, the relationship, 
between the axial and dowel forces may be obtained 
from the compatibility of displacement condition 

occuring at a typical crack. This displacement 

may be resolved into a longitudinal displacement 

W4 and tangential displacement Ws. The ratio 

Wt /Ws will depend on the stiffness of the reinforce- 

ment which intersects the crack and resists the 

vertical and horizontal components of the shear flow. 

For vertical displacement Ws, the following 

relationship applies: 

WS = 
1Ll L 

F- = Ss F 3.32 
E3A. 

where F. is the force in any stirrup, 
As is the area of stirrup 

Es is the elastic modulus for steel 
is the effective length of the stirrup which 

1t is contributing to this displacement 
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ILI is a factor introduced to account for the 

bond action between the stirrups and the 

concrete. 
6s is the flexibility coefficient 

Similarly the relationship between this dis- 

placement and the dowel forces F 
ld maybe obtained 

from the result of investigations into this subject 

which are given in chapter 7. 

Ws 
= 

40 
Eld 

2 EC ý7 /4 
3.33 

F 
or Ws= Sdld 

where 
Sd 

= 80 
Ec ýe"4 

where E. is the elastic modulus for concrete and 
is the diameter of the longitudinal reinforce- 

ment. From these two equations the following 

relationships are obtained: 

Fsx 
_ 

Sd 
_ kl kd 

F1dx 9s 

where kl = 80 .s and kd = As 
Ed Te 7/4 

kl =L NZ where Xe is modular ratio 

similarly 
Fsy_ 

= k1 kd 
F ldy 

and 
F1 

= kl 
Fsd kd 

3.34 

Now combining equations 3.28 to 3.34 we obtain the 
following relationship: 

. 
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qt = 
Fsd 

1 +2 Sy k 3.35a 
Sv (X + Yl) Cot 0 kd 

qt = 2Fý 1 + (XL +Y kd 
35b 3 (X1 + Yl) Cot (9 2 kl . 

qt =F sy 
'Co 

S 
tß+2 v 

kk 3.35c 
v 1 1d 

qt 
F 

= 2.. ldy 1+ Yi k 
1 

kd Cott 3.35d 
Y1 2 Sv 

qt =F sx Co t& 2 $_ 
v 3.35e 

Sv X1 klkd 

2F X 1 qt = 
L 

+ 1 k1 kd Cot 3.35f 
x1 2S 

V- 

Now equating equation 3.35c and 3.35e we get 

[Cot+ 
2Ykk 

1.1 d 
F 

sx -- 
f 

sx 
F Sy fsy [Cot&ý2X 

11 
kik 

d 

and equating equation 3.35b and 3.35c and re- 

arranging: 

Cot 8+2 sv 
yk1kd 

sl 1 
fsv m 

1+ 
(Y + y1) 

d 
Cot 82S 

where fsl and fsv are the stresses in the longitudinal 

reinforcement and thel-s tirrup respectively. 
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andm=2A. r1 
Sv 

(Xi + Yl) Asv 

I 

for reinforced concrete beams having Y1 =2 X1 

= 450, and m=1 and for kl = 7, these equations 

give 

fsx 
0.9 

f sy 

and 
fs11.2 

f 
sv 

Therefore these results' explain the reason why 

the measured strains in the shorter leg of the 

stirrup are always greater than the strains in 

the longer leg of the stirrups and why the 

measured strain in the longitudinal reinforcement 

are always larger than the strains in the stirrups. 

However, all the observed discrepancies between 

measured strains in the reinforcement and those 

predicted by the simple truss theory reported by 

Hsu and others investigators for beams with 

equal volumes of reinforcement can be adequately 

explained by the above truss-dowel theory. 

The contribution of the dowel forces developing 

in the longitudinal reinforcement relative to the 

forces resisted by the stirrups maybe found by 

comparing the second term inside'the bracket öf 

equation 3.35c with Cott? . An average value 
for the contribution of dowel forces to the 

resistance of torque can be taken as l0/.. in the 

elastic range, however, these dowel forces would 
decrease appreciably "as` the stresses in the 

longitudinal reinforcementt reach their yield 

value. Therefore the assumption made by the 
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yield theory that the stirrups attain their yield 

stress on both legs appear to be acceptable since 

the neglect of the dowel forces will compensate 

for the additional forces which are assumed to 

be developing in the shorter leg of the stirrup. 

3.3.3 The Effect of the Uncracked Concrete in the Beam 

When a reinforced concrete beam subjected to 

torsion is cracked, the concrete between two 

adjacent cracks will form a continuous helical 

spring extending from one end of the beam to the 

other. Hence the beam will be transformed into 

a number of concrete springs held together by the 

stirrups. Although this concrete is resisting 

primarily compressive forces due to the truss 

action, they may also resist applied torque. This 

phenomena has not been investigated previously. 

The elastic behaviour of helical springs has been 

studied by many stress analysts and the results 

maybe found in text books on theory of elasticity. 

Timoshenko (3.39) derived the following relationship 

between torque applied to the ends of a cylindrical 

spring and the longitudinal extension of the spring: 

Lt=SRSin9Cos& 
1 -1 T bi 

EIJ 

and the longitudinal extension of a cylindrical spring 
due to direct longitudinal force P is: 

tP 
= SR2 COS2 y+ Singe p 

LGJ EI 

where R is the radius of the cylindrical helix, (9 

is the angle between the helix and its longitudinal 

axis. GJ and ET are the torsional and flexural 

rigidity respectively and Z is the length of the 

96. 



helix. 

For the case where 19 = 45°, FI}>GJ then 

Z= Lwhere L is the length of the helix. 

The above equations may be simplified as follows: 

At 
= 

St T 
3.36a 

Apý: cp 3.36b 

where t and 
Sp 

are the flexibilities of the spring 

under pure torque and longitudinal force respectively. 

For this case 

t= RL and Cep = R2 L 
I2 

V2 GJ 

In a reinforced concrete beam under pure torsion 

this longitudinal extension will be elastically 

restrained by the longitudinal reinforcement, 

therefore, the contribution of the spring action 

will depend on the ratio of the stiffness of the 

spring to the stiffness of the longitudinal 

reinforcement. This problem may be analysed as a 

statically indeterminate structure with a force 

in the longitudinal reinforcement being the 

redundency. Introducing a cut in the longitudinal 

reinforcement and then establishing compatibility 

of deformation and. equilibrium we obtain: 

ýt 
T .. 

9p 
P=SQ! FL 

and 'ZP 
- 

IF 
=0 

where 
St 

is the flexibility of the longitudinal 

reinforcement ýL 
EsZ As1 

substituting for the flehibilities in the above 
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equations and rearranging we obtain: 

FQ =T 
R (1 -ý kc) 

where k. _9e 
R8t 

=19C.. T 

2 
R Es A a1 

3.37 

The value of kc when compared with unity represents 

the significance of the springs contribution to the 

resistance to torque. For a wide range of practi- 

cal box beam parameters kc was found to have a 

value of less than 2%, therefore, this effect may 

be ignored. 

Although the contribution of the concrete 

acting as a spring and the dowel forces were found 

to be insignificant, the secondary stresses 

developed due to these actions may result in local 

failures of concrete which in turn may lead to 

other premature modes of failure. The importance 

of these secondary stresses will be examined 

further when considering these other modes of 

failure. 

3.4 New Yield Theory 

One of the objections to the present yield 
theory is the use of a large number of simplifying 

assumptions which cause a considerable scatter in 

the prediction of test results. Therefore, the 

following yield theory considers the crack 

inclination to be a function of the direction of 

the principal stresses prior to cracking rather 

than a function of the ratio of the volume of 

the longitudinal to the transverse reinforcement 

(m') which was made in the yield theories 

previously reviewed. 
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if we examine the forces acting on an' element cut 

from the wall of the beam shown in Fig. 3.4 and if 

we assume that a single crack passes through its 

diagonal BD and the stress in all the reinforce- 

ment intersecting this crack reach their tensile 

yield strength at failure then an examination of 

the forces acting on any segment of this element 

suggest that shear stresses must develop along 

the crack if equilibrium of forces is to be 

maintained. If we ignore the dowel forces and 

assume that these shear stresses can be resisted 

by the aggregate interlock action, then from 

equilibrium of the horizontal forces acting on 

the segment shown below we obtain: 

qt Cot _ 
AS 7 

fy1 
- qa cot (9 3.38 

P 

From vertical equilibrium of forces we get: 

An 
qt = r_sv f 

ys Cot t9 + qa , 3.39 
Sv 

where qa is the shear force per unit length 

resisted by aggregate interlock 

Cot 

rCotty 

q 

a' 

Unity 

/Sin 0 

P 

A -- - �'I - LU L. %`, 

Combining equations 3.38 and 3.39 and 

eliminating qa and rearranging: 
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Y 
qt =A . -, y ys Cot B+ 

m' 
Sv 2 Cot c9 

Substituting for qt in the above equation using the 

Bredt-Batho expression we get: 

Ty =2A sv 
9ys 

A. 1 

FCot 2 Li + m° 3.40 
Sv 2 Cot (V 

where Cot (9 can be taken as ------ý 
+fp/ft 

From equilibrium of forces along the crack, the 

shear flow resisted by aggregate interlock at 

failure can be obtained as follows: 

(1 
qa = (1 - m') 

R 
' .. sv 

f_ 
yv Cot C7 + (1 -- Cott &) T Sin 

s 2A1 

3.41 

equation 3.40 can also be obtained using the 

failure surface shown in Fig 3.3. 

Yield failure will occur as long as the shear 

stresses developing along the crack are smaller than 

the aggregate interlock strength. However, if the 

angle of cracking is not governed by the direction 

of the principal stresses prior to cracking then 

may be determined by differentiating equation 3.40 

with respect to L9 which gives 

Cot 0= [TT1 

and the solution will be identical to those obtained 

previously. 

I 
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3.5 Partially Over-Reinforced Failures 

The prediction of ultimate strength for 

beams failing in this mode is essential for 

determining the limits of under-reinforced mode 

of failure. It has also been suggested that 

the limits which have been proposed on m' by 

the advocates of the yield theory are unnecessarily 

restrictive and usually difficult to satisfy in 

practical situations. Unlike the under-reinforced 
failure, no theory is presently available for beams 

failing in this mode, although several empirical 

expressions have been suggested (3.25,3.40) which 

can be expressed as equation 3.2. 

It can be seen from equation 3.38 and 3.39 

that failure may occur as a result of yielding of 

either the longitudinal or the transverse reinforce- 

ment when the aggregate interlock strength is 

reached, consequently equations 3.38 and 3.39 may 

be written as: 

Tys 
= Ta +2f ys Al 3.42 

Sv 

and T 
yl = Ta +2 

Asv fVs 
Al m. ' 3.43 

Sy 

where Tys is the ultimate torque of a beam failing 

by yielding of stirrups only. 

T 
. yj is the ultimate torque of a bean failing 

by yielding of the longitudinal reinforcement only. 

Ta is the maximum torque resisted by the 

aggregate interlock. 
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It must be kept in mind that for these modes 

of failures, dowel action could also be contribut- 

ing to the resistance of the applied torque. 

Although failure is initiated by yielding of the 

longitudinal or transverse reinforcement, the 

maximum torque would correspond to the failure of 

aggregate in resisting shear or dowel failure. 

Therefore the maximum dowel strength and shear 

resistance by aggregate interlock must be known 

in order to assess the ultimate strength of these 

beams. The problem of dowel behaviour and 

strengths is given in chapter 7 whereas a summary 

of test results on aggregate interlock found in 

literature is given in the following section. 

3.5.1 Aggregate interlock Action 

Research by Fenwick (3.41) and Taylor (3.42) 

on the mechanism of shear force transfer across 

reinforced concrete beams failing by diagonal 

tension indicate that aggregate interlock may 

account for the resistance of approximately half 

the total shear force sustained after cracking 

of reinforced concrete beams without shear rein- 

forcement. Fenwick carried out a series of 

tests on specially designed concrete specimens 

in which the aggregate interlock forces were 

assessed. The effect of crack widths and concrete 

strength on aggregate interlock were investigated. 

It was found that the aggregate interlock increased 

with increase in concrete strength and decreased 

with a decrease in the crack width. The ultimate 

shear stress resisted by this action may be 

approximated to 0.9 ft for crack widths equal to 

0.06 nun decreasing linearly to 0.5 ft for crack 
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widths equal to 0.4 nun. in these tests the crack 

widths were maintained throughout each test. 

Taylor (3.42) pointed out that in reinforced 

concrete beams failing in shear, the movements at the 

cracks occurred normally and parallel to the cracks 

simultaneously, hence arguing that the test results 

obtained by Fenwick tend to overestimate the 

effect of aggregate interlock. He also conducted 

a series of tests on the effect of aggregate inter- 

lock where the size and type of aggregate, the 

stiength'of concrete and-the ratio of the vertical 

to the shear displacement across the crack were 

investigated. The ultimate shear stress resisted 

by aggregate interlock obtained fro these tests 

may be approximated to 0.55 f-t for Wt = 0, decreas- 

ing linearly to zero for 
`=3 where W. is displace- 

ment normal to the crack, Wt is shear displacement 

across the crack and f t, is the tensile strength of 

the concrete. These results also indicate that the 

attainment of maximum aggregate interlock is 

accompanied by a sudden drop in the shear resistance, 

hence, exhibiting brittle characteristics. 

Unfortunately, no such data is available for 

beams subjected to torsion, i. e. the stress distri- 

bution and displacement pattern has not been examined. 

For reinforced concrete beams subjected to pure 

torsion, the displacement pattern at diagonal cracks 

is expected to be a function of the relative stiffness 
of the longitudinal to transverse reinforcement. 

For beams with equal volumes.. of longitudinal and 

transverse reinforcement i. e. (m = 1) it is reason- 

able to assume that only anormal displacement 

4t 
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across the crack will take place and the shear 

displacement is expected to be zero. On the other 

hand for beams containing longitudinal reinforce- 

ment only or for beams where the transverse 

reinforcement has reached its yield value, then 

a shear and normal displacement would be expected 

and the ratio of these displacements may be 

tentatively taken as unity. 

The contribution of aggregate interlock in 

beams failing in this mode may be determined by 

assuming that the maximum shear stress resisted 

by aggregate interlock is equal to half the tensile 

strength of the concrete and that the distribution 

of these stresses would approximate to the plastic 

stress distribution, hence Ta becomes: 

Ta=1 b2h (1 -b)t3.44 
2 3h 2 

The contribution of dowel forces to the 

resistance to torque of beams failing in this mode 

may be included by considering the dowel forces 

occuring just prior to yielding of the reinforce- 

ment, hence equations 3.42 and 3.43 may be modified 

by substituting equations 3.35 for the term 

representing the contribution of steel reinforcement 

as follows: 

T Ta +2Asvs Al Cot lý + Sv 1 3.45 
sv.. Yi klkd 

and 

Ti=Ta+2 AsvA1m 1+ X1 +Y1 ' kd 
3.46 

y Sv Cot 2 Sv kl 
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3.6 Comparison Between Various Yield Theories and 

Their Limits 

Fig. 3.7 shows a comparison between the 

Rausch-Yudin theory, the general yield theory given 

in equation 3.4 and the proposed yield theory 

given in equation 3.40 for reinforced concrete 

members with varying m'. In addition the partial 

yield equations 3.42 and 3.43 are plotted for the 

case of 
T'' 

= 2. It can be seen that for beams 
car 

having 0.5 m' 1.75 the beams will fail in 

under-reinforced mode and for beams having m' 

outside these limits, failure will occur in a 

partially reinforced mode. These limits to the 

yield-theory may be compared with the following 

empirically obtained limits: 

1. Iisu (3.5) 0.7 < zu < 1.5 

2. Kuyt (2.28) < m' 
(1 2' 

2 

3. Navaratnarjah (3.43) ] <zu' <2 

2 

4. Lampert (3.17), 1< m' 
<4 

Collins (3.32) 4 

It can be concluded that the limits suggested 

by Lampert and Collins are relatively high and 

that the Rausch-Yudin theory on the other hand 

provides a conservative estimate of torsional 

strength. It is interesting-to note that the 

proposed yield theory produces almost identical 

results to those obtained by equation 3.4 over 
the range of m'-for which the proposed yield 
theory is applicable. 
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3.7 Over-Reinforced Mode of Failure 

As stated before this mode of failure occurs 

prior to yielding of reinforcement and consequent- 

ly it should be avoided since the materials are 

inefficiently used. Unfortunately very little 

research information is available on this mode 

of failure and no rational theory is presently 

available for predicting the torsional strength 

of over-reinforced members. A summary of the 

available torsional equations for prediction of 

over-reinforced failure. is given in Table 3.2. 

This table shows that the torsional resistance 

of over-reinforced concrete beams is approximately 

equal to three times the torque which produces 

initial cracking. In contrast, for beams tested 

in bending and shear, the shear at which diagonal 

compression failure occurs is equal to four to 

five times the shear force causing diagonal 

tension cracking. This discrepancy was attributed 
by Lampert and Thurlimann (3.18) to the presence 

of-additional compressive stresses due to warping 

of the concrete, on the other. hand, Swann 

attributed this discrepancy to corner spalling at 

failure. 

The following examination of test phenomena 

may provide an explanation of this mode of failure: 

1. Swann (3.24) noticed that longitudinal cracks 

always occur prior to failure particularly near 
the corners of the beam. 

2. Visual inspection by Hsu (3.6) of the crack 

pattern over the cross section of a beam at 
the location of failure after being cut by 
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TABLE 3.2 Summary of Available Empirical Expression Used For 

Calculating the Torsional Strength for Beams Subjected 

to Pure Torsion - Over-reinforced Diode of Failure 

I 

0 

Investigator Ref Original Expression Converted Expression 
in metric in term 

of fcU 

Lessig 3.16 OCd b2h fcu where o( varies from 0.07 to 0.12 

Collins et al 3.23 5 b2h f- 0.4 b2h f 
c cu 

Hsu 3.5 Ptb <2400 1i[ fY, v 

Ilsu and } emp 3.7 b2h 14 
jf7 

0.47 b2h fcu 
3 

Pandit 3.11 6 b2h f 0.48 b2h f-cu 

Swann 3.23 1 býb2h 0.92 ) b2h 0.48 VC (1-3 
3h h 

where Q=Y but 1 
2 50 

Martin 3.37 6 (1.5 - b) b2h 
Ffcu 

0.48 (1.5-b) b2h 
Jf 

h h 

Is ". = total volume percentage of reinforcement 
tb 

fe = cylinder compressive strength of concrete 
c 

f= cube strength of concrete 
Cu 
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a diamond saw confirmed that dowel forces 

developing in the longitudinal reinforcement 

arc the cause of corner spalling. 

3. The crack patterns at this diamond cut section 

of the beam also indicate that the concrete 

surrounding the reinforcement cage tends to 

separate from the beam core forming an 

external shell. This could only be due to 

the development of dowel forces in the stirrups. 

4. Swann (3.24) found that the yield stress of the 

reinforcement has no effect on this mode of 

failure, he also found that the ultimate 

torsional strength of beams failing in this 

mode increases with increase in the percentage 

of the total reinforcement. 

5. Surface strain/torque relationships obtained 

by Swann for beams failing in this mode indicate 

a marked stress redistribution as-ultimate 

torque is reached. Also the principal 

compressive strain measurements suggest that 

aggregate interlock must occur. 

6. Tests by Stewart (3.43) on reinforced and 

prestressed concrete beams show that these 

failures are of cleavage type and this mode 

of failure continues to occur-even when the 

dowel forces are eliminated. 

This summary suggests that over-reinforced 

failure could occur as a result of the following: 

a) Dowel forces in the'longitudinai reinforcement 

b) Dowel forces developing` in'the'transverse 

reinforcement 

c) Stresses in the concrete due`to'the extension 

of the beam (concrete' spring action). This 

possible mode of failure will be dealt with in 
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chapter 5. 

3.7.1 Over-Reinforced Failure Due to Dowel Forces 

Developing In the Longitudinal Reinforcement. 

Although the resistance of the dowel forces 

to the applied torque have been found to be very 

small, the stresses caused in the surrounding 

concrete due to these forces could lead to corner 

spalling prior to the yielding of reinforcement. 

The torque at which corner spalling occurs 

may by found for rectangular beams with four equal 

bars from equations 3.35 and the Bredt-Batho 

equations as follows: 

T ld =4 X1 F ld 
[1 

+ YL kl kd Cot 6) 3 
3.47a 

2S, 

or 

T ld =4 Yl F ldu 
[1 

+ X1 kl kd Co-' 9 3.47b 
2Sv 

where F ldu is the dowel force that causes corner 

spalling. This force can be determined from the 

following expression which is developed in chapter 

7: 

Fldu= 3.4Ct fcu Ct 1+0.4 { 

Ce 

where CL is the cover to, the longitudinal corner 

reinforcement taken from its centre. 

The contribution of aggregate interlock may 

also be added to equation 3.47, but -since the 

reinforcement is stressed within the elastic 

range at this stage the contribution of aggregate 

interlock would be a function of the ratio of the 
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stiffness of the longitudinal reinforcement to 

the stiffness of the transverse reinforcement. 

This may be taken tentatively as follows: 

Tao = Ta (1 - 1) for m>1 
m 

Tao = Ta m form <l 

where Ta is as defined in equation 3.44. 

3.7.2 Over-Reinforcad Failure Due to Dowel Forces 

Developing In The transverse Reinforcement 

The torque which may cause this mode of dowel 

failure may be obtained from equation 3.35a as 

follows: 

T? Svk 

sv (xi + Yl) Cot © kd 

where 
Fsdu is the maximum dowel force which can 

be resisted by the transverse reinforcement. This 

dowel strength will be shown in chapter 7 as: - 
7/4 

cu 
F 

sdu = 15 (ýs If s 
T 

where C. - is the cover to the transverse reinforce- 
1.0 

ment measured from its centre line. 

It may be shown that this mode of failure is 

only possible when high strength reinforcement 

such as prestressing strands are used as longitudinal 

reinforcement in a reinforced concrete beam and 
hence it may be ignored. 
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3.8 Partial Yield-Over-reinforced Failures 

The expressions for ultimate strength which 

were obtained previously were based on either 

full tensile yield strength being attained at 

failure in either the longitudinal or the 

transverse reinforcement or the stress remaining 

in the elastic range at failure. However, a 

transition mode of failure would occur as a 

result of some partial yielding of the reinforce- 

ments. Development of a rational theory for 

prediction of these modes of failure would be 

difficult and the use of a single expression 

for predicting partially over-reinforced and 

over-reinforced failures would be preferable. 

For this reason, the following semi-rational 

approach is suggested, equation 3.39 may be written 

as follows: 

qv qa + sv 
fsV 

Cot 
C 

S. v 

where 
fsvis 

the stress in the stirrups when corner 

spalling takes place. This stress may be taken 

to include the effect of dowel forces. Hence the 

ultimate torque for reinforced concrete rectangular 

beam becomes: 

Tdu = ýb4 
1 

(1 -- h_) b2h ft +4< 2 . sv Xl Yl 
fs'Cot '9 

3h s 
v 

If we assume the stress f sein the stirrups at corner 

spalling to be proportional to the tensile strength 

of concrete and the cover to the longitudinal 

reinforcement (CL). It is evident that the dowel 

stiffness of the longitudinal reinforcement-is 

proportional to: its diameter and the dowel forces 
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would be inversely proportional to the diameter 

of the bar. Therefore, the above equation may 

be written after further simplifications as 

follows: 

Tdu X1Y1 ýCl 1'X, 
_1-- 

Xl + ýX2 
A 

sv 
1G Cot 

3Y1 Sý'z u v 

where &Zl and C" k2 are coefficients which have been 

determined from all available test results for 

beams failing as partially over-reinforced and 

over-reinforced modes. These coefficients are: 

r-N, 11 = 0.15 for rectangular solid section beams 

= 0.08 for box beams 

3.9 

N2=22 

These modes of failure were found to be influenced 

by-the ratio of the volume of longitudinal to 

transverse reinforcement (m). Experimental 

results suggest that this equation would become: 

Tdu = X1Y1 A(1 (1, ýXl +2 sv 
q4 m .6 Cot fou 3.49 

3Yl S-v ý4 

Verification of Proposed Theory With Test Results 

Tables 3.3 to 3.35 and Fig. 3.8 to Fig. 3.12 

compare the theoretical predictions with experimental 

results for about 200 tests on reinforced and 

prestressed concrete beams subjected to pure 

torsion. These results cover a wide range of 

variables such as size, proportions, cross 

sectional shape, materials strength, m, ' and m1 

Fig. 3.8 gives a comparison of the theoretical 

predictions with test results from beams where the 

lower predicted strength was obtained from the 
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proposed yield theory (equation 3.40 modified 

by a factor O' s=0.9 to allow for the effect 

of spacing of the stirrups). Similarly Fig. 3.9 

indicates that the torsional strength of under- 

reinforced failure with equal volume of reinforce- 

ment is directly proportional to the parameter 
_ss 

-=Y= 
XI YI-, 

and the proposed reduction factor 
a 

of 0.9 appears to be justified. 

Table 3.3 gives correlation of the proposed 

yield theory with experimental results. The mean 

ratio of Ty (exp) /iy (th) = 1.04 with coefficient 

of variation of 9.7 percent. This compares with 

the conventional yield theory where the mean ratio 

of Ty (exp) /Ty (th) = 0.99 and the coefficient of 

variation is 12.6 percent. 

For beams containing different volumes of 

longitudinal reinforcement at the top and the 

bottom the smaller volume was used for the 

calculation of yield torque. The mean ratio 

of 1.09 with a coefficient of variation of 12 

percent was obtained for these beams. The 

proportion of test beams which failed by yielding 

of all the reinforcement is approximately 30 percent. 

Similarly Table 3.4 gives a correlation 

between yield theory and test results of prestressed 

concrete beams. 

Fig. 3.10 shows*correlation between experi- 

mental results for beams predicted by equation 

3.45 and 3.46 to fail as partially over-reinforced. 

Fig. 3.11 shows a comparison between test results 

and theoretical predictions obtained from equation 

3.47 which yielded the lowast torsional strength. 
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Table 3.5 gives a correlation between 

predicted and test results for beams where 

equation 3.49 produced the lowest torsional 

strength. The mean ratio of Tu (exp)/Tdu was 1.0 

with a coefficient of variations of 14.3 percent 

for this mode of failure. The proportion of 

the test beams which were predicted to fail in 

this mode is approximately 60 percent. 

Fig. 3.12 shows a plot of ultimate torque 

against reinforcement parameter s 
-ys X1 Y1 for 

Sv 

beams tested by Hsu (3.5) which also shows the 

theoretical prediction as obtained from the 

yield theory and the over-reinforced failure 

theory. These results indicate that there 

is a change in the mode of failure from yield 

to over-reinforced at a certain value of the 

reinforcement parameter which is influenced by 

the strength, of the concrete. These results 

illustrate that the empirical expression obtained 
by Hsu covers these two modes of failures although 

Hsu suggests that these beams are all classified 

as under-reinforced. 
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TABLE 3.3 Correlation of Yield Theories With Experimental Results For 

Reinforced Concrete Beams Subjected to Pure Torsion 

Tyr <Tj CTdu 

Proposed Theory Existing Theory 

Investigator Ref No. Mean Coefficient No. Mean Coefficient 

of ex of of ex ) of 
cams Ty (th) Variation Beams Ty (th) Variation 

Hsu 3.5 16 1.1 9.10 11 1.04 4.2 

Lampert and 3.18 7 1.03 6.80 7 0.93 7.5 
Thurlimann 3.21 

Ernst 3.42 4 0.99 5.15 4 0.94 2.3 

Victor 3.25 3 0.95 3.5 5 1.13 15.4 

Mitchell 3.33 4 0.94 5.9 4 0.84 5.8 
et al 

Total 34 1.04 9.7 31 0.99 12.6 

t 

Beam with unequal top and bottom longitudinal reinforcement 

Pandit 3.11 3 0.94 5.90 3 0.99 4.80 

Iyenger and 3.10 10 1.14 10.14 10 1.12 10.14 
Rangan 

McMullen and 3.45 2 1.02 - 2 1.09 - 
Warwaruk 

Collins et al 3.32 1 1.21 - 1 1.22 - 

Total 16 1.09 12 12 1.11 10.7 
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TABLE 3.4 Correlation of Yield Theories with Experimental Results 

for prestressed Concrete Beams Subjected to Pure Torsion 

cr< Ty\Tdu 

Proposed Theory Existing Theory 

Investigator Ref No. Mean Coefficient No. Mean Coefficient 

of (ex p) of of Ty ex ) of 
Beams Ty (th) Variation Beams Ty (th) Variation 

Mukherjee 3.47 1 0.83 - 1 0*. 84 - 
and Warwarak 

Gangarao dnd 3.48 5 0.83 18.64 6 0.95 14.64 

Zia 

Evans and 3.49 2 1.27 - 2 1.18 - 
Khalil 

Okado et al 3.50 2 0.91 - 2 1.31 - 

Superfesky 3.51 6 0.96 4.5 8 1.0 5.4 

Total 17 0.93 17.8 20 1.0.2 15.1 
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TABLE. 3.5 Correlation of Theory to Experimental Results 

For Reinforced Concrete'Beams For Beams Subjected 

to Pure Torsion 

1du {T' 

Investigator Ref 
Number 

of 
beams 

Mean 
Tu exp 
T-u th 

Coefficient 
of 

Variation % 

Hsu 3.5 37 1.1 9.9 

Lampert 3.18 1 0.96 - 
3.23 

Ernst 3.44 5 0.89 3.4 

Pandit 3.11 6 1.07 8.8 

Victor 3.25 3 1.25 2.3 

Mitchell et al 3.33 1 1.22 - 

Swann 3.23 14 0.87 7.14 

Iyenger and 3.10 6 0.84 8 
Rangan 

Evans and 3.46 3 0.89 8.7 
S ark ar 

McMullen and 3.45 1 1.17 - 
Warwaruk 

Collins et al 3.32 2 0.86 - 

Okada et al 3.50 12 0.99 8.7 

Total. 97 1.00 14.3 
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3.10 Conclusions 

1. The existing torsional theories have been 

briefly reviewed and their assumptions were 

found not to be in agreement with test data. 

2. The torsional behaviour of reinforced and prestressed 

concrete beams may be influenced by the 

spacing of the stirrups, dowel forces and 

aggregate interlock. 

3. The torsional strength is found to decrease 

with increase of spacing of the stirrups. 

4. it has been found that the contribution of 

dowel action of the longitudinal reinforcement- 

to the resistance to torque is small compared 

with the truss action, hence the-assumption made 

by Hsu (3.6), Martin (3.7) and (3.8) and 

Gesund (3.5) and (3.6) with regard to the 

contribution of dowel action is incorrect. 

5., For reinforced and prestressed concrete beams 

failing by yielding of the reinforcement, the 

concrete strength and dowel actions have little 

influence on the resistance to torque. 

6. The torsional strength of reinforced and 

prestressed concrete beams can be enhanced 

by the addition of web reinforcement. 

7. For beams failing by partial yielding of 

the reinforcement both aggregate interlock 

and dowel action contribute to the resistance 

to the applied torque. 
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B. Over-reinforced failure may develop as a 

result of either stress induced by dowel 

forces or the stresses induced in the 

concrete due to the elongation of the beam. 

9. Good agreement was found between predictions 
based on the proposed strength equations and 

experimental results. 



CHAPTER 4 

ULTIMATE STRENGTH OF REINFORCED AND PRESTRESSED CONCRETE 

MEMBERS SUBJECTED TO BENDING, TORSION AND SHEAR. 

YIELD FAILURE 

Summary 

A theoretical analysis of the ultimate strength 

of reinforced and prestressed concrete beams subjected 

to combined bending, torsion and shear is presented. 

This analysis is based on the assumptions that all 

reinforcement crossing a critical section or failure 

surface reaches full axial tensile yield strength. 

The effect of the angle of cracking and the 

length of the moment lever arm on yield failure have 
been examined. 

Simple rules to ensure the validity of the yield 

theory are suggested. The proposed theory is compared 

with 574 reinforcedznd prestressed concrete beam results 

reported in technical literature. 

c 
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4.1 introduction 

Available test data on reinforced and pre- 

stressed concrete beams subjected to bending, 

torsion and shear indicate that failure may be 

classified as: , 

1. Under-reinforced or yield failure - This 

denotes the failure of, beams when all 'the 

reinforcement intercepting the failure 

zone attains its full tensile yield strength. 

2. Partially over-reinforced or partial yield 

failure - This defines the failure of beams 

when either the longitudinal reinforcement 

or the lateral reinforcement attains its 

full tensile yield strength. 

3. Over-reinforced failure - Failure which occurs 

prior to yielding of all reinforcement of the 

beam. 

This chapter deals exclusively with the yield 

mode of failure and the other modes will be the 

subject cf Chapter S. 

in 1959, Lessig (4.1 to 4.4) developed a 

rational ultimate 'strength theory for reinforced 

concrete beams subjected to bending, torsion and 

shear. In this theory, failure was considered as 

a result. of bending about a skew neutral axis. 

She derived expressions for predicting the ultimate 

strength for two possible modes of failure. She 

denoted failure with the neutral axis located near 

and parallel to the top`face of a rectangular beam 

as mode 1-and failure with the neutral axis located 

near and parallel to one side of the beam as raode. 2. 
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Collins et al (4.5) suggested an additional 

mode of failure with neutral axis located near and 

parallel to the soffit of the beam and was denoted 

as mode 3. 

From consideration of equilibrium and other 

simplifying assumptions, 'Lessig obtained the following 

expressions for determination of torsional strength 

for mode 1. 

Ty 3. = Asl fyl (d -2)+mR. ( 
b) 

2 

x 
k2 =k1 (h -- c-)+4 (1 -k1 )(1 -k1 -bam ) 

b sv 
£: 

yv b 
1 2h +b Sv Asl f 

y1 

x_x 1+ kr (C1 )2 
d ý' (a )v1b 

"C 
1+ c: 1 j 

where (ä)o is the depth of the compression zone/ 

effective depth for the case of pure bending. 

Y. 
Cl 

gr + 
ý+ (b ^2 whereg= 

br k2 

it can be seen that these equations are coupled 

and can only be solved by a trial and error process. 

Since the publication ofthis theory, other 

yield theories have been developed for reinforced 

concrete beams subjected to bending, torsion and 

shear. These-theories are summarised under the 

name of their developers in Table 4.1. it must 

be pointed out that all these theories have the 
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following common assumptions: 

1. The beam has a constant cross-section. 

2. The reinforcement intersecting the failure 

plane attains full tensile strength at 

failure. 

3. The stirrups within the failure zone are 

equally spaced. 

4. The reinforcement in the compression zone 

is neglected. 

5. The concrete outside the compression zone 

is cracked and carries no tension. 

6. The torsional resistance of the compression 

zone is ignored. 

7. Dowel forces are neglected. 

8. Aggregate inter 

9. The ratio of 
T 

failure zone. 

1.0,. No local loads 

of the failure 

: lock stresses are neglected. 

remains constant within the 

are present within the length 

zone. 

The major differences in these theories arc: 

i. Definition of the shape of the failure surface 

and the direction of the axis about which the 

beam rotates. 

ii. The strength-of the compression zone or the 

assessment of the lever arm for the longitudinal 

tensile reinforcement., at . 
failure . 

iii. The formation of the equilibrium equations. 

The treatment.. used,. for each of the available 

yield theories regarding these three problems, are 
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summarized in Table 4.1 together with the loading 

condition which was assumed, the applicability of 

the theory and the modes of failure which were 

considered. 

4.1.1 Definition *of the shape of the failure surface 

The following definitions refer to the angles 

of cracking 9 assumed by various authors as listed 

in Table 4.1. 

Lessig assumed the failure surface was 

composed of three straight lines spirally around 

the beam at a constant angle. This angle was 

obtained from consideration of equilibrium of 

forces at failure. The beam was assumed to bend 

about a neutral axis joining the ends of this 

crack. The inclination of the cracks obtained 

from this method does not agree generally with 

the angles of cracks measured in experimental work. 

192 - Yudin (4.6) suggested later that this angle 

ba, taken as constant on each surface at 450 to the 

beam axis. This assumption was found to produce a 

considerable simplification in the solution of the 

problem at the expense of accuracy of prediction 

of test results which indicate that it is a 

conservative assumption. 

03 
- Gesund et al (4.7) assumed that the failure 

surface is composed of a' crack at `an angle of 450 

on the side of the beam and at variable angles on 
the soffit of the beam. From I ex perimental data an 

angle of 90° was suggested for beams- subjected to 

M 
less than O. 25änd 63.5° if T'is 

greater than 
M 

0.25. These assumptions would -leadto a"discontinuiiy 
g °r to 
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in the strength equations at 
M=0.25. 

The beam 

was assumed to rotate at failure about an axis 

parallel to the longitudinal axis and lying on 

the top face of the beam. 

&4 
- Evans and Sarker (4.8) developed another. 

yield theory which also'considered the basic 

mechanism of a spiral tension crack on the three 

sides of the beam and neutral axis near the fourth 

face. The shape of the tension spiral was deter- 

mined from the direction of the principal tensile 

stresses on the soffit of the beam prior to crack- 
ing. This crack was assumed to propagate from the 

soffit of the beam at a constant angle of-inclination 

and to extend to almost half the depth. The 

remaining part of this tension crack was then taken 

at 450. Failure was assumed to occur above the 

neutral axis inclined at 450 to the beam axis. 
These assumptions and those made earlier by Yudin 

and Gresund are not in agreement with actual crack 
inclinations measured in experiments, particularly 
incases where the loading on the beam approaches 
the pure bending case. 

e5 
-- Fairbairn and Davis (4.10) presented an 

improved and simplified version of Evans' theory. 

In this theory the tension cracks defining the 

failure surface on the three sides of the beam 

are composed of three straight lines spiralling 

around the beam at a constant angle up to the 

neutral axis of the beam. This angle was governed 
by the principal stress at the soffit of the beam 

prior to cracking. The line connecting the ends 
of-this crack was taken as the neutral axis of the 
beam. Hence, for the case of pure bending the 
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crack was vertical and the direction of the neutral 

axis was in agreement with the position of the pure 

bending theory case. They have also suggested 

simple expressions to define the angle and inclination 

of the crack. 

4.1.2 The Strength of The Conpression zone 

Z1 - Lessig obtained the depth of the compression 

zone by equating the compressive forces perpendicular 

to the failure surface, to the components of the 

tensile forces in the steel. The effect of shear 

stresses on the strength of the compression zone 

have been ignored in this approach. Later Lessig 

suggested the following empirical expression for 

the depth of the compression zone in order to 

simplify the calculation of the torsional strength 

of the beam. 

ý. As l fy l- p's l f' 1 
f' bd (1 +5). 

cW 

"Z2 and Z3 - Many research workers suggested a 

constant lever arm factor for the determination of 

the torsional strength of beams subjected to bending 

and torsion. Lampert et al (4.11) considered the 

distance between the top and bottom longitudinal 

reinforcement as the lever arm whereas Gesund (4.7) 

considered the lever arm to be the distance between 

the tension reinforcement and the extreme compression 

fibre of the beam. 

Z4 - Collins et al (4.5) succeeded in simpli- 
fying Lessig's theory by assuming the depth of the 

compression zone to be that of the pure bending case. 

They based their assumptions on the statement that 

considerable variations of-the value of x will have 
d 
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little effect upon the ultimate torsional strength 

of the beam. Hence they were able to eliminate 

the calculations for the depth of the compression 

zone which were necessary in Lessig's theory. 

Z5 - In 1973, Martin developed a theory 

similar to that of Collins et al (4.19) but 

considered the effect of shear stresses due to 

torsion on the strength of the compression zone. 

This theory may be criticised for its complexity, 

the use of an incomplete failure criterion and 

incorrect assumptions regarding the distribution 

of the shear stresses due to torsion. 

4.1.3 Formation of Equilibrium Equations 

In deriving the ultimate torsional strength 

equations for reinforced concrete beams subjected 

to bending and torsion the following techniques 

have been used: 

El - Lessig formulated one quilibrium equation 

by equating moments of forces about an axis 

perpendicular to the neutral axis and optimising 

the torsional strength equation with respect to the 

length of the compression zone. 

E2 - Yudin (4.6) derived his torsional strength 

equation by taking moments of external and internal 

forces along both the longitudinal'and transverse 

axis passing through the centroid of the skew 

ccmpression zone. 

E3 - Gesund and his co-authors considered the 

equilibrium of moments about the longitudinal axis 

of rotation which is parallel to the axis of the 

beam and an axis perpendicular to it. 
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TABLE 4.1 Comparison Between Yield Theories For Reinforced and Prestressed 

Concrete Members Subjected to Combined Bending and Torsion, 

Bending torsion and shear. 

Investigator Ref Year 
Mode 

of 
ailure 

Inclinatior 
of 

Failure 
crack 

Lever 
arm 

z 

Equilibrium 
Method 
Used Loading 

case 

E 

S 

Appli- 
cation 

LLessig 4.1 1959 1&2 1 Z1 E3 B&T R. C. 
B, T &S 

Yudin 4.6 1962 1 2 Z2 E2 B&T R. C. 

Gesund et al 4.7 1964 1 3 Z3 E3 B&T R. C. 
B, T &S 

Evans & 4.8 1965 1 4 Z1 E2 B&T R. C. 
Sarkar 

Collins et al 4.5 1966 1,2 1 Z4 E4 B&T R. C. 
&3 B, T &S 

Fairbairn & 4.10 1969 1 5 Zl E2 B&T R. C. 
Davies 

Lampert & 4.11 1969 1,2 1 Z2 E3 B&T R. C. 
Thurlimann 1971 &3 P. S. C. 

Elfgreen 4.15 1971 1,2 1t Z2 E5 B&T R. C. 
&3 B, T &S 

Kuyt 4.16 1971 1,2 1 Z2 E3 B, T &S R. C. 
&3 

Martin 4.14 1972 1,2 1 Z5 E4 B&T R. C. 
&3 

Hall et al 4.17 1973 1,2 1 Z4 E4 B, T &S P. S. C. 
&3 

R. C. = Reinforced Concrete P. S. C. = Prestressed Concrete Beam 
B&T= Beams subjected to Bending and Torsion 

B, T &S= Beams, sµbjected to Bending, Torsion and Shear 
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E4 - Collins and his co-workers obtained their 

torsional strength equations from one equilibrium 

moment equation taken about the skew neutral axis. 

This equation involved an angle of failure plane 

as a variable. The torsional resistance was then 

obtained by optimising this equation. 

E5 - Lampert and Thurlimann (4.11) have extended 

their space truss analogy to the case of bending and 

torsion. 

4.1.4 Comments on Existing Yield Theories 

From this brief review the following comments 

can be made: 

1. Unlike the rational theories for prediction 

of ultimate strength under pure bending, these 

theories exclude the condition of compatibility 

of daformation, therefore the steel strain at 

failure cannot be determined analytically and 

for this reason some authors have empirical 

-'expressions in their theories to ensure their 

validity. 

2. Due to the large number of assumptions made for 

these theories, considerable restrictions have 

been imposed by their developers, hence making 

them less attractive for practical applications. 

3. No comparative studies are available in the 

relatively new yield theories. although an. attempt 

has been made (4.18) to, compare, the earlier 

yield theories. 

4. Some yield theories such as those suggested by 

Lessig and Martin (4.14) are cumbersome for use 
in practical situations and hence no conclusive 
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work is available to show the effect of 

simplifications made by other theories on the 

accuracy of prediction of test results. 

5. Recent test evidence (4.19) indicates that 

there are considerable differences between the 

axis of rotation assumed for the skew bending 

theory and the experimental values. Similarly 

the angles of cracking assumed by Lessig, 

Collins, Lampert, Martin etc. differ from those 

measured experimentally. 

6. Table'4.1, indicates that most of the existing 

yield theories do not cover the case of beams 

subjected to bending, torsion and shear which 

"is 
the most important loading case that would 

be encountered in practice. Similarly most 

of these theories have been developed for the 

case of reinforced concrete beams and only 

recently has the problem of prestressed concrete 

beams been studied. 

Therefore, the aims of this Chapter are as 

follows: 

a. To propound a rational yield theory based 

on more acceptable assumptions. 

b. To consider the effect of various assumptions 

with regard to the. angle of cracking on the 

torsional strength. 

c. To examine the effect of various simplifications 

regarding the depth of the compression zone.. 

d. To determine rationally the boundary conditions 

for yield failure. 
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4.2 Proposed Yield Theory_ 

General Assumption 

Reported test evidence on the behaviour of 

reinforced concrete and prestressed beams subjected 

to bending and torsion suggest that the position of 

the shear centre varies at different stages of the 

beam loading. It's position is influenced by 

cracking and inelasticity, for example, for beams 

failing according to mode leE Lessig's classification, 

the shear centre is known to lie in the compression 

zone and for mode 2 the position of the shear centre 

is known to move to one side of the beam and for mode 

3 it is found to lie near the soffit of the beam. 

Also these test results indicate that the assumption 

of planes before bending remaining plane after 

bonding is reasonably valid for this general case of 

loading. 

Therefore, it is expedient to classify the modes 

of failure as follows: 

Mode 1. 

This mode of failure is`defined as occuring when 

the stirrups and the longitudinal reinforcement located 

near the soffit of the beam reach their full tensile 

strength at the critical section of the beam. For 

this mode of failure, the shear centre is assumed to 

coincide with the point of intersection of the centre 
line of the stirrups at the top of the beam with the 

vertical axis of symmetry of'. the: beam as shown in 

Fig. 4.1. The angle-of inclination of the cracks 
is assumed to be governed by the direction of the 

principal stresses at the soffit of the beam prior to 

cracking. 
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Mode 2 

This mode of failure is defined as the case 

where both the stirrups and the longitudinal 

reinforcement located along one face of the beam 

reach their full tensile yield strength. This 

mode usually occurs at low values of applied 

moment. Consequently the neutral axis may be 

assumed to remain unchanged after cracking since 

all four sides of the beam would be cracked. The 

point of intersection of this neutral axis with the 

centre line of the stirrup leg contains the unyielded 

longitudinal reinforcement and may be taken as the 
shear centre. 

Mode 3 

This mode is assumed to occur as a result of 
the stirrups and the top longitudinal reinforcement 

reaching their full tensile yield strength. Since 

this failure will occur for beams with smaller top 

longitudinal reinforcement and under approximately 

pure torque loading condition, then the position 

of the neutral axis maybe taken'as that for mode 2 

and the position of the shear centre may be taken 

as the point of intersection of the stirrup leg on 
the tensile face of the beam with the vertical axis 

of symmetry of the beam. 

It must be noted that the position of the shear 
fr 

centre would not influence the derivation of the 

following torsional strength equations. 

Since the reinforcement has been assumed to 
develop its full tensile strength, the dowel forces 

may be neglected. 
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4.2.1 Analysis of Mode 1 

The strength of the rectangular box beam shown 

in Fig. 4.1 will be studied. The failure of an 

element cut from the bottom flange assumed in this 

analysis to correspond to the failure of the beam. 

From the equilibrium of the horizontal forces 

acting on this element we have: 

Af 
F+ Cot 

©1= 
mb ý sv yv 

_q Cot (9 4.1 
z qt Sv a1 

where F is thi 

due to bending 

applied torque 

mb Im fY¬ 
(xt+Y1) 

a direct force acting on this element 

and, gsis the shear flow due to the 

acting on the beam at failure 

S 
v 

Af 
sv yv 

qa is the shear flow resisted by aggregate interlock 
Asv 

area of stirrups, Sv spacing of stirrups and 
fyv 

is the yield stress for the stirrups. 

From the equilibrium of vertical forces acting 

on this element we have. 

q= 
Asv 

- Cot 
6) 

+q4.2 t Sv 1a 

Eliminating qa between equation 4.1 and 4.2 and 

rearranging 

FZ + 2gtCot 
1= 

AS 
Cot 

61 
+ , mbl 4.3 

Sv 

but 

T1 
ýY ýX 2X1 YI 

FZ M 
(X1 + Yl) Z 
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where z is a lever arm for longitudinal reinforce- 

ment and Of.. is a factor representing the fraction of 

the applied torque being resisted by the reinforce- 

ment and (1 - oL ) represents the fraction of the 

applied torque being resisted by the compression zone. 

Substituting these values into equation 4.3 and 

rearranging we obtain: 

2a11+ 
mb 

y_ 
_ 

kz 
Cot 

Ts 2 
cr Cot 91 + 
kZ 1. Y1 

xl 

z 
where kZ =Y and 

1 

Tý 2 Asv fyv Xl Yl 

S 
v 

4.4 

it is evident that an increase in the percentage of 

the reinforcement for any given beam will result in 

a decrease in the values of kz and K. Therefore, 
Ot 

for simplicity may be taken as a constant and 
z 

can be approximated to unity, then 

ý1 
_ 

kz 
Cot 

20, 
+ mb 4.5 Ts 2 

Cot 6j1" +1V 
Y1 

t 
X1 

where Cot 
®1 

=1+ fp1 Ztl 2 Ztl 

fti +C 
2Z1 

) ý2Z1 ) 

I 

equation 4.5 may be written in interaction form as 
follows: 

T 
Vi Cot 

0+M 
kZ 

_- (Cot 2ý 
+ ') 4.6 TS 1 Mu 2 a. 1b 

where Mu is the flexural strength of. the beam under 

s 

t 
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pure moment condition. 

if the angle of cracking is to be taken as 

equal to the angle of inclination of the compressive 

field at failure as asssumed by Lessig, Collins etc. 

then the inclination of O1 may be found by deter- 

mining the lowest failure torque from equation 4.5. 

This means that: 

dTß'1 

d01 -O 

therefore, 

(cot 91 + 
`r 

)d (Cot 29 
+ mý) - (cot201+mý) 

(1 + Yl) dDl 

x1 

d (cot ©1) 
-O 

d&j 

This leads to 

Cot 8'+T24.7 
min 1+Y 1+Y 

X1 X1 

when this value of Cot is substituted into equation 

4.5 we get: 

T2 
T -k mb+ 4.8 

ü 1+Y1 1 +Y1 

X1 X1 

This form of equation has been produced previously 

by Collins et al using-the skew bending approach 

Equation 4.8 can be written in-a general interaction 

form as follows: 

1ý 
vl 

2+M=1 
ML Ts k 

zu 

4.9 

If e1 is taken equal-to 450 as assumed by Yudin, then 
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equation 4.4 becomes: 

T_kzl+ 
mb 4.10 

Ts 21+ 

1+Y1 

x1 

From longitudinal equilibrium of forces acting on 

the section under consideration, then 

ýAsl fyl - Asl fyl) ksc kl fcu bx 4.11 

where ksc is a reduction factor representing the 

effect of shear stresses on the compression zone 

and kl is a ratio of the average compressive 

stresses in the compressive zone of the beam at 

flexural failure to the cube strength. 

The expression for the lever arm is: 

Z=d-k2x, where k2 is the distan e from the 

extreme compressive fibre to the compressive force 

resultant. From this relationship and equation 

4.11 we may obtain: 

kz =Y1- 
k2 

P 
f1 

- P' f, 4.12 
1 k1 ksc f 

cu f 
cu 

where P= 
Asl 

and PI= 
Asl 

bd bd 

It can be shown that 
kk2 

is constant for a wide 
1 

range of concrete. strengths, and has a value of 
4, if the rectangular parabolic stress block 

suggested in CP 110 is used, then equation 4.12 

becomes 

kZ =d1-3P 
fyi 

- P' 
f 

vl K 4k 
scf cu °f cü 
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The value k 
sc 

depends on the distribution of shear 

and direct stresses in the compression zone as well 

as the strength of concrete under combined shear 

compression. Collins et al (4.5) found that the 

torsional strength can be predicted accurately by 

putting k 
Sc = unity. 

Yielding of the compression reinforcement can 

be ascertained from the compatibility condition 

used in the analysis of strength under pure 

bending. 

4.2.2 Analysis of Mode 2 

From equilibrium of the horizontal forces acting 

on an element cut from the side of the beam shown in 

Fig. 4.1 

A 
q. Cot ' sv 

f 
yv 

y+1 

_q Cot 19 4.13 = Mb 2 sv 2a2 

i 
where 

Ry 
= 

5Asl fyl 

A's lf yl 

From equilibrium of the vertical forces acting on this 

element we obtain: 

sv vv Cot qý =S2+ qa 4.14 
v 

Eliminating qa between equation 4.13 and 4.14 and 

rearranging: 

Asv fyv 
Cot2 2 

Ry + 1) 
q=S mb 

,ý24.15 
v2 Cote 2 

where q is the shear flow due to torque and the 

applied shear force acting on this element. 
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As a result of the yielding of reinforcement 

on one side of the beam, the shear stiffness of this 

side would become zero, consequently the applied 

shear force will be resisted by the other side. Also 

as a result of this yielding and the shift of the 

shear centre to one side of. the beam, the applied 

shear force will give ripe to an additional torque 

on the section equal to 21. Therefore, the total 

torque acting on this section becomes: . 

Tt=T+__l =T (1+§Z) 4.16 
22 

ý1 
where Sy =T 

Now the total shear flow acting on this element 

becomes: 

_Tt 
T 

(i+s 
q 2X Y 2X Y 11112 

Substituting this expression into equation 4.15 

and rearranging we have: 

T 20 ' 
&Y 1) 

y2 Cot 2+ mb i2J 

Ts 2 Cot(ý}2 (1 +S Y) 
4.17 

2 

where Cot 2=1+ which for reinforced- 
2 

concrete is equal to unity. 

However, if the angle of cracking is taken as 

equal to the angle of inclination of the compressive 

field at failure, then 
2 

is obtained by equating 

dT/dt 
. 

to zero as follows: 

2 mý 
2-1) Cot =R b 

when this value is substituted into equationý4.17 

the fäilure torque for this mode is obtained as 

I 
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T 
-2 

ý' (R + 1) 4.18 
Ts (1+ý) m'b z 

2 

Alternatively the shear flow acting on this 

element may be considered as the sum of the 

shear flow due to torsion. and shear force: 

q qt+ CIV 

q 2X 1Y+ 2Y 2X1 
Ty sß'1) 4.19 

111 

where t< represents the fraction of the shear force 

being. resisted by the reinforcement. it is 

evident from above that has a value lying between 

and 1. 

4.2.3 Analysis of Mode 3 

From equilibrium of horizontal and vertical 

forces acting on an element of the compression flange 

shown in Fig. 4.1 we have after combining and 

rearranging: 

sf . 
Yv (Cot2 e3 + M-b 

R 
.y -Fz+ 2qtCot S 

3=A 
sv 

v 

but =Tom and F=M qt 2X1. Yl z(YX Yl 

equation 4.20 becomes after rearranging: 

T1 
Cot 

23+ 
mb 

R. 
y 

T2 
s Cot t9 

3-1 
1+Y1 

X1 

4.20 

4.21 

Since cracking of beams failing in this mode will 

usually be initiated at the side of the beam and 
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propagate to the top and bottom of the beam, 

Cot c9 
3 may be taken as i 

ý+2 
and for reinforced ftz 

concrete beams may be taken as 1. 

However, if the angle of cracking is taken as 

equal to the angle of inclination of the compression 

field at failure, then 93 is obtained by equating 

dT/d e3 to zero and the failure torque for this 

mode becomes: 

T 
T' Ry+ i+Y1.2+ l+Yl'' 4.22 

S Xl X1 

An examination of equation 4.22 reveals that 

the minimum torsional strength will correspond to 

the lowest value of Y. This would occur at the 

cross section subjected to the minimum bending 

moment e. g. near the support of simply supported 

beam. Since this mode of failure usually takes 

place over a finite length of the beam after 

considerable stress redistribution, the critical 

section at which failure occurs may be taken as 

(Xl + Yl) Cot 0Z from the support, therefore / max 
Yl) 

may be reduced by the ratio of 
(Xl +a Cot 

a 
where a is the shear span measured from the support 
to the first point load. Consequently % 

max is 

calculated from the bending moment at the first 

point load. 

This equation may be written in the following 

simple dimensionless form: 

"T2- kz R 4.23 
ML sry 
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4.3 Alternative Yield Theory 

The strength equations for the three modes 

of failure can also be obtained by a study of the 

equilibrium conditions of equilibrium for the free 

body diagram for the box beam shown in Fig. 4.2. 

If it is assumed as before, that Qab (9c 

The beam to be studied has the same notations 

and geometrical properties as the beams studied 

in the preceding section. 

Taking moments about the z axis at point 0; 

Af 
T=2 Sy YV X1 Y1 Cot +2q Xl Yl 4.24 

sv a 

Now, taking moment about the x axis: - 
Af 

M_2 
Asl yl 

Sv 
S'v. (XI + Yl) cot2(ý --2gaYi (X1+Y1) 

v 

Cot- 0'4.25 

To simplify the analysis it is further assumed 

that z= Yl, and eliminating qa between these two 
11 

equations we have : 

M+T 
Cot = 

2Asl 
YlY1 

+ 
Asv f 

vv xY Cott (1+Y1 1+Yý� sv 11 
X1 X1 

rearranging this equation we get: 

Ti b+ Cot 
2© 

T5 2 Coto+ 

1+Y1ý'1 

This equation is the same as equation 4.10. 

4.26 
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In deriving equation 4.5,4.8,4.17,4.18 and 4.21, 

it was assumed that failure occurs at one cross 

section of a beam whereas equation 4.25 considers 

failure to occur over a finite length of a beam. 

Hence, for beams having a varying bending moment 

over its length, the second method of analysis may 

over estimate its torsional strength. 

Examination of the forces acting on the free 

body diagram shown in Fig. 4.2 reveals that the 

vertical forces acting in the z-y plane do not 

satisfy the condition of equilibrium unless different 

crack angles are considered for the analysis of mode 1 

type of failure. Hence, the assumption of constant 

crack inclination that has been made by most previous 

investigators cannot be justified for this reason 

when the beam is subjected to bending, torsion and 

shear. 

In order to examine this problem the crack angles 

on the side of the bottom of the beam are assumed to 

have different values and may be written as follows: 

a= cot (a 

b= Coto b 
c= cot (5 

c 
To simplify the analysis, the stresses due to aggregate 

interlock are ignored. From vertical equilibrium of 

forces acting on the free body diagram. shown in Fig. 4.2: 

YAf 
V= ý- sv yv (a - c) 

Sv 

this may be written as 

f V__ Asv 
y v 

2Y1 = qv - Sv 
(a - c) 4.27 

151. 



From the consideration of equilibrium of forces 

acting in the x-Z plane and in the direction of x, 

we obtain: 

qt x1 = 
ýsv f 

yv X1 b 
Sv 

qt = 
Asy fyv 

b-4.2 8 
Sv 

Taking moments about the Z axis at point 0 we get: 

T 
ýsv f 

yv (2+b+2) Xl Y, , or 
Sv 

qt = 
Asv fyv (4+2+4)4.29 

Sv 

From equations 4.27,4.28 and 4.29 the following 

relationship can be obtained: 

Af 
qt + qv = sv yv a 

Sv 

and 4.30 

Af 
qt, - qv sv vv c 

Sv 

Taking moments about the Y axis at point 0 

tqt-qv! [Y1a 
+Xb+ Ylc X1 

= 
Asv fyv 

Xla (Yla+X1 b) 
2 Sv 2 

Substituting for a, b and c from the equation 4.30 

we obtain: 

qt qv (2+ X1 )= qv qt -- qv2 4.31 
Y1:.. 

Now taking moment about the x axis thus: 
Af 

M=2As1fy1 Y +sv yv ay2A sv 
f 

yv 
cYY a+X b+Y c 1 Sv 2_ 1" Sv 1111 

2 
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Substituting for a, b, c and expression 4.31 in the 

above equation we obtain: 

Y= 
Asl f 

yl - 
AV 

f cjt2 (X1 + Yl)+ gtqv Y1 
1 sv yl 

Using qt = 2X Y qv =2V above and rearranging, 
11 

in the following dimensionless form 

M+ (T 2 
+'tTI Vo) (X +Y 1)y 

=1"4.32 Mo To 11 

where 

Mo =2 
Asl fyl 

Y1 

To=2Asv 
fyv 

X 
Sv 

f 
Vo=2Asv yvY 

Sv 

(pure bending strength) 

Y1 2 
Asl f 

yl Sv 
(X1+Y1) Asv fyv 

J12 Ast fyl 
Sv 

Y1 Asv fyv 

Similar analysis can be performed for other modes 

of failure. For modes 2, and 3, test evidence on 

reinforced concrete beams'(4.21) indicate that the 

crack inclination is almost constant, at 450, bence 

a simpler solution may be obtained from equation 

4.17,4.18,4.21 and 4.22.. 

Equation 4.32 may be written as: 

72T 

T +Xl.: ný+ +Y1 1+Y 
s1+ 1 X1 Y1 X Xl 

Y1 

it may be noticed that equation. 4.8 becomes a 

particular case of this general, equation 4.33. 

_ý 
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4.4 Relationship Between Various Proposed Yield Theories 

Fig. 4.3 compares various theoretical predictions 

of strength for reinforced concrete rectangular beams 

subjected to bending and torsion in a form of a non 

dimensional interaction diagram. it can be seen 

that the choice of the angle of the crack has an 

appreciable influence on the strength prediction 

particularly for beams with high values of m°. In 

general the theories which have been obtained by 

minimizing the torsional strength with respect to 

the angle of cracking gave the lowest prediction 

of strength and the theories utilizing the angle 

of the direction of principal stresses gave'the 

highest strength and an intermediate value is 

usually obtained by taking &= 45°. The validity 

or otherwise of any of these theories can only be 

tested against experimental results as will be 

examined later in this chapter. 

It is evident from Fig. 4.3 that for beams 

with smaller volumes of longitudinal reinforcement 

placed in the compression zone than the reinforce- 

ment provided in the bottomfof a beam (Ry < 1) 

failure may occur according'to mode 1,2 or 3. 

For beams subjected to Mü <0.1, failure is 

governed by mode 3 and it can be. seen that an 

increase in the bending moment will result in an 
increase in the torsional strength as was shown 
by Collins et al. Where 0.1, < Mü 

0.25, failure 

would be according to mode 2 where the applied 

moment has no effect on the torsional strength 

of the beam. For the case where 0.25 Mü failure 

will be in accordance with mode 1 when the torsional 

resistance of the beam decreases with increase in 
} 
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the applied bending moment. 

For beams with Ry = 1, failure will always 

be governed by mode 1 only. 

For beams subjected to combined action of 

bending, torsion and shear, 'failure can be 

represented in the form of interaction surfaces 

as shown in rig. 4.4, for a reinforced concrete 

beam with Y1 =2 and Ry = 2. It is seen that 
1 

mode 1 failure is associated with high values 

of applied moment and mode 2 failure is associated 

with high shear. Mode 3 failures occur as the 

pure torque loading condition is approached. 

A disadvantage of the theories which consider 
the angle of cracks at failure to be governed by 

the direction of the principal stresses just prior 
to cracking is the need for determining this angle. 

In order to simplify the calculation of torsional 

strength of reinforced concrete beams Fairbairn 

and Davis (4.10) suggested the following simple 

expressions for this angle. 

2, Cot (9 = 
0.6 

v 'F 
2</<8, Cot V0 *1 a 

(f ) 8, cot 0=0.1 

These values are plotted in Fig. 4.5 together with 
the method suggested by Evans and Sarkar (4.8) and 
the elastic theory suggested-in Chapter 2. It is 

seen that this angle may be+approximated to 

Cot& _l 1+ ý' ' 
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4.5 Limitations on The Yield Theory 

In the derivation of the yield theory, it was 

assumed that the reinforcement crossing a failure 

surface reaches full tensile yield strength. 

Measured strains on reinforcement indicate however 

that this assumption is not valid for a large number 

of the beam tests reported in literature. Failure 

with yielding of only one of the categories of 

reinforcement (stirrups or longitudinal reinforcement) 

or without yielding of reinforcement may occur as 

a result of'the following: . 

a. Large value of nn 

b. Large volume of longitudinal reinforcement 

c. Large volume of transverse reinforcement 

d. Beams subjected to high shear force. 

The boundary conditions of the yield theory 

can be obtained by the following methods: 

1. Theoretical prediction of beam strength failing 

by other possible modes of failure i. e. 

partial yield or over-reinforced failure. 

2. By empirical methods, where the range of 

certain parameters are determined experimentally 

and a simple'rule provided to ensure the 

validity of the yield theory. 

The first method will be fully discussed in 

Chapter 5, and the second method will be examined 
in the following. 

4.5.1 Ratio Between Longitudinal and Transverse Reinforcenent 

Tests on reinforced concrete beams subjected 
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to bending, torsion and shear (4.20)indicate that 

full yielding does not occur for beams with mb 

outside certain limits, and the range of mb 

usually depends on and the b ratio. 

Lessig (4.1 ) gave the following empirical 

limits to the ratio of transverse longitudinal 

reinforcement by which it is hoped to ensure 

yielding of both categories of reinforcement: 

0.5 ý0.8 
r (1 2 

2b+h) `' 1.5 

Later Collins at al ( 4.5 ) suggested the following 

limits on this ratio: 

r 4+ 
4 

2h 
" 

0.9 
1+b 

Recently Martin (4.14) suggested the following limit 

r (1 +b+2 ý) "1 

In deriving these expressions, Lessig, Collins and 

Martin obtained a ratio of r by minimizing the 

volume or internal forces required to resist the 

applied loads which result in a single value of r 
for any given value of Realising the restricted 

nature of these results they employed test data in 

order to obtain a range of.. r for any given value of 

In the following a method is proposed whereby 
the limits on mb are obtained from the knowledge 

of the valid range of mb under pure torsion 

condition which was obtained in Chapter 3. 
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Equating equation3.4and equation 4.8 we 

obtain: -11 

T2 
Ts - mb +( 1-+ -Y 

-+y kz 
11 

1 X1 

putting kz=1 and rearranging we get: 

mb = m' +21+Y4.34 
1 

Xl 

4.5.2 

x. 5.3 

This equation indicates that the range of mb 

for the yield condition increases with increase in 

as shown in Fig. 4.6. These results can be 

seen to compare favourably with the experimental 

results obtained by Lyalin (4.20). 

Maximum Percentage of Longitudinal Reinforcement 

If the percentage of longitudinal reinforcement 

exceeds a certain amount, failure will occur prior 
to yielding of the reinforcement. To avoid this 

situation, Lessig proposed the following empirical 

limit on the depth of the compression zone for her 

yield theory that is: 

X>0.55 
-0.7 T d 

In contrast Collins et al ( 4.5) suggested the follow-, 
ing empirical rule in order to prevent over-reinforce- 

ment. (A11 11 - 
A11 fyl) 

bd f' 0.4 
c 

Maximum Shear Force 

When a beam is subjected to a load combination 
that will give rise to shear failure by yielding of 
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stirrups only, then the yield theory is expected 

to over estimate the strength. It is interesting to 

note that there is no simple rule in the published 

literature on the shear force that could be applied 

if the yield theory is to remain valid. 

4.5.4 Proposed simplified Boundary Conditions for the 

Yield Failure 

From this brief review and from the comparison 

of yield theory predictions with test results to be 

given in the next section of the chapter, the 

following conditions are proposed in order to ensure 

yielding of reinforcement. 

1. The beam is under-reinforced in flexure. 

This condition can be determined from the 

ccmpatibility rule and maximum compressive 

strain used in the theory of the ultimate 

flexural strength for reinforced and pre- 

stressed concrete beams as given in CP 110 

in order to prevent shear compression failure. 

2. The theoretical torsional yield strength for 

beams under combined bending, torsion and shear 

is equal or smaller than Tdu (equation 3.49) in 

order to prevent partial and over-reinforced 

torsional failure. 

3. For beams subjected to bending, torsion and 

shear, Sy is equal to or smaller than unity 

in order to prevent shear torsion failure. 
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4.6 comparison of The Proposed Yield Theories With 

Experimental Results 

The theoretical studies presented in this 

chapter show that the prediction of ultimate 

strength of reinforced and concrete beams is 

influenced by the choice of'the angle of cracking 

of the failure surface, also in order to produce 

a simple theoretical expression for prediction of 

strength of these beams, various simplifying 

assumptions are needed. These problems can best 

be examined by comparing the predicted strength with 

available test results. For this purpose, the 

experiments which have been carried out at 24 differ- 

ent research centres or universities in U. S. A., 

U. S. S. R., U. K., Canada, Australia, Japan, Sweden 

and India are used. These results consist of 

574 reinforced and prestressed concrete beams with 

web reinforcement covering Ya wide range of variables 

such as size of specimen, X. , percentage of rein- 
1 

forcement, ', sy, mb , materials strength and level 

of prestress. 

The method used for this comparison is to 

compare the maximum experimental torque for any test 

with the ultimate torque predicted by the yield 

theories e. g. 
T(e xp) The theoretical ultimate T (th) 

torque has been calculated for mode 1,2 and 3 and 

the smallest predicted value was considered as the 

governing failure torque. 

A summary of this comprehensive comparison js 

given in Tables 41 to 48 and Figs. 4.7 to 4.11. 
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4.6.1 Reinforced Concrete Beams Subjected to Bending 

and Torsion 

The available test results in this category 

of beam represent almost half the total of 574 

test results studied. 

Table 4.2 gives the number of beams which 

have failed according to mode 1, the mean ratio 
T(exp) 
T(th) and coefficient of variation for each set 

of results. These beams satisfy the boundary 

conditions stated earlier. The theoretical 

calculation has been obtained using equation 4.5 

and 4.8 assuming kZ = 1. For the first 

theoretical method (equation 4.5) the angles of 

cracking were calculated in accordance with the 

method given in Chapter 2. For this case, 95 

beams out of a total of 240 are classified as*a 

yield failure giving a mean ratio of 
T(th) 

= 0.95 

with a coefficient of variation of 10.2 percent. 

This compares with a ratio 
T(th)) 

= 1.06 and 

coefficient of variation of 14 percent when equation 
4.8 was used. 

It is seen that both equations provided good 

estimates of the experimental results with equation 

4.5 overestimating the torsional strength by an 

average of 5 percent in contrast to equation 4.8 

which underestimates the test results by an average 

of 6 percent. Equation 4.5 provides a more 

consistant estimate of the strength of these beams 

" with a narrower band in the scatter of the T(th ) 
) 

about unity than equation, 4.8. 

In order to examine the'influence of the 

boundary rules on the predictions of the yield 
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theory, this comparison has been repeated in 

Table 4.3 but using Ts as an upper limit to the 

yield theory as suggested by Martin (4.14). It is 

seen that Ts gives a more restrictive upper bound 

to the yield theory than Ti dand 
hence only 79 beams 

can be classified as failing according to mode 1 

if equation 4.5 is used - for prediction of torque 

with the mean ratio 
T (ex 

= 0.96 and a coefficient T(th) 
of variation of 9.9%. This is compared with 96 

beams failing according to mode 1 with a mean ratio 

of 
T(th) 

= 1.02 and coefficient of variation of 

9.3 percent if equation 4.8 is used for the 

theoretical prediction. It is interesting to 

compare these correlations of results with those 

obtained by Martin's (4.14) yield theory. He 

compared his yield theory with the first seven 

sets of the experimental results given in Table 4.3. 

He found that only 77 beams failed according to 

mode 1 of his yield theory with a mean ratio 

T (exp) /2 (th) = 1.05 

of 11.6 percent. 

that are induced in 

the effect of shear 

compression zone as 

justified. 

and coefficient of variation 

Cherefore, the complications 

a yield theory by considering 

stresses on the depth of the 

suggested by Martin are not 

Fig. 4.7 shows a plot of T (exp) /T(th) using 

both equation 4.5 and 4.8 against kZ which has 

been obtained 

contribution c 

reinforcement 

beam has been 

plane section 

after bending 

according to equation 4.12. The 

Dr otherwise of the longitudinal 

located near the top face of the 

checked from the principle of 

before bending remaining plane 

and the maximum compressive strain 

given in CP 110. These results indicate that 
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TABLE 4.2 Correlation between yield theories (mode 1) and test results 

For reinforced concrete beams subjected to bending and torsion, 

k7. =1 and Tcr 
<7l< Tdu 

J 

0 

t 

Q_O 
cr 

@ 
V' min 

umber mean coefficient Number Mean Coefficient 
Investigator Ref of T(ex of of T ex of 

beams T(th) Variation beams T(th) Variation 
o/0 

Gesund et al 4.7 12 0.92 10.9 12 1.01. 6.2 

Goade & Helmy 4.21 8 0.98 10.9 11 1.1 9.8 

Evans & Sarkar 4.8 12 0.92 7.2 12 0.97 7.1 

Iyengar & 4.22 11 1.0 7.8 13 1.09 6.8 

Rangan 4.23 

Chinekaov 4.24 2 0.92 - 6 1.08 7.3 

pandit & 4.25 6 0.95 11.9 7 1.01 8.9 

Warworuk 

Jackson & 4.19 23 0.95 11.9 27 1.01 8.6 
Estanero 

Elfgren 4.15 5 1.02 2.94 6 1.14 3.9 

'McMullen & 4.26 0 - - 10 0.99 - 
Warworuk 

Collins et al 4.5 10 0.88 11.1 14 0.95 12.1 

Okada et al 4.27 6 1.00 1.7 38 1.15 18.5 

Total 95 0.95 . _10.2.. 
147 1.06 14.0 
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TABLE 4.3 Correlation between yield theories (mode 1) and test results 

for reinforced concrete beams subjected to bending and 

torsion' kZ =1 and Tcr ( Tyl < Ts 
J 

0 

I 

0= Ocr S= 
U` min 

Number Mean Coefficient Number Mean Coefficient 
Investigator of T ex of of T ex of 

beams T(th) Variation beams T(th) Variation 

Gesund et al 9 0.96 8.4 9 1.01 6.6 

Goade & Helmy 6 0.98 10.9 9 1.06 8.7 

Evans & Sarkar 12 0.92 7.2 12 0.97 7.1 

Iyengar & 12 0.99 7.9 13 1.08 6.8 
Rangan 

Chinekaov 3 0.87 6.8 5 0.95 2.6 

Pandit & 8 0.94 11.4 8 0.99 9.7 
Warwaruk 

Jackson & 17 0.99 9.2 21 1.03 8.4 
Estanero 

Elfgren 5 1.03 4.2 5 
. 
1.15 2.7 

McMullen & 3 0.94 2.1 3 0.97 2.7 
Warw . ruk 

Collins et al 4 0.9 13.7 10 0.92 8.7 

Okada et al 0 - - 1 1.11 - 

Total 79 0.96 9.9 96 1.02 9.3 
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kZ may be taken as unity hence producing a 

considerable simplification of the theory without 

k 

loss in accuracy of prediction for these beams. 

It is also seen from Fig. 4.7 that the assumption 
0=& would result into a larger scatter 

min 
in the value of T (exp) /T (th) than for the case 

where 
b is taken as the angle of cracking. 

Table 4.4 in Fig. 4.8 gives a comparison 

between these two theoretical predictions with 

test results for beams failing according to mode 3. 

This result indicates that mode 3 occurs less 

frequently than mode 1. it is seen that the 

correlation between the yield theories and the 

test results are good but since the number of 

beams are small, the coefficient of variation 

is higher than for mode 1". Failure by this 

mode can be prevented in practice by provision 

of a sufficient volume of longitudinal reinforce- 

ment at the top of the beam. The need or other- 

wise for top longitudinal reinforcement may be 

obtained from equation 4.8 and 4.22. 

Although the upper limit to the yield theory 

as suggested by Martin (4.14) appears to be simple 

and reasonably predicts the change in the mode of 

failure for reinforced concrete beams subjected to 

bending and torsion, it. can be shown that this rule 

is far from satisfactory when applied to prestressed 

concrete beams and for cases of reinforced concrete 
beams subjected to bending, torsion and shear. in 

addition this expression does not predict satis- 

factorily the torsional strength where Ts is (_Ty. 

In contrast Tdu can be used more satisfactorily 

for prestressed concrete beams and predicts the 
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TABLE 4.4 Correlation between yield theories (mode 3) and test results 
for reinforced concrete beams subjected to bending and torsion 

For ß'y3 < Tdu 

0 

_ 
(9 cr 

6=&. 
i. 

Number Mean Coefficient Number Mean Coefficient 
Investigator Ref of T(exp) of of T ex of 

Beams T(th) Variation Beams T(th) Variation 

Goode & Helmy 4.21 10 1.09 15.4 12 1.13 15.3 

Jackson & 4.19 1 0.88 - 1 0.99 - Estanero 

McMullen & 4.26 0 - - 2 0.97 - 
Warwaruk 

Collins et al 4.5 3 0.81 4.3 3 0.8 2.5 

Total 14 1.01 17.6 18 1.07 18.6 

,, 
For Ty3 C Ts 

Goode & Helmy 4.21 4 1.04 9.0 4 1.06 15.6 

Jackson & 4.19 1 0.88 - 1 0.99 - Estanero 

McMullen & 4.26 2 0.94 2.4 2 0.99 4 
Warw aruk 

Total 7 0.97 11.7 7 1.02 12.7 
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TABEL 4.5 Correlation between theoretical prediction of 

torsional strength with test results for 

reinforced concrete beam subjected to bending 

and torsion 

Tor T or T3 

Investigator 
Total 

Number 
of 

Beams 
tested 

Number 
of 

beams 

Mean 
T ex 
T(th) 

Coefficient 
of 

Variation 
% 

Gesund et al 12 - - - 

Goade &. Helmy 32 14 1.0 9.9 

Evans & Sarkar 12 3 0.89 8.0 

Iyengar & 23 10 " 0.97 7.6 
Rangan 

Chinekaov 11 8 1.09 6.9 

Pandit & 11 5 1.06 8.6 
Warworuk 

J 

Jackson & 68 43 0.87 8.5 
Estanero 

Elfgren 9 4 1.27 22.3 

McMullen & 5 4 1.16 6.62 
Warworuk 

Collins et al 17 4 0.77 5.2 

Okada et al 42 37 0.9 9.4 

Total 242 132 0.94 13.1 55% 
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torsional strength for beams having Tau is Ty. 

Table 4.5 gives a summary of the theoretical 

predictions using Tdu with the remaining experi- 

mental results which have'not been accounted for 

by the yield theory. The mean ratio T (exp) /T (th) 

= 0.95 and coefficient of variation of 13.1 

percent. It is seen that this mode of failure 

accounts for 55 percent of the total beam tests 

studied. 

4.6.2 Prestressed Concrete Beams Subjected to Bending 

and Torsion 

Table 4.6 gives a summary of the comparison 

between theoretical predictions for 71 prestressed 

concrete beams and the combined bending and torsion 

test results found in literature. 

It can be seen that the same observations and 

conclusions obtained from the previous comparison 

on reinforced concrete beams apply to prestressed 

concrete-beams. Examination of Table 4.6 for the 

case when Tdu was used as an upper limit to the 

torsional strength shows that equation 4.5 gives 

a mean ratio of T (exp) /T (th) 
.=0.84 and coefficient 

of variations of 11.15 percent, this'is compared 

with a mean ratio of T (exp) /'r (th) = 1.05 with 

coefficient of variation of 15.1 percent if 

equation 4.8 is used for theoretical; predictions. 

The remainders of the beams which have not 
been accounted for in Table 4.6 were either over- 

reinforced in flexure such as the beam tested 

by Mukherjee and Warwaruk (4.28) or '? 'du was less 
.11 than T. 

Y 
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it is seen from Table 4.6 that only a quarter 

of the prestressed concrete beams which were 

classified as a yield failure will be classified 

thus if Ts cot 61 
2 

is used as an upper limit to 

the yield theory. 

Fig. 4.9, shows that both yield theories 

(equation 4.5 and 4.8) can be applied for 

prediction of torsional strength of prestressed 

beams having a large, range of prestress. 

4.6.3 Reinforced Concrete Beams. Subjected to Bending, 

Torsion and Shear 

Equations 4.18,4.22 and 4.33 have been used 

to'predict the torsional strength of 190 beams 

tested under combined bending torsion and shear. 

These results are summarised in Table 4.7 and 

4.10. The ratios T (exp) /T(th) have been plotted 

on Fig. 4.10 against 'y for the beam satisfying 

the limits imposed for beams subjected to bending 

and torsion. It will be noticed that for high 

value of 
y, 

i. e. Sy>1, the yield theory 

over-estimated the results. This may be due to 

a change in the mode of failure from a yield to a 

partial yield mode. This confirms that a 

further limit should be imposed on the yield 

theory, that is SyC1. 

Examination of Table 4.7 shows that where (9 

is taken as 
& 

in' the yield theory predicts the 

ultimate strength of reinforced concrete members 

subjected to combined bending torsion and shear 

with reasonable accuracy. 

For this case T (exp)/r (th) has a mean value 
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TABLE 4.7 Correlation between proposed yield theory and test results 

for reinforced concrete beams subjected to bending, torsion 

and shear 

M( Mub Tcr 
\ Ty <T 

du and 
by(1 

I 

Investigator Ref 
Total 
number 

of 
tested 
beams 

Mode 
of 

Failure 

Number 
of 

beams 

Mean 
T ex 
T(th) 

Coefficient 
of 

Variation % 

Lessig 4.1 to 34 1 12 1.18 9.6 
4.4 

Lyalin 4.20 34 1 15 1.12 4.8 

Yudin 4.6 18 1 15 1.14 17.2 

McMullen and 4.26 18 1 3 1.1 9.8 
Warwaruk 

Collins et al 4.5 60 1 14 0.97 11.0 

3 2 0.87 

Elfgreen 4.15 26 1 13 1.1 7.5 

Total 190 1 72 1.1 12.7 

0 
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of 1.1 and a coefficient of variation of 12.7 

percent. 

The ratio T (exp) /`r (th) for the beam satisfy- 

ing all the limits imposed on the yield theory are 

plotted against 1ý 
- This correlation between 

theory and experiment is comparable to those 

obtained for reinforced concrete beams subjected 

to bending and torsion only. 

4.9.4 Prestressed Concrete Beams Subjected to Bending, 

Torsion and Shear 

Table 4.8 gives a summary of comparisons 

between predicted and experimental results on 

prestressed concrete beams subjected to bending, 

torsion and shear. For this case T (exp) /T (th) 

has a mean value of 1.12 and a coefficient of 

variation of 12.1 percent. These figures are 

almost identical to thos obtained for reinforced 

concrete beams. Fig. 4.11 gives a plot of 

T (exp) /1' (th) against' 8 

. 
and which shows-the 

same pattern of results as those obtained earlier. 

To sum up this comparison between the 

theoretical prediction and test results, it can 

be stated that many simplification of the yield 

theory would only result in a small and insignifi- 

cant loss in accuracy of the prediction of strength. 
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TABLE 4.8 Correlation between proposed yield theory and test 

results for prestressed concrete beams subjected to 

bending, torsion and shear- 

M( Mub 
-) 

Tcr Ty ýTdu 
and y 

<1 

Investigators Ref 

Total 
Number 

of 
beams 
tested 

Mode 
of 

Failure 

Number 
of 

beams 

Mean 
T(Exp) 
T(th) 

Coefficient 
of 

Variation % 

Mukherjee and "4.28 22 1 7 0.96 5.6 
Warwaruk 

Henery and 4.30 32 1 31 1.14 9.9 
Zia 

Swann and * 4.31 16 1 12 1.08 12.6 
Williams 

Total 70 1 50 1.12 12.1 

* box beams 
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4.7 conclusions 

The main conclusions which may be drawn from 

this investigation are as follows: 

1. Yield Failure of reinforced and prestressed 

concrete beamssubjected to combined bending, 

torsion and shear may occur by three different 

modes. 

2. In general, failure is governed by mode 1. 

3. The addition of longitudinal reinforcement 

in the top face of the beam does not increase 

the strength of beams which fail according 

to mode 1. 

4. In practice when modes 2 and 3 are'critical 

they can be prevented by provision of 

sufficient reinforcement in the compression 

zone of the beam. 

5. The choice of the angle of cracking influences 

the prediction of ultimate strength. In 

general, if the yield theory is based on the 

angle of cracking determined from the 

direction of the principal stresses, the 

theory would over-estimate the torsional 

strength of reinforced and prestressed concrete 

beams by 5 to 10 percent. 

6. The torsional theory which assumes the angle 

of cracking to be governed by the direction 

of the compressive field occuring at failure 

under-estimates the strength of beams by 5 to 

10 percent. 

7. The effect of the'-variation of the depth of 

the compression zone on the prediction of the 
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strength of the beam is small and may be 

neglected. 

8. The presence of shear stresses in the com- 

pression zone has a little effect on yield 

failures. 

9. In general good agreement has been obtained 

when comparing predictions based on the 

proposed yield equations with the results of 

574 beam tests reported in literature. 

10. The range of mb increases with where 

yielding of both reinforcements occurs. 

11. The accuracy of prediction of any yield 

theory depends on the, methods of determining 

the change from yield to other modes of 

failure . 

12. There is no significant loss of accuracy in 

the prediction of yield strength due to 

many simplifying assumptions such as kZ = 1. 

r 

181. 



CHAPTER 5 

ULTIMATE STRENGTH OF REINFORCED AND PRESTRESSED CONCRETE 

MEMBERS SUBJECTED TO BENDING, TORSION AND SHEAR 

PARTIAL YIELD AND OVER-REINFORCED FAILURES 

Summary 

Six partial yield modes and two over-reinforced 

modes occuring in reinforced and prestressed concrete 
beams have been examined and theoretical expressions 
for prediction of these modes are given. 

Strengths predicted by the proposed theoretical 

expressions have been compared with available test 

results. 

1 

. 
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5. Introduction 

As already mentioned in chapter 4, reinforced 

and prestressed concrete members subjected to 

bending, torsion and shear may fail after yielding 

of one category of reinforcement only. These 

modes of failures will be refed to in the follow- 

ing as a partial yield failure. Failure may also 

occur prior to yielding of all reinforcements. 

These modes of failures will be referred to as 

over-reinforced failures. Partial yield and over- 

reinforced modes of failures are usually associated 

with the following conditions: 

1.. reinforced and prestressed concrete beams 

with large value of mb or without web rein- 

forcement. 

2. beam containing large volume of longitudinal 

reinforcement. 

3. Unbonded prestressed concrete beam. 

_, 
Partial yield failures have been reported by 

many researchers (5.1- 5.4) testing beams under 

combined bending and shear or bending and torsion 

or bending, torsion and shear. These modes of 

failures have been found by Helmy (5.2-5.4)to occur 

either as a result of yielding of the stirrups or 

the longitudinal reinforcement. Failures due to 

yielding of stirrups will be referred to as the 

S modes whereas failures due to yielding of the 

longitudinal reinforcement will be referred to as 

L modes. 

Partial yield failures have been attributed to 

the failure of concrete after partial yielding of the 

reinforcement: (, 5.6 ). Some researchers assumed 
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that this failure occurs as a result of the 

failure of the uncracked concrete due to the 

combined action or shear and direct stresses and 

developed theoretical expressions for these modes 

of failure. These theories will be referred 

to as shear-compression theories. Other 

researchers'ignored the effect of the compressive 

stresses developing in the uncracked concrete zone 

on the ultimate failure of the beam. These 

theories will be referred to as shearing failure 

theories. 

The aim of this chapter is to develop various 

theoretical expressions for the prediction. of 

partial yield and over-reinforced modes of failures. 

5.1.1 Shearing Modes of Failures 

The most important contribution to the study 

of partial yield*failures occuring in reinforced 

concrete beams subjected to bending and torsion 

is that due to Goode and Helmy (5.2 to 5.4). They 

identified from experimental observations three 

partial yield modes of failure. 

a. failure 

tudinal 

b. f ailure 

tudinal 

C. yieldin 

due to yielding of the top longi- 

reinforcement only. 

due to yielding of bottom longi - 
reinforcement only. 

g of stirrups only. 

They also propounded a conservative theoretical 

approach for, prediction of. these'modes of failure 

by assuming the angle of-v, cracking =, 45° and 
ignoring the contribution of the uncracked concrete, 

aggregate interlock and dowel action. This 

approach can be classified-as shearing theory. 
3h 
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A considerable amount of research information 

is found in technical literature on partial yield 

failures for reinforced and prestressed concrete 

beams subjected to bending and shear. This work 

has been reviewed by the shear study group of the 

Institution of Structural Engineers ( 5.1 ). 

However, the most recent, thorough and extensive 

research programme on this subject has been 

conducted by Regan et al (5.. 5 to 5.9) Regan proposed 

the following semi-empirical theory for the ultimate 

shear resistance of reinforced concrete beams: 

Vu =p11 (100 T A`'st f 
cu 

2 bd +3 
2Asv fvv 5.1a 

bd Sv 

for rectangular beams the coefficients°C1 and°C2 
Vd Of 2 

were given in reference (5.7) as C"1 = 0.4 (r1) 

and t< 
2=3 and in reference (5.8) 

KI = 0.3 and DC2 = 0.4, «3 is given as 1.5 in both 

references. 

For T beams the ultimate strength was given as: 

ýu cal f 
cu 

y2 
bsds+ ýý3 

2A(v f 
yv (d - Ji c) 5.1b 

S 
v 

The coefficients Q( and GC, were given in reference 

(57)as C( = 0.8 and k2 =3 and in reference 

(5.8) Q: 
1=0.27 and A'2 =3. c< 

3 was given in 

both reference as 2. 

b is the effective breadth of the compressive flange 
s 

with regard to shear and was given as: 

bs = 150 + bw, in reference (5.7) and 

= 1.5 ds + bw in reference (5.8) 

where bw is the web breadth and hf is the flange depth. 

From experimental investigations on reinforced 

concrete beams subjected to combined bending, torsion 
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and shear, Collins et al (5.5) also identified 

partial yield failures similar to the shearing 

failure of reinforced concrete beams occuring 

under bending and shear. They also suggested 

the following expression for predicting this 

mode of failure 

V+1.6 T 
Vu b. Vu 

where Vu is the shear strength in the absence of 

torsion. The ACI method was suggested for 

calculating Vu. 

This theory was compared by these authors 

with test results and they obtained a value for the' 

ratio V 
exp 

IV 
th ' 1.39, ± 22%. 

5.1.2 Shear-Compression Theories 

Various theoretical expressions have been 

developed for predicting the strength of reinforced 

and prestressed concrete beams under combined loading 

which consider failure of these beams to be governed 

' by the failure of the uncracked concrete. Avail- 

able shear compression theories either consider the 

combined action of bending and shear or bending and 

torsion. Most of the important shear theories 

for the case of beams subjected to bending and 

shear have been reviewed by the shear study group 

of the Institution of Structural Engineers. These 

theories assume that failure of the beam is caused 

by the compression failure of the concrete at the 

head of the diagonal crack. The effect of this 

diagonal cracking was found to reduce the area of 

the-compression zone as compared to the flexural 

failure. 
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In developing shear compression theories, 

various assumptions are made with regard to the 

following principles 

a Compatibility of strains 

b Failure criterion of concrete 

c Stress distribution 

d Shear transfer 

e Maximum compressive strain in extreme fibres 

A summary of these assumptions are given in 

Table 5.1 for all the important shear compression 

theories. 

a) Shear-compression theories for beams subjected 

to bending and shear. 

The ultimate'shear-compression moment for 

rectangular reinforced concrete beams can be 

given as 

M%fx (1 -Oý x) bd2 + D, 2Asv f 
yv d2 

sc 1. cu 23S 
v 

where x is the depth of the compression zone 

at failure and o4 1, ý2 and t( 3 are unknown 

parameters. x is determined by considering 

the equilibrium conditions and the conditions 

listed in Table 5.1 which are briefly discussed 

in the following: 

a) Compatibility of Strain 

All the shear compression theories listed 

in Table 5.1 reject the assumption that plane 

sections before bending remain plane during 

loading (Bernoulli's assumption), a modified 

form of this assumption is generally used 

which is based on the total deformation of 

the portion of the beam cWhich contains the 
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diagonal cracks. This compatibility 

condition is usually expressed as 

6S1 -- X/d 

where 
L is the total deformation of the 

c 
extreme compression fibre occuring over 

the length of the beam containing the shear 

crack. is the elongation of the 

tensile reinforcement over the same length 

considered for 
c. 

b} Failure Criterion of Concrete 

Various treatments of this principle 

have been adopted by the authors of the shear 

compression theories listed in Table 5.1. 

Bjuggren and Regan ignored the effect of 

shear stresses on the strength of the 

compression zone, whereas Walther and 

Sheikh's ( 5.13) theories consider their 

influence. Walther utilized Mohers 

criterion of failure and Sheikh used 

Coulomb's shear friction theory of failure. 

c) Stress Distribution in Compression Zone 

As for the theories of flexural strength 

of reinforced and prestressed concrete, 

various approximations to the distribution 

of the direct and shear stresses have been 

adopted by the authors of the shear 

compression theories. Walther and Sheikh 

adopted a rectangular stress block for shear 

and flexural stresses whereas Regan suggested 

a parabolic stress distribution. it is 

possible that the choice of the stress block 
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will have little influence on the shear 

compression strength of the beam as in 

the case of the pure bending theory. 

d) Shear Transfer 

All the shear compression theories 

except that developed by Sheikh, assume that 

the shear is resisted by the uncracked 

concrete zone and the transverse reinforce- 

ment only i. e. the contribution of the 

aggregate interlock and dowel action have 

been ignored. It is probable that the 

effect of this conservative assumption is 

cancelled by the other assumptions which 
have been made. 

e) Maximum Compressive Extreme Fibre Strain ((cu) 

When considering the concrete strain in 

the compression zone various treatments have 

been adopted by the authors of the compression 
theories. Bjuggren and Regan ( 5.1 ) adopted 

the normal flexural limiting strain 
(cu 

= 0.003 (Bjuggren) and 0.005 (Regan).. 

whereas Walther argued that the shear stresses 

not only effect the strength of the 

compression zone but also reduce the limit- 
ing strain, and he suggested the following 

expression for parameter. 

C, cu 
0.0031\2 

where CE 7 1+3.2 (e 
M 

Sheikh obtained the following expression for 

this parameter by experiment 
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'=0.0006 M 
cu Vd 

c 

where Vc is the shear resisted by the 

compression zone and d is the effective 

depth of the beam. 

b) Shear Compression Theories for Beams Subjected 

to Bending and Torsion 

Table 5.1 also lists the various assump- 

tions which were adopted for the five principles 

stated above for the development of existing 

shear compression theories for reinforced and 

prestressed concrete beams subjected to bending 

and torsion. The following is a brief review 

of these theories 

a) Pandit and Warwaruk ( 5.14) proposed a 

torsional theory which considered the 

torsion to be resisted by the steel and 

concrete of reinforced concrete beams 

subjected to combined bending and torsion, 

the total torsional resistance of the 

beam-is obtained from 

T =Tc+Tsl+Ts2 

where Tc is the torsional resistance of the 

concrete, Tsl is the torsional strength of 

the stirrups, Ts2 is the torsional strength 

due to dowel action of the longitudinal 

reinforcement. In this theory the torsional 

resistance of the concrete is taken to be 

made of the torsional strength of the 

cracked and uncracked portion of the beam. 

The area of: the uncracked portion or the 
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compressive zone was assumed to be one 

quarter of the cross section and subjected 

to bi-axial stress due to direct stresses 

due to bending and the shear stresses 

(calculated from the plastic theory) due 

to torsion. These stresses were combined 

using Cowan ( 5.20) shear friction failure 

criterion for the concrete. The shear 

stresses resisted by the cracked part of 

the beam were taken as constant at 0.75 

of the tensile strength of the concrete. 

The stirrups strength was bassd on the 

number of stirrups intersecting a critical 

crack inclined at 450 to the longitudinal 

axis. The stresses in the stirrups accord- 

ing to this theory depend on the dowel 

strength of the longitudinal bars. In 

calculating the dowel strength of the 

longitudinal reinforcement, the bars were 

assumed to act as a cantilever with a span 

equal to the spacing of the stirrups and 

these bars were assumed to develop their 

full plastic moment of resistance! 

The assumption of the fixed depth of 

the compression zone and the method used 

for calculating the dowel strength of the 

longitudinal bars are all open to criticism 

and questions. 

b) Iyengar and Rangan theory 

This theory was based on the assumptions 

that the member was cracked, the transverse 

steel yields, the contribution of horizontal 
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(shorter) legs of the stirrups to the 

torsional resistance is neglected and the 

dowel action was also ignored. 

in this theory failures have been 

divided into two modes: 

1. torsional 

2. flexural 

For the torsional mode the theory is 

based on the assumption that the torque is 

resisted by the concrete and the stirrups. 

Failure of the beam was taken to occur as 

a result of failure of the concrete under 

the combined action of the compressive and 

tensile principle stresses due to torsion 

only. The torsional shear stresses were 

calculated on the basis of the average 

values obtained from the elastic and plastic 

theories. In this theory failure was 

controlled by the Krishnaswamy failure 

criterion. 

Flexural mode of failure was controlled 

by the failure of the concrete in the 

compression zone. Using the same failure 

criterion for concrete adopted for the 

torsional mode, the direct stresses due to 

bending and the shear stresses due to torsion 

were combined to obtain the strength of the 

beam. The torsional shear stresses were 

assumed to be, distributed over the whole 

section in accordance with the plastic 
theory. 

ýý 
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This theory also invites many criticisms 

such as the assumption made for the 

distribution of the torsional stresses and 

the assumption of the tensile force in the 

stirrups. 

c) Evans and Khalil (5.16 ) published the first 

rational shear-compression theory for 

prestressed concrete beams subjected to 

bending and torsion. In this theory 

failures have been divided into three main 

" groups depending on the applied moments. 

For group 1 where the beams are subjected 

at failure to a moment equal to or less than 

the pure cracking moment. The strength of 
these beams were determined from the follow- 

ing semi-rational expression: 

T 
cr 

+c1, Ts 

where Tcr is the torque which caused cracking 

andý2s is the contribution of the stirrup 

reinforcement. 

For group 2 the ultimate torsional 

strength was taken as the combined torsional 

resistance of the compression zone and the 

stirrups. The strength of the uncracked 

concrete was determined by combining the 

average direct stresses due to bending and 

the shear stresses due to torsion. Failure 

was controlled by the maximum principle 
tensile stress failure criterion. The 
direct stresses were determined by the 

elastic theory of cracked prestressed 

concrete beams and the shear stresses were 
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determined from the plastic theory of 

torsion. 

This failure was assumed to occur for 

beams subjected to a moment greater than 

the pure flexural cracking moment and a 

moment less than 80 percent of the pure 
flexural ultimate strength of the beam. 

In group 3, the torsional resistance 

was also taken as the combined contribution 

of the uncracked compressive zone and the 

web reinforcement. The direct stresses 

were determined assuming a parabolic stress 

block and the extreme fibre compressive 

strains were assumed to be reduced by the 

existance of the torsional shear stresses 

and the strength of this compressive zone 
is governed by the shear stress at which 
failure changes from a cleavage to a shear 

type in accordance with the Cowan dual failure 

criterion. The validity of this assumption 

will be discussed in the next section of 

this chapter. 

c) Martin and Wainwright (5.17 ) recently 
developed a shear compression theory for pre- 

stressed concrete beams subjected to bending 

and torsion. This theory was developed for the 

case of beams without shear reinforcement, it 
is based on the concept of skew bending in 

which the torque is assumed to be resisted by 

differential bending of the compression zone- 

with the longitudinal reinforcement acting as 

a dowel. The direct and shear stresses in 
the compression zone assumed to vary 
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parabolically and failure due to these stresses 

is assumed to be governed by Cowan's failure 

criterion of concrete. In addition all the 

materials of the beam are assumed to obey 

Hookes law up to failure. 

This theory requires a trial and error 

procedure for the determination of the strength 

of prestressed concrete beams and does not 

consider the possibility of failure of the 

dowel action. it can be shown that for the 

condition assumed in this theory failure will 

always be governed by the dowel action rather 

than the concrete in the compression zone, 

unless the contribution of the aggregate inter- 

lockis considered together with the dowel action 

when failure may be governed by the failure of 

the concrete in the compression zone. 

5.2 Comments on Existing Theories 

From this review the following conclusions may 

be drawn: 

1. None of the theoretical shear compression 
theories deals with. the general case of beams 

subjected to bending, torsion and shear. In 

addition they are more, diff icult than the 

shearing theories. 
. 

2. ' The shear compression' theories which have been 

developed for the case of'beams subjected to 

bending and shear assume that the shear is 

resisted mainly by the uncracked portion of 

concrete. This assumption has been vindicated 
by Fenwick (5.18) and Taylor (5.19) who found 

that for beams without shear reinforcement and 
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failing in shear, the compression zone resists 

only 25 percent of the applied shear. 

3. Fenwick and Taylor's work indicated that 

aggregate interlock resists over 50 percent 

of the applied shear, therefore, the calculation 

of the shear strength of the beam in terms of 

aggregate interlock appears to be more accept- 

able. The contribution of the shear-resistance 

of the compression zone and dowel action of the 

longitudinal reinforcement may be considered 
indirectly in terms of the strength of the 

aggregate interlock. 

4. Considerable simplification of the method for 

predicting partial yield failure can be achieved 

by ignoring the influence of the direct 

compressive stresses in the compressive zone. 

5. For practical purposes the prediction of partial 

yield failures are given by the following 

shearing theories. 

6. The problems of predicting all possible 

partial yield failure modes have not been 

explored. 

7. To develop a rational theory for over-reinforced 
failures it is necessary to consider principles 

similar to those which have been followed for 

the development of shear compression theories, 

therefore, the following discussion would cover 

the five principles that have been employed in 

the development of shear compression theories. 

a) Compatibility Conditions 

Although the method used for the-shear- 

compression theories for beams subjected to 
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bending and shear is rational, a generalis- 

ation of this method to the case of beams 

subjected to bending, torsion and shear is 

impracticable. Therefore, the following 

duel compatibility conditions are more appro- 

priate for this general case of loading. 

1. The Bernoulli assumption is suggested 

for the case of beams subjected to 

bending and torsion and a low value 

of shear. 

2. Modified Bermoulli's assumption based on 

a finite length of the beam for the case of 

beams subjected to bending and shear and 

a low value of applied torsion. 

b) Failure Criterion for Concrete 

To test the validity or otherwise of the 

various failure theories that have been adopted 

in the development of shear compression theories, 

the experimental results reported by helmy on a thin- 

walled cylinder subjected to compression and 

torsion are plotted in Fig. 5.1. In Fig. 5.1a 

the ratios of direct compressive stress at 

failure to the uni-axial compressive strength 

have been plotted against the ratios of the 

compressive stress to shear stress. In Fig. 

5.1b, the ratio of the shear stresses at failure 

to the tensile strength of concrete has been 

plotted against the ratio of the direct 

compressive stress at failure to the uni-axial 

strength of concrete. The uni-axial strength 
for concrete has been taken as f=0.67 f 

co cu 
and the tensile strength has been taken as 
ft = 0.36 

I-fcu 
. On these diagrams the 

following theoretical failure curves are 
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plotted: 

1. Rankine Principle Stress Theory 

2. Mohr's Walther theory using second 

degree parabola (5.10). 

3. Cowan's shear friction theory (5.20) 

4. Coulomb's internal shear friction theory 

5. Regan's Failure Criterion (5.9). 

From this comparison, it can be concluded 

that ; 

1. The Coulomb theory considerably under- 

estimates the strength of concrete under 

a combined stress system. 

2.. Walther and Cowan's theories give reason- 

ably the same results and appear to agree 

with the test results for specimens subjected 

to fX/1, 
x>2. 

3. The maximum principal stress theory appear 

-to predict the test results for specimens 

having f 
x/? r x 

<2. 

4. The maximum principal compressive stress 

theory appears to overestimate the test 

results considerably. 

5. The assumptions used by Evans and Khalil 

for the calculation of the strength of 

beams in group 3 can not be substantiated 

from this comparison. 

6. Regan's criterion, althoigh simple, requires. 

three expressions to cover the whole range 

of the stress system and may be less accurate. 

7. A duel failure criterion as suggested by 

Cowan appears to offer*, a reasonable solution 

to the problem. 
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B. Since Mohr-Walther's theory is expressed 

in simpler terms than Cowan's friction 

theory, it can be used together with the 

maximum principal stress criterion in 

order to determine the strength of concrete. 

This theory may be expressed as follows: 

fx 

fCo 
1+ (ifýx-x- 

c) Stresses Distribution 

There is, no available test evidence to 

d) 

suggest that the choice of an assumed stress 

distribution in the compression zone would 

significantly influence the prediction of the 

strength of the beam, therefore, the choice 

of stress distribution should be governed by 

the degree of simplicity that would be obtained 

in the analysis 

Shear Transfer 

The shear compression theories due to 

Pandit and Worwaruk and Iyengar and Rangan 

both acknowledge indirectly the contribution 

of aggregate interlock in resisting shear 

stresses. On the other hand Evans and Khalil 

acknowledge indirectly the contribution of 

aggregate interlock for group 1 and ignore it 

completely in the case of group 2 and 3. This 

treatment by Evans and Khalil is satisfactory 

since it is based on the cracking pattern of 

unbonded prestressed concrete beams therefore, 

the contribution of aggregate interlock seems to 

be a function of the bending to torque ratio 

0 
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and the bond characteristics. A rational 

theory should consider the contribution of 

these°forces together with the resistance of 

the uncracked portion of concrete and the 

dowel action of longitudinal reinforcement. 

e) Maximum Compressive Strain in Extreme Fibres 

There is considerable disagreement on 

the choice of this parameter. Fig. 5.2 shows 

a comparison between the various assumptions 

made in the shear compression theories 

together with the test results reported by 

Sheikh. These results suggest that this 

maximum strain is influenced by the presence 

of shear stresses and this parameter may be 

obtained from the following assumption: 

1 

Ecu fCo 

5.3 Shearing Modes Theories 

Shearing modes of failures are assumed in this 

analysis to occur as a result of failure of 

aggregate interlock after yielding of one category 

of reinforcement. These modes can be divided 

into S and L modes and further subdivided as 

follows: 

y^ 11 

L1 Failures which occur when the bottom longi- 

tudinal reinforcement reaches the full axial 

yield strength. 

L2 This failure occurs when the longitudinal 

reinforcement located near the one'side of 
the beam reach their full axial yield strength. 
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L3 Failure which occurs when the top longitudinal 

reinforcement reaches full axial yield 

strength. 

Sl This failure occurs when both the vertical 

and the bottom legs of the stirrups reach 

their full tensile yield strength: 

S2 This failure occurs when one vertical leg 
. 

and the top and bottom legs of the stirrups 

reach their full tensile yield strength. 

S3 This occurs when both vertical legs and 

the top leg of the stirrups reach their full 

tensile yield strength. 

Mode L1 failure may occur for beams subjected 

to small torsion and high bending moment where the 

cracking inclination is almost at 900 to the 

longitudinal axis of the beam. For this mode and 

mode Si, the axis of rotation tends to shift 

towards the compression zone of the beam hence, 

it is reasonable to assume that the position of 

shear centre for these modes will correspond to 

the position of the shear centre assumed for mode 1 

of the yield failures. Similarly the position 

of the shear centre for modes L2 and S2 would 

correspond to the position assumed for mode 2 

of the yield modes and so on. 

In the following development of theoretical 

expressions for the partial yield failure, the 

rectangular box beam used in the development of the 

yield theory given in chapter 4 will also be used. 
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5.3.1 Mode L1 

Considering the longitudinal equilibrium 

of forces acting on an element cut from the 

bottom flange of this box beam shown in Fig. 5.3 we get: 

FZ + qt Cot 1= 
Asl fy1 

+ qa Cot 5.2 
(X1 + Y1) 

T 
substituting for F= (x +M , qt= 2 Xýly and 

Z1Y Yl 11 

rearranging we get: 

Tl 
Cot +'M='+a Cot 5.3 

TM Mb 1 
S0S 

where Mo=Yl As1fy1 Ts=2Asvfyv X1Yl' 
S 

v 

mb = 
Asl fyl Sv 

and Ta is the torque 
Oh+ YAf l1 sv yv 

resisted by aggregate interlock. 

5.3.2 Mode L2 

Similarly the failure load may be determined 

from consideration of the longitudinal equilibrium 

of forces acting on an element from the web of 
the box beam. 

r111 
q Cot ®2 

=l 
"sl fyl 

+ 
Asi fyl! 

+q Cot OZ 

2X1+Y1 

taking the total torque =T+ 
vx 1 and, 

2 

q=TX-yandR = 
Asiy1 

11Y ZAsl f 
Y1 

5.4 

j 

I 
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we get: 

L2 (1 + Rte) m1 +Ta. 1 5.5 
Ts 

2 Cot 02 Ts (1 +) 

2 

where 6=1 

5.3.3 Mode L3 

Similarly from consideration of the longitudinal 

equilibrium of forces acting on an element from the 

top flange of the box beam 

FZ + qt Coto 2 
L. Asl fyl 

+ qa Cot L92 5.6 
(X1 + Y1) 

T 
substituting for F=M and q =- 

3 

Z, (X1 + Y1) Y1 t2 X1 Yl 

and rearranging we get: 

TL 
I. 

Cot 0-'M=R'+a Cot 5.7 
TS 2 mb Mo y 

mb 
T2 

s 

5.3.4 Mode Sl 

From consideration of the transverse equilibrium 

of the forces acting on element 2 shown in Fig. 5.3 

we get: 

q= 
Asv fyv 

Cot& 
2+ qa 

S 
V, 

5.8 

substituting for q=2 XT y+ 2VY and rearranging 
111 

we obtain: 
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Tsl 
= 

[cote 

+-15.9 TS TS 1 +6y 

but this mode is usually associated with a high 

applied shear force, therefore it is best to 

express this mode of failure in term of shear. Thus 

rearranging equation 5.9 we get: 

2Af 
V= 

ýy 
2qY+ Sv yv Y cot 5.10 

1+6y a1 Sv 1 

but qa =aV bw 

where Va is the average shear stress resisted at 

failure by aggregate interlock which is known to 

be influenced by the concrete strength and percentage 

of longitudinal tensile reinforcement-mid may be 

taken as: 

va = 0.4 
3100 Ast fcu 

bd 

This term approximate to the value suggested by 

Regän ( 5.8 ) and similar to the values given in 

CP 110. 

For rectangular beam 2 bw 'b fand taking Y1 =d 

equation 5.10 becomes 

V-1 0.4' 100 
! Ast 

fcu bd + 
2Asv fyv 

Yl Coto 5.11 
y bd S 

the term inside the brackets corresponds to equation 
5.3 hence, the effect of torsion is to reduce the 

shear resistance of the beam by the factors 

y 
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5.3.5 Mode S2 

From consideration of the transverse equilibrium 

acting on an element shown in Fig. 5.3, we get: 

q=A sv 
f 

yv Cot 
02+ 

qa 
S 

v 

The total torque about the shear centre =T+ 
vx l 

2 

and taking q= 
Tt 

Substituting these 
2 X1 Y1 

values and rearranging we obtain: 

Ts2 
Cot + 

Ta 1 5.12 
Ts2T+ bLZ 

s2 

5.3.6 Mode S3 

Similarly from consideration of the longitudinal 

equilibrium of forces acting on an element cut from 

the top flange of the box-beam we obtain: 

qt = 
Asv f 

yv Cot 
2+ qa 

S 
v 

but qt =T s3 we get : 
2X1 Y1 

T 
s3 

= Cot + 
Ta 

T2T 
SS 

5.13 

This mode will only occur if the beams contain a large 

volume of tensile longitudinal reinforcement i. e. 

R << 1 where the shear centre will be located near 
the bottom face of the beam. 
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5.4 Inter-Relation of Shearing Modes and Yield Modes 

of Failure 

There are a total of nine yield and partial 

yield modes of failure. The relationship between 

these modes can best be illustrated by reference 

to the non-dimensional interaction diagrams shown 

in Fig. 5.4. These diagrams were constructed 
for reinforced concrete beams subjected to combined 

bending and torsion only and having typical values 

of mb and R. The inclination of the cracks was 
y 

taken for simplicity as 45° except for mode L1 

where it has been taken at 90 °. 

it is seen that all yield and partial yield 

modes are possible and the interaction diagram 

may be composed of two or more lines representing 

different modes of failure. Interaction diagrams 

composed of three straight lines representing 

modes L1. Y1 and S would represent the failure of 

beams containing an equal volume of longitudinal 

reinforcement placed on the top and the bottom 

of the beam i. e. Rt ='l. An interaction diagram 

such as this has previously been obtained empirically 

by Kemp (5.23), and Zia and Cardenas (5.22). 

Although all these modes are possible, mode 

L1 may be safely ignored if the yield theory 

proposed in chapter 1 is used with _O min 

as shown in Fig. 5.4. 
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5.5 Comparison With Test Results 

in order to examine the validity of these 

simple partial yield expressions, the predictions 

given by these expressions have been compared with 

available experimental results. Fig. 5.5 gives 

in the form of an interaction diagram, the results 

of tests on reinforced concrete beams subjected to 

torsion and shear only as reported by Kius (5.24). 

This diagram also shows the theoretical prediction 

obtained by using equations 5.11 and 5.12. The 

theoretical interaction diagram agrees favourably 

with the empirical interaction diagram obtained by 

Klus. At very high applied shears by 2 mode Si 

is dominant whereas for the case of high torsion 

where ýy{2 mode S2 becomes critical. 

The proposed theories have also been compared 

in Fig. 5.6 with the test results of 29 reinforced 

concrete beams tested under combined bending, torsion 

and shear reported by Collins (5.5). Again the 

proposed theory predicts satisfactorily the 

interaction between torsion and shear. The 

proposed methods predict that almost 55 percent 

of the beams tested failed in mode S1. For this 

mode the ratio of V 
exp/V th 

is 1.1 and the 

coefficient of variation is 8.45 percent. 

It can also be observed that the limit of 

s/1 which was proposed in chapter 4 in order y 
to ensure yield-failure is only approximate. 
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5.6 Over-Reinforced Modes of Failure 

In the following development of theoretical 

expressions for the prediction of over-reinforced 

modes of failure, it is convenient to sub-divide 

the failure into three cases: 

1. Torsional 

2. Bending 

3. Shear 

in each case the beam is assumed to be subjected 

to combined bending, torsion and shear with one 

of these forces being more predominant than the 

other. The shear mode of failure is not con- 

sidered in this study. 

5.6.1 Torsional Failure 

As mentioned in chapter 3, reinforced and 

prestressed concrete beams will be transformed 

after cracking into a number of concrete springs 

and the secondary stresses which are induced in 

them could lead to failure of the beams. 

In order to examine the behaviour of one of 

these springs under the action of longitudinal 

extension ,6, the square thin-walled reinforced 

concrete beam shown in Fig (5.7) will be examined. 
This beam is considered to consist of a series of 

concrete springs having a square cross-sectional 

area. The stresses which are developed in any 
of these springs due to the longitudinal extension 

may be found indirectly by applying a longi- 

tudinal tensile force at the centre of the beam 

as shown in Fig. ' (5.7) . In the following 

analysis the effect of dowel action and aggregate 
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interlock that may develop between two adjacent 

springs would be ignored and the material assumed 

to behave elastically. 

Taking moment at point A, about the x and y 

axis we get: 

M=M= Pho 
xy2 

where ho is the width of the beam measured between 

the centre line of the wall 

moments resisted by typical 

of the spring due to y act 

length of the spring may be 

and M and M are 
xy 

springs. The extension 

ing along the entire 

written as: 

4= ho 2L Sin 
29 

+ 
Cos 

2o 
p 5.16 4 Cos GcJ EcI 

where L is the length of the beam, GJ and EI are 

the torsional and flexural rigidities of the 

concrete spring respectively. . 

it can be sho%m that the extension of the 

spring due to Mx is small compared with 
y 

and hence may be ignored. It it is further 

assumed that EI & GJ and 0y=0 then equation 

5.16 may approximate to: 

ho P 
L3 EoI Cos 5.17 

This represents the extension of the spring per 
unit length. 

Due to this loading Mx will produce the 

following maximum bending stress: 
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f= Pho hw 
cx 41 

5.18a 

and MY will produce the following maximum bending 

and torsional stresses: 

Cos 5.18b f 
cyl =4 

pho 

1wb 

ý' - 
J'o 

Sin 
8 

5.. 18c 
CZ 2J 

Combining equations 5.16 and 5.18 we get: 

f=0.75 E 
bw 

Cos A 5.19a 
chL 

0 

f=0.75 E 
bw 

Cos 
2( 

cyl c ho L 5.19b 

=0.6 E 
bw 

Sin6 Cosa 
Q 

5.19c 
cl hn L 

In addition we can consider the space truss analogy 

in which the stresses in the longitudinal reinforce- 

ment and the direct compressive stress in the 

concrete strut due to this truss action may be 

written as: 

fSL =2T 
CAt 

and 5.20 
0 sl 

T 5.21 
o Al b`ý 2 Sing Cos B 

therefore, the strain in the longitudinal reinforce- 

ment due to applied torque is: 

2T Cos 
Esl = ho Es2Asl 5.22 

For compatibility of longitudinal strains in the 

longitudinal reinforcement and the unit extension 
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of the concrete spring, the stresses in the 

concrete spring become: 

b 
fl 

1.5 Ä Cos 
9 

Cot 
e 

ae Si 
A1 

f 
1.5 

bca 
T 

Cos26) Cot. Lq 
cß'1 Ne As, P' 

1 

1.2 
bw 

T 
Cost 9 Cot C7 

cl Xef Asl Al 

E 
where c( =s 

`eE 
c 

5.23 

the presence of these secondary stresses may 

explain why diagonal compressive failures obtained 

in tests occur at loads that are consistantly 

lower than those predicted by the truss theory 

(5.25 and 5.26). 

In general transverse reinforcement is located 

eccentrically to the centre line of the wall which 
induces a further transverse moment. if we 

consider the square element having unit length 

as shown in Fig. 5.7 where the transverse 

reinforcement is located eccentrically to the 

centre line of the wall, then the transverse 

moment per linear length of the wall that could 

develop is equal to 

Af 
sv sv 

e 
zs 

v 
5.24 

where e is the-distance from the centre line of 

the wall to the line of thrust; The eccentricity 

of the line of thrust e depends -on the. position 

of the reinforcement in the wall, the geometrical 
proportion of the cross section of the wall and 
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the flexibility of the joints between the walls. 

For beams having m' = 1, equation 5.24 may be 

written as: 

Mz 
T^e 
2A1 

,' 

This moment may also be resolved into two components 

one of which will induce a torsional moment into 

the concrete struts of the beam and the other a 

transverse moment. These moments will give the 

following maximum bending and shear stresses in 

the concrete strut. 
Mz b2 

3eT5.25a 
cyz 21 b4 2 Al 

ý, 
Mz bw 

Cot 2.5 eT 
cz Jb2A Cot 

9 5.25b 
w1 

Therefore, the maximum direct and shear stresses 

may be obtained as follows: 

b2 
e f_T1+1.5 W Cos2 

0 Cot B+ 3 
c Al bW 2 Sin 0 Cos ote *f Asi bW 

5.26a 

and 

Ir 
_b2 xA 

Tb 2A 
Cost(ý+ 2.5 be Cot 5.26b 

1weý sl w 

equation 5,. 26a explains why the diagonal compressive 

strains measured in tests on box beam girders re- 

ported by Lampert et al (5.25-and 5,. 26) were 

appreciably higher than those predicted by the 

truss theory which is represented by the first 

term inside the bracket. 
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A possible mode of failure of the concrete 

strut would be the failure of concrete under the 

combined action of direct compressive and shear 

stresses given in equations 5.26. For reinforced 

concrete beams may be taken at. 450 and if 

fco 0.76 fcu, ft = 0.36 Ifcu 
,=7.5 and since e 

distribution of stresses would most probably take 

place prior to failure, then failure would be 

assumed to occur when the total of the direct 

stresses due to truss action and half of the 

maximum direct stresses due to the transverse 

bending (second and third term of equation 5.26a) 

equals the limiting strength of the concrete. 

Using, Mohr Walther's theory of failure of concrete 

and equations 5.26, the strength of the box beam 

governed by the failure of the concrete may be 

obtained as follows: 

T 

TFCU 

Sc 
Tcr bw 2 

1.5 e1b2 w5e + 20 YAsl + bw 5 ZAsl + bw 
5.27 

b (2_ w+1.5 e .ý1 
(20 

Z2 
sl 

bw 

where Tcr is the torque which causes first cracking. 

This equation has been solved for typical values 

of concrete strength and e and the results plotted 
in. Fig. 5.8 as 

Tsc 
against 

Y As, sl 
, it is seen 

that when = 0.2 the predicted theoretical values 

compare favourably with the results obtained from 

the empirical expressions which are reviewed in 

'chapter 3. 
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However, other. modes of failure involving 

failure of the concrete are possible particularly 

the failure of the corner of the beam due to these 

secondary stresses acting together with the stresses 

induced'by the longitudinal bar. The methods 

given in chapter 3 would satisfactorily predict 

this mode of failure. 

In order to extend this shear compression 

failure theory to prestressed concrete beans, 

the compatibility condition used must be adjusted 

in order to allow for initial stretching of the 

longitudinal prestressing wires. 

Therefore, the longitudinal strains of the 

beam may be written as follows. - 

, (Sip 
= 

ýMsi E 
r; ý 

5.28 

where C 
s1 

is the longitudinal strain in the wires 

due to the applied torque and Se is the strain 

due to prestressing. 

Substituting equation 5.22 into equation 5.28 

and equating equation 5.19 and combining with 

equation 5.24 we get: 

b2 Tf1fc 

ATb Sin0 Cos c9 
+ 

a5 fA Cos2g(Cott9 - 
Tr + 

1weslt 

be5.29a 

w 

Tf 
Ir 

Ab 

[12bJ 
Sin ® 

Cos Cot t9 -- 
T 

f{ 
2.5e 

cot 
0 

!!! 1w esltw 

5.29b 
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using the same assumption and the failure criterion 

used for the reinforced concrete beam d noting that 

cot 
e= TI 

+P the failure torque would become as 
ft 

follows: 

cu 
Tsc 

Tcr 
1 

bw 
22 

Tcr 1b 5e 
Leg 

2S1n Cos 
+Ä Cos 

ICot® 

-(Cot 
B 

-1 T 

}+ 

s1 scJJJ w 

1 

2'4 
bw 2 

Sin0 Cos0 ot9 -(Cot2® -1)Tcr + 
5e 

Cot 
p( A 

IC 
Tb 

e sl sc w 
1+ 

b2 T 
1+1w 

Cost 
- [c0t0t&1)T 

2Sin Cos ZA1 b 
sc w 

5.30 

equation 5.30 has also been solved for the case 

where 
0 300 and the results are shown in Fig. 5.8 

which shows that prestressing has little effect on 

this mode of failure. 

5.6.2 Bending Mode 

This over-reinforced mode of failure occurs 

when the 
T ratio is high. It is similar in nature 

to the over-reinforced failure for beams subjected 

to pure bending. Therefore, the failure is 

assessed in terms of the ultimate moment of 

resistance of the section. For the purpose of 

this analysis the strength of the thin-walled 
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prestressed concrete box beam shown in Fig. 5.9 

will be examined and the following assumptions 

made: 

1. Plane sections before bending remain plane 

up to failure. 

2. The concrete in the compressive zone is 

subjected to direct stresses due to bending, 

moment and prestressing force and shear 

stresses due to the applied torque. 

3. The stress distribution in the compression 

zone due to bending is assumed to be uniform. 

4. The strength of the concrete in the compression 

zone is governed by the Mohr Walther failure 

criterion. 

S. The stresses in the steel remain in the 

elastic range up to failure. 

6. The tensile strength of concrete is neglected. 

7. At failure the extreme fibre compressive 

strain would reach a limiting value. 

B. The stress in the stirrups has no effect on 

failure. 

From equilibrium of longitudinal forces 

(A 
f+2 bw x) n c< 

1f cu =P+pl5.31 

where is the ratio of the average flexural 

strength of the concrete to the cube strength. 

T is the parameter which allows for the effect 

of shear stresses on the strength of the compression 

zone. P and I" are the forces 'in the top and 
bottom layers of prestressing wires respectively. 
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Af is the area of the flange. 

From the geometry of the strain distribution 

shown in Fig 

'Csu (se +A t 
cu 

kf Cd 
x 

X) 5.32a 

and 

su 
F 

se 
E 

cu 
kf (X 

x)5.32b 

where (Sß and ESe is the strain in the steel due 

to the effect of prestress in the bottom and top 

layers respectively. kf is a bond slip factor. 

cu 
is the normal flexural limiting strain and 

can be taken as 0.0035. %1 is a parameter which 

allows. for the effect of shear stresses on this 

limiting strain. 

Taking Es as the Young's modulus for the 

prestressing wires, and multiplying equations 

5.32 by the product of Es and the area of the 

prestressing wires we get: 

P Pe +1 Z A51 (dxx)5.33a 

5.33b Ast (X 
x- 

dl 

where 
r= (`u kf ES 

combining equations 5.31 and 5.33: 

C+Cx=P+ P' + 
7- 

A (d-x)- A' (x-d) 5.34 fwee sl x 
As' 

x 

where cf= /ý ýC1 fcu Af 

Cw = 2? 0l fcubes 

rearranging and solving we get:. 
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r x= 
{Pe 

+ Peý - 
(ZAS, 

+ Cf 12C + 
Iw 

5.35 

fCr (d ZA+ d' X A' + (PC+%) - Asl+ 
sl sl 

I 

wJ 

2 
- Cf L 

2C 
w 

Now the moment of resistance of the section can 

be obtained by taking moments about the centroid 

of the bottom wire. This will give 

MSc = Cox (d-Z) +Cf d- 
l2- 

Pe -, I 0Z AS 

5.36 

For unbonded prestressed concrete beams Barker 

(5.27) suggested that kf should-be determined 

experimentally and gave a safe value for kf as 0.1. 

Cowan (5.21) later found from tests on unbonded 

prestressed concrete beams that kf is directly 

proportional to the depth of the neutral axis d. 

Pannel (5.28) found that this factor is also a 

function of the length of the beam (L) and his 

work indicates that kf is inversely proportional 
to L therefore, kf may be written as 

kf =kuL 

where ku is a constant which can be determined 

experimentally. Available test evidence (5.28) 

suggests that ku is equal to 12. 

Substituting this expression for kf and 

rearranging we get: 

P 
x_e 

As, -d As) 
l Cf 

5.37 
Cw + As1 +' `ýsl} 1\ 
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where 
ru 

ku (cu Es 

.L 

I- 

To test the validity of this approach the theory 

has been used to predict the strength of the 

38 unbonded rectangular prestressed concrete 

beams reported by Pannel (5.28) and the values 

are compared with his test results in Fig. 5.10. 

The ratio of Nehp/M th 
for the 38 specimens is 

1.01 and the coefficient of variation is 4.3 

percent. For these calculations Ecu Es ku 

was taken as 8000 N/mm2 and O<1 = 0.6. 

Determination of 

This parameter depends primarily on the ratios 

of the shear to the direct stress occuring in the 

compressive zone and in turn the shear stress in 

the compression flange depends on the manner in which 

torsion is being resisted. For beans with lateral 

reinforcement and assuming that the shear flow 

induced by the torque follows the Bret-Patho's 

theory then 

r=T 

X 2 s1Y1hf r 

and assuming that the direct stresses can be 

determined approximately as 

f .ýM 

r 
XXYJ 

then, 
.11 

1+ (2_ý, 
=1+1 

XC ýý f 

m 
wherei = T 

i 

1 

i 

f 
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For other types of torsional resistance may 

be written as: 

1'- 1 
1+ /P\ 'ý 

5.38 

where < is a factor which depends on the type of 

torsional resistance. 

For box beams without lateral reinforcement 

and having = 17, will have the following 

values: 
P 

C<f 
= 25 if the torque is assumed to be resisted 

by the compression flange 

of 
=7 if the torque is assumed to be resisted 

according to the St. Venant theory for 

open sections using the whole cross section 

Cý(-/ =2 if the torque is assumed to be resisted 

by the compression flange and the bottom 

wires in differential bending or warping 

restraint. 

The results of strain measurements taken on 

the compression flange from the tests reported 
in chapter 6 on box beams with and without lateral 

reinforcement indicate that the torsional stresses 

in the compression flange are due to the combined 

action of these modes of torsional resistance. 

However, the reduction in the flexural strength 

due to increase in the applied 
T 

ratio, on these 

beams indicates that the following values of 

may be assumed: 

1 for beams with lateral reinforcement and 

2 for beams without lateral reinforcement. 

i. e. the additional shear stresses due to the 

229. 



local twisting of the top flange has negligible 

effect on the strength of these beams. 

5.7 Conclusions 

1. It has been shown that reinforced and 

prestressed concrete beams subjected to 

bending, torsion and shear may fail in 

one of six partial yield modes of failure. 

2. The prediction of a partial-yield mode of 
failure may be represented by a simple 

shearing mode theory which ignores the 

effect of axial stresses in the compressive 

zone. 

3. Over-reinforced failure occurs due to the 

failure of concrete under combined direct 

and shear stresses and may occur in various 

modes. 

4. The discrepancies between measured diagonal 

compressive strains obtained from tests on 
box beams subjected to torsion and the 

prediction from the space truss theory 

have been traced back to the effect of 
the spring action of the concrete strut 

and to the positioning of the lateral 

reinforcement in the wall. 
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CHAPTER 6 

EXPERIMENTAL INSTIGATIONS INTO THE BEHAVIOUR AND 

STRENGTH OF PRESTRESSED BOX-BEAMS SUBJECTED TO 

BENDING, TORSION AND SHEAR 

Summary 

This chapter gives full details of an experimental 

investigation into the behaviour and strength of simply 

supported prestressed concrete box beams subjected to 

bending, torsion and shear. Twenty five box beams, 

305 mm wide, 228 mm deep and having a total length of 

3.81 m were tested in groups of five beams. Beams of 

series T contained varying amounts of lateral reinforce- 

ment and were subjected to pure torque. Beams of series 

1 and 3 were subjected to combined bending and torque. 

Beams of series 2 and 4 were subjected to combined action 

of bending torsion and shear. Deflections and strains 

at various stages of testing were measured at selected 

points. The changes in prestressing force were also 

recorded. The effects of transverse reinforcement and 

the moment/torque ratio were the main variable parameters 

of this test programme. 

k, 
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6.1 Object and Scope of Tests 

Very little test evidence on the strength of 

prestressed concrete rectangular beams under combined 

bending, torsion and shear were available at the 

start of this research programme in early 1970 and 

practically no information had been published on the 

strength of prestressed concrete box beams. This 

lack of information hampered the development of a 

rational theory for predicting the strength of this 

type of structural element, therefore, the object 

of the tests reported in this chapter was to study 

the behaviour and strength of prestressed concrete 

box beams and to produce the experimental evidence 

necessary for the development of a rational design 

method. 

The test specimens were designed to represent a 

box beam bridge of single cell construction having 

36 m span to a scale of approximately 1: 10. 

6.2 Details of Tests Specimens and Materials 

6.2.1 General Discriptions of The Specimens. 

Twenty Five post-tensioned concrete box beam 

specimens of 305 mm width, 228 mm depth and 3.81 m 

total length, having different volumes of transverse 

reinforcement were tested to failure. The general 

arrangement and reinforcement details of the 

specimens are shown in Fig. 6.1. 

The practical problems of fabricating and 
handling small size box beams and their cost 

necessitated that each specimen be made of three 

segments. This was practical due to the fact that 

unbonded post tensioned concrete beams usually behave 

elastically up to failure except in the region of 

232. 



ý2 -Y 
OL 

E z 1c I 
E w N 

ti N 
Oy 

J IL 

ºý 

( 

N L 

Ln 

E 
,n 

N 

E 
w 
c 

S, c 1 

- 1 
0 

fI 

CAI 
"D 

C 

U 4) 

3 
! 

ý 
mI a . U 

Ii L 
O0 
N 
x a+ N 

Q 

V) 

E N pa, 
CA Ea 
N 

i' 
1L 

g 
E a 

E :9v l a. to 

N 
O 

ýý L1 
i 

vl 
I I 

ý 

1 
ti 

tu 
C 

w C14 cc 

Q 

E 
O1 

' 

'I 

C 
v 
E 

u 
d 
a 
in 

ö: 

c 

rn 
ti 

L! EL 
Cj- 

NQ 

FZ 
Z 
W 

N 

E 
Q) 
d 
LN 

L 
Cl L 
C3 

> 
i 

T3 m 
c C- 

N 
N 41 

N ü1 

v 
L' 

ö 

J 
N 

Iýý 0ö 

N 
L. 

d, E Q 
wI o 

c 

L " E - 
3 Ev 

IN o 

vi 

E c 
äE 

V K 
dd 

"Cý U 

iLn 1 E 
N E I 

i 
LO 0 M 

E 
E 
C) 
CT) 
N 

X 

-o 
E 
E 

d ._ 
0 ý im 

c 
uN 

f_ E, 
C- E 
ýma 

-r- F oý 

N 
N 

0" __ i_ 
ýE 

E 
ti 
N 

E E 
E 
N 

N 
r 

N 

v 
N 

F-, 
`, ý, 

-L 
___L . ̀ . o CeI1 

t6? Z 

LA Q a, 
c1 z 
u Q 
C V 
ý' ui dE 

E 

-- 
C 

4 
wuº9tZ =1 

(J) 
Z 
W 

C-) 

0 

H 

w 
H 
lL 
Q 

to 

UJ 
a 



maximum moment. This arrangement also has the 

added advantage that it approximately represents 

the situation where concrete box beam bridges 

are constructed by the segmental method. The 

length of the central segment was made equal to 

half the span of the beam, and each end segment 

was made equal to a quarter of the span. High 

strength concrete was used and sufficient reinforce- 

ment was provided in the end segment to prevent 

cracking and failure of these segments so that they 

could be used throughout the tests programme. 

The specimens were divided into five series as 

follows: 

Series T: Subjected to pure torque and containing 

varying lateral reinforcement as follows: 

T 
o' 

T2 

T3 

T" 4' 

contains 1.65 mm dia 50 x 50 mm steel 

mesh (un-prestressed) 

1.65 mm dia 50 x 50 mm steel mesh 

1.65 mm dia 25 x 25 mm steel mesh 

2.35 mm dia 25 x 75 steel mesh 

3.4 mm dia 25 x 75 mm steel mesh 

Beams Tn, T2, T3 and were tested using 

1.98 m total length. 

Series 1: Contained 1.65 mm dia 50 x 50 mm square 

steel mesh and subjected to bending and torsion. 

Series 2: Contained 1.65 mm dia 50 x 50 mm square 

steel mesh and subjected to bending, 

torsion and shear. 

Series 3: Contained 2.3 mm dia 25 x 75 mm steel 

mesh-and subjected to bending and torsion. 

Series 4: Contained 2.3 mm dia 25 x 75 mm steel 

mesh and subjected to bending, torsion 

and shear. 
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The moment/torsion ratio was varied in series 

1,2,3 and 4. 

6.2.2 Properties of Materials 

Concrete 

Micro-concrete was used, for all the specimens. 

Ordinary Portland cement and river washed sand, from 

the Thames Valley as an aggregate were used for the 

concrete in the following proportions: 

Aggregate/Cement ratio 3: 1 

Water/Cement ratio 0.5 

The mix proportions were selected from the require- 

ments of workability necessary for casting thin walled 

sections. The strength was equivalent to that of 

high strength concrete usually used in the construction 

of prestressed box girder bridges. 

Concrete strengths were determined from 100 mm 

cubes and 150 mm x 300 mm cylinders cast with each 

specimen and tested at the same time as the box beams. 

The results of these control specimen are given in 

Table 6.1 and the relationship between the cube 

strength and the indirect tension strength obtained 

from the cylinders of this test investigation and 

those obtained from reference 6.1 are shown in Fig. 

6.2. Further information was obtained by testing 

150 mm x 300 mm cylinders in compression and 

monitoring the concrete strains. A typical stress/ 

strain curve is shown in Fig. 6.3. The relation- 
ship between the modulus of elasticity and cube 

strength is shown in Fig. 6.2. 

Reinforcement 

The reinforcement used was B. R. C. weld mesh 
having 1.65 mm, 2.35 mm and 3.4 mm diameter respectively. 
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The properties of the reinforcement was determined 

from three tensile tests for each type. The 

results of these tests and the stress/strain 

relationship are given in Fig. 6.4. The prestress- 

ing tendons were 7 mm dia high tensile steel wires 
2 

. with a 0.2% proof stress of 1500 N/mm 

6.3 Fabrication of The Specimens 

6.3.1 Formwork 

The mould was designed so that the dimensions 

of the specimens could be maintained throughout the 

casting programme and so that any variation of the 

wall thicknesses of the box would be kept to a 

minimum. Acrow steel shutter units were sued to 

form the external mould with two rigid mild steel 

frames having the same shape and dimensions as the 

cross section of the beam as shown in plate 1. 

These frames were fixed by screws to the external 

mould. The inner core consisted of two 10 mm 

thick x. 260 mm wide x2m long plywood sheets and 

two 6 mm x 114 mm wide x2 m long plywood sheets. 

The 6 nun plywood was stiffened by gluing a further 

6 mm thick strip along one edge of the sheet. The 

edges of the plysood sheets were machined accurately 

and arranged as shown in Fig. 6.5, in order to 

produce a simple method of dismanteling the mould. 

A polythene bag with a circumference equal to that 

of the specimen's internal circumference was made 
to enclose the inner core and form the outer face 

of the core. This bag provided a smooth and 

water tight arrangement for the inner core. This 

core was supported on two Acrow steel moulds forms 

held by two screw jacks as shown in r ig. 6.5. 
.. 
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One 8 mm dia duct was formed in each corner 

of the box using 8 mm dia plastic tubes which were 

held in position by steel wires having a diameter 

slightly less than the bore of the tube. These 

tubes were located in position by providing 

8 mm dia holes in the end steel frames. The 

wires were stretched between the two ends of the 

external mould as shown in Fig. 6.5. 

6.3.2 Reinforcement and Assembly of the Mould 

The reinforcement cages were fabricated by 

bending a plain B. R. C. weld mesh sheet to the required 

dimentions and soldering the lapped joints. 

The outer mould was coated with mould oil and 

then the cage was dropped in position followed by 

the plastic tubing. The wires which hold the 

plastic tubes were tensioned adequately by simple 

jacking arrangements in order to obtain reasonably 

straight ducts. The polythene bag was then inserted 

and the parts of the inner core were assembled. An 

externa? "vibrator was attached to the top of the 

mould as shown in plate 2. 

6.3.3 Casting and Curing 

The Concrete was mixed in a Pan type mixer. 
One batch was required for each beam specimen and 

its control specimens, each batch being mixed for 

three minutes. A slump test was carried out to 

check the-workability of-each mix. 

The concrete was placed in"one of the vertical 

walls and vibrated until it appeared in the other 

wall. This procedure was necessary to prevent air 

pockets forming in the bottom flange. Casting of 
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the walls and top flange followed, the whole process 

lasted approximately one hour. 

The inner formwork, the plastic tubes and the 

6.3.4 

sides of the moulds were removed two days after 

casting. The specimen was then cured by being 

covered with wet canvas for� si<: days, after which 

it was allowed to stand in a laboratory. 

The end segments of the specimen were cast with 

150 mm thick diaphragms at each end. 

Instrumentation 

The following measurements were usually observed 

at each loading stage. 

a) Strain on the reinforcement: This was measured 

by E. R. S. gauges fixed to the reinforcement cage 

and waterproofed prior to casting. 

bý Beam deflections and rotations: Deflections were 

taken at six points by 50 mm travel dial gauges 

located below the beam. Four additional dial 

gauges were used to measure the rotation of the 

supports as shown in Fig. 6.6. 

c) Concrete strains: Longitudinal strains were 

measured at both webs and the top flange of 

each beam by means of a 200 m, -n Demec strain 

gauge at 49 positions as shown in Fig. 6.6. 

100 nun Demec strain gauge Rosette arrays were 

positioned on both webs and the top flange as 

shown in Fig. 6.6. 

d) Applied load and torque were measured by means 

of 50 kN capacity proving rings. 
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6.3.5 Assembly and Final Condition of Test Specimen 

The thickness of each specimen at twelve points 

of the central section were measured using the 

device shown in Fig. 6.7. which was specially 

designed for this purpose. The average thickness 

of the webs and flanges and the coefficient of 

variations are given in Table 6.1. 

The central. andtwo ends segments were placed on 

a test bed as shown in Fig. 6.8. and the four 7 mm dia 

wires were inserted in position. After applying an 

adhesive to both ends of segments they were pulled 

together by lightly stressing the prestressing wires. 

These wires were greased in the locality of the 

joints to prevent them bonding at the joint. 

Polybond adhesive mixed with plaster was used 

for beams subjected to a low value of torque, but 

an epoxy resin of high bond strength was found 

necessary for beams which were subjected to a high 

value of torque. Corro-Proof Epoxy Cement manu- 

factured by Corrosion Technical Services Ltd. was 

used for this purpose. This adhesive was made of 

resin, hardener and filler. The first two were 

mixed with a1: 2 ratio and the filler was added 

to obtain the desired workability. 

When Polybond adhesive was used the and segments 

were retrieved after each test with little effort, 

in contrast the epoxy resin joint had to be cut by 

an abrasive disk cutter. This procedure was found 

to be difficult and was subsequently modified by 

placing 6 mm thick mild steel diaphragms at these 

joints which proved to be satisfactory. 
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Demec gauge studs were fixed by means of 

Durofix to the central segment of the beams as 

shown in Fig. 6.6. 

The beams were painted with Ceiling White to 

facilitate the observation of cracks. The Demec 

studs were protected by plastic tape during the 

painting. 

The specimens were left on the test bed for a 

6.4 

period of at least 24 hours to allow the adhesive to 

harden and reach adequate strength before the final 

prestressing force was applied. 

Test Rig and Loading Arrangement 

The test rig consisted of two 5m long steel 

channel and two 6 mm thick x 400 mm wide and 5m long 

top and bottom cover plates forming a torsionally 

stiff testing bed as shown in Fig. 6.9. and plates 

3 and 4. Two close frames made of H. R. Steel 

section were used as reaction frames. 

The bending moment was applied by means of 50 kN 

capacity hydraulic jacks fixed to these reaction 

frames and positioned at third points of the span 

for the beams subjected to bending and torsion as 

shown in plate 3. A single point load was applied 

at the centre of the beam from the beams subjected 

to bending, torsion and shear. The hydraulic jacks 

were connected to a four way manifold which in turn 

was connected to a hydraulic pump and to another 

50 kN capacity dummy jack reacting against a 50 kIT 

capacity proving ring as shown in Pig. 6.9. All 

the jacks used were of identical type 

The applied load was spread to the webs of the 

beam by means of a 50 x 75 X 350 mm mild steel bar 

t 
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and 25 mm diameter steel ball arrangement to prevent 

any rotational restraint. 

The torque was applied through torsion arms fasten- 

ad to the top of the beam by means of a saddle arrange- 

ment made of four 12.7 mm dia threaded rods, two 

50 x 20 x 100 mm mild steel plates and one 20 x 100 x 

400 mild steel plate each and as shown in Fig. 6.9 and 

6.10. A downward vertical pull was applied by high 

tensile steel wire at an arm of 500 mm from the 

centre of the section. The wire was connected to 

another R. H. Section fixed to the bottom of the test 

bed and the force was applied by means of threaded 

screw arrangements which accommodated the wire 

through a central hole. Small thrust ballbearing and a. 

rocker was used at the end of the wires to maintain 

the applied force in vertical direction and to reduce 

frictional restraint. The force in the wire was 

measured by a proving ring inserted between the 

torsion arms as shown in Fig. 6.9. 

The beam was simply supported at each end using 

the bearing arrangements shown in Fig. 6.10. This 

bearing was designed to secure free rotation about 

the central axis of the beam and free longitudinal 

movements. The free rotation about the longitudinal 

axis was achieved by introducing the cylinderical 

bearing whose centre coincided with axis of the beam. 

The beams were post-tensioned by four 7 mm 

diameter prestressing wires using the screw jacks 

shown in Fig. 6.10. The prestressing forces were 

measured by means of load cells which had been 

designed to carry 70 kN-'force, details are shown in 
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Fig 6.10. On each load cell four E. R. S. gauges 

were fixed around the external surface to measure 

the longitudinal strain and four E. R. S. gauges 

were fixed around the external surface to act as 

a dummy. These strain gauges were connected in 

series and with B. P. A. transducer meter to measure 

the strain. These load cells were calibrated in 

the 100 kN compression machine. The calibration 
test was repeated at least four times and the 

average of the calibrations was used. A straight 
line relationship was obtained between load and 

strain readings for these calibration tests. The 

calibration tests were repeated during the test 

programme. 

Prestressing jacks, the load cells and the 

bearing arrangements were all specially designed 

for this test programme and were manufactured by the 

technical staff of the Department of Civil Engineering. 

6.5 Test Procedure 

6.5.1 Prestressing 

Each beam was post-tensioned just prior to testing 

by four 7 mm dia prestressing wires using the equipment 

described earlier. A set of initial demec readings 

were taken before prestressing and then while the 

prestressing forces were applied gradually in a 

sequence which insured no cracking of the beam. The 

prestressing wires were stressed from one. end only. 
The surface strains of the concrete were also read 

and recorded at the end of prestressing operation. 

All the beams were stressed to give a uniform 
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prestress of 6.9 N/mm 
2 

. An additional prestressing 

force was applied to counteract the self weight of 

the specimens. The prestressing force recorded by 

the load cells for the top wires and the bottom wires 

immediately after the prestressing operations and 

the longitudinal strains are given in table 6.2. 

6.5.2 Test to Failure 

Pure Torsion Tests 

The torsional moment was increased in stages, 

in about 10 increments up to failure. Readings of 

the dial gauges, strains, changes in prestressing 

forces etc. were recorded at each stage. The 

torque causing initial cracking, maximum strength 

and mode of failure was noted carefully and 

recorded as given in table 6.3. Cracks were 

marked directly on beams and recorded at the end 

of each test. 

Combined Bending and Torsion Tests 

Each beam of this series was tested over a 

3.6 m span. The bending loads were applied at 

the third points of the span. The moment and 

torque were applied simultaneously according to 

a predetermined ratio. The loads were applied 

in about 10 increments up to failure. After each 

increment, the load was held constant for ten to 

fifteen minutes while deflections, strains, change, 

in prestressing force and crack developments were 

recorded. 

i 
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Torsion, Bending and Shear Tests 

Beams in this series were tested over a 3.6 m 

span. The bending moment was applied by a central 

point load and the procedure was identical to that 

for beams subjected to bending and torsion mentioned 

above. 

The torque, moment and shear causing failure 

and the mode of failure are given in Table 6.3. 
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TABLE 6.1. Concrete properties and measured wall thickness at the central 
section of the specimen 

i 

100mm cube 
Measured wall thickness at 4, of beam 

Indirect 
strength at Age 

test tensile Top Flange Bottom Flange Webs 
Beam at strength 

No 
test mean C. O. V. at test mean C. O. V. mean C. O. V. mean C. 0. 

. (days) N/m2 N/mm2 mm mm 

To 40 51 4.5 3.55 12.83 1.47 13.44 1.37 25.2 3.3 

Tl 40 59 4.0 3.40 - - - - 
T2 37 45.5 4.9 3.10 - - - - - - 
T3 50 64.0 '4.0 3.20 14.05 0.86 14.97 2.36 25.57 0.72 

T4 39 48 5.4 3.70 14.78 4.25 13.84 2.63 24.7 3.4 

B11 23 42.8 3.3 2.3 - - - - - - 
B12 40 44.0 5.1 3.88 11.09 2.1 14.98 3.67 24.6 4.3 

B13 56 53.0 3.8 3.90 - - - - - 
B14 50 44.9 4.5 2.80 12.36 1.27 14.87 4.95 25.41 1.42 

815 47 44.7 13.2 3.4 - - - - - - 

B21 72 55.8 5.5 4.1 12.41 3.85 12.27 1.76 49.82 1.77 

B22 72 50.4 7.2 4.4 13.2 1.37 13.52 4.19 25.41 4.4 

B23 72 54.3 5.0 3.0 17.64 1.2 14.56 1.65 24.8 2.7 

B24 40 48.1 3.3 2.7 - - - - - - 
B25 41 44.2 6.4 3.6 14.91 7.2 14.81 1.62 25.1 2.8 

B31 42 55.2 2 4.0 12.7 0 16.09 3.69 25.3 1.27 

B32 31 47.8 5.4 4.4 12.26, 4.09 16.0 2.6 24.8 0.9E 

B33 55 51 11.6 3.0 12.01 4.40 16.23 2.04 24.9 9.75 
B34 60 51.9 9.6 2.7 17.06 6.02 15.57 1.55 24.8 2-. 25' 
B35 64 68.7 5.6 3.6 15.32 6.81 15.70 3.65 24.7 2.47 

B41 32 53.8 0 2.7 12.7 0 13.97 0.8 24.1 1.1 
B42 26 53.2 3.9 4.1 14.72 1.44 12.98 3.46 25.97 1.77 
B43 40 53.6 5.2 3.3 14.561 1.65 13.12 3.25 53.1 3.6 
B44 40 43.4 3.8 4.0 11.97 3.5 13.97 2.5 24.9 3.97 
B45 39 53.5 1.5 4.6 12.7 0 13.71 - 2.67 24.91 4.75 

Average 13.12 9.0 14.44 7.72 25.1 1. 
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TABLE 6.2. Prestressing Forces and Average measured Longitudinal strains 

Average measured Longitudinal 

strain due to prestressing x 10 -6 Initial Prestressing Forcers 
recorded by Load Cells At the section overall Average 

Beam 
Top Bottom Total Top Bottom Top Bottom No. kN kN kN Flange Flange Flange Flange 

To 0 0 0 0 0 0 0 

T1 60 66 126 214 235.2 - - 

T2 60 66 * 134 172 133 181 

T3 60 63 123 219 180 218 221 

T4 59 64 123 193 726 201 207 

Bil . 62 74 136 - - - - 

B12 64 70 134 234 245 215 250 

B13 67 69 136 221 187 227 195 

B14 64 71 135 253 240 256 232 

B15 65 70 135 186 264 208 240 

B21 59 65 124 221 163 216 174 

B22 59 63 122 236 187 225 192 

B23 59 65 124 284 192 224 197 

B24 59 65 124 214 202 231 208 

1325 59 65 124 214 226 214 227 

B31 59 66 125 198 197 201 182 

B32 59 66 125 256 211 266 214 

B33 59 65 * 380 187 347 171 

B34 58 63 121 250 187 246 201 

B35 58 63 121 246 206 247 199 

B41 59 65 124 246 211; 246 215 

B42 58 64 122 227 230 236 223 

B43 59 65 124 160 211; 176 220 

B44 59 65 124 224 178: 218 181 
B45 59 65 124 243 192j 242 209 

Cell mal-function 
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TABLE 6.3. Principal test results 

Cracking Maximum Max. 

Beam Moments Moment Capacity Shear 
Type of Failure 

Torsion Bending Torsion Bending Force 
No. kN. m kN. m kN. m kN. m k. N 

To 4.05 0 4.05 0 0 Cracking of the beam 

T1 8.60 0 8.60 0 0 Cracking of the beam 

T2 6.10 0 10.10 0 0 Rupture of Stirrups 

T3 8.13 0 11.4 0 0 Edge spalling 
T4 8.20 0 13.03 0 0 Edge spalling 

B11 0 13.4 0 19.5 0 Crushing of top flange 

B12 1.52 12.0 2.5 20.0 0 of 

B13 2.64 12.0 3.51 14.82 0 

B14 4.25 8.5 4.81 9.71 0 

B15 5.49 5.49 6.58 7.29 0 Cleavage failure of top 
flange 

B21 0 10.97 0 16 8.75 Crushing of top flange 

B22 1.37 10.97 1.82 14.60 8.0 11 "" 

B23 2.28 9.14 2.48 12.80 7.0 Be """ 

B24 4.8 9.6 5.5 10.97 6.0 "" Be 

B25 5.5 5.44 5.43 5.50 3.0 Cleavage failure of top 
flange 

B31 0 10.97 0 19.26. 0 Crushing of top flange 

B32 1.27 11.82 2.4 19.20 0 " is " 

B33 2.74 10.97 5.30 21.35 0 

B34 4.00 8.28 8.05 17.0 0 of " is 

B35 6.33 6.33 9.75 9.75 0 Edge spalling 

B41 0 10.05 0 16.5 9.0 Crushing of top flange 
B42 1.26 10.05 1.99 15.9 8.7 " IS 

B43 2.74 10.97 4.34 17.4 9.5 
1344 4.34 8.68 7.20 15.03 8.25 is "U" 
B45 6.22 6.22 10.5 11.15 6.1 Edge spalling 
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Plate 1. Steel Forms used for Costing Central Segment 

of Box Beam. 

Plate 2. Form work in Final Condition before Casting. 
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6�6 1iß: 11 ?Vl our O Bcar1S Under Test 

G- 
. 

v. 1 Prest: r. esS : inq 

'. T'Yho longitudinal strains measured at the central 

socL: i can and those obtained from averaging all the 

Jienmec rc: a. d! _i. ngs taken on the top and bottom flanges 

cdue L-o prostrossings are given in Table 6.2. 

These values app: ar to be ceni: _; J_stantly lcwer than 
6 

345 x 10 obtained by taking the applied prestress 

as E=>, ý) T.; r, _; ti? and E -- 20 kN/irhn2 . This discrepancy 

may be attr. ibuted to one or more of the following 

I J'ri c ý_on :; l 1oti, s s at the joint 

11 - Creep or the adhesive used at the join-1-5,; 

11.1 - Error in eýýt- " : a:. ý. ing the E value 

V -- Cross sectional dimensions were consistently 

greater than the nominal dimension of the 

specimen 

VI Error arising from load cells due to some- 

disturbances that may have occurred during 

the prestressing operation. 

So. r of i: hese faci: ors may be considered When 

est; _rOating 
the effective prestross and the other 

factors may be treated by considering 15% losses 

in the pros trussing force to t1)ose values given in 

Table 6.2. This procedure appears to provide a 

reasonable estimate of the effective prestress of 

the beL; m.. 

6.6.2 Test to Failure - Beam Subjected to Pure Torsion 

a) Cc-! leral Observations, Cracking and Failure 

For all prestressed speciz! cans inclined cracks 

making an angle 0 to 35 degree with 
the longitudinal axis cf the beam were initiated 
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at the bottom and top flange and were 

propagated to the web. This angle was 

approximately 45 degree for the beam with no 

prestress (T0). 

For beam To and T1, the maximum torque 

correspondended to the torque which caused the 

appearance of the first crack and was followed 

by a sudden drop in the applied torque to almost 

half the maximum torque for beam Tl. The 

reinforcement of the cage which intersected the 

crack ruptured at this stage. Subsequently 

the beam sustained considerable increase in 

twist and crack width as shown in plate 5, with 

little or no change in the applied torque record- 

ed until it failed as shown in plate 5. 

Beam T2 continued to carry a further increase 

in torque beyond the torque which caused first 

cracking. After the formation of the first 

crack more cracks developed extending from one 

end of the beam to another forming a spiral as 

shown in Fig. 6.11. This increase in torque 

continued until the reinforcement of the cage 

ruptured causing a sudden drop in the, applied 

torque to a value equal to half the'torque 

which caused the first cracking. The 

behaviour of this beam at this stage is 

identical to that of beam Ti. 

For these three beams there was'a marked 

change in the position of the centre of rotation 

after the maximum torque was reached. Rotation 

took place about one of the flanges with the two 

portions of the beam on either side of this 

major crack rotating relative to each other. 

Beams T3 and T4 which contained a larger 
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volume of lateral reinforcement than beam T1 

and T2 behaved in similar manner to beam T2 

during the formation of crack as shown in 

Fig. 6.12 but they failed suddenly due to 

spalling of the concrete which occurred at 

one corner of the box spreading along their 

entire length as shown in plates 6 and 7. 

After a drop in torque to between 60 and 70% 

of the maximum value the beams started to 

carry increases in torque until finally the 

tests were stopped when it was not possible 

to apply any further twist. This corner 

spalling caused a fundamental change in the 

equilibrium of the internal forces at this 

spalled edge, for example the stirrups at this 

corner as shown in plate 6 and 7 are subjected 

to considerable shear displacement along the 

spalled edge. Further increase in torque caus- 

ed a longitudinal splitting crack in the web 

and flange which are only linked by the 

stirrups. This provided further evidence 

thrzt the shear transmitted between the web 

and the flange at this stage was entirely 

by the dowel action of the stirrups as shown 

in plate 6. 

b) Angle of Twist 

In Fig. 6.13 the angle of twist per meter 

length is plotted against torque. it can be 

seen that the torque/rotation characteristic is 

reasonably linear up to cracking. The change 

in the slope which is seen prior to cracking 

is due to a change in the stiffness of the'test 

bed which was found to occur at a certain 

torque as a result of slip between the main 

components of the test bed. I 
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The remainder of the` curves indicate 

C) 

that a considerable reduction in the torsional 

stiffness occurs after cracking and provides 
further evidence for the discussion given in 

the previous section. 

Strain In Reinforcement and Forces in The 

Prestressing Wires 

The relationship between the strains in 

t 

d) 

the reinforcement as measured by the E. R. S. 

gauges on the stirrups and the torque for 

beams T3 'and T4 are plotted an Fig. 6.14 

and 6.15 respectively. 

It can be seen that before diagonal 

cracking occurred the reinforcement strains 

were quite small but they increased rapidly 

after cracking and a few strains reached the 

yield strains at maximum torque. 

No changes in the force in the prestress- 
ing wires were recorded up to cracking and the 

percentage increase in the prestressing forces 

which were recorded between the maximum and 

crac,: ing torque for beams T2, T3 and T4 were 
between 15% and 20%. 

Deformation of Concrete 

Strain measurements indicated that the 
diagonal compressive strains measured at the 

top flange and the webs increase linearly with 
torque up to cracking. Beyond this stage the 
diagonal compressive strain increased at a 
higher rate. However, the strains which occur 

at maximum torque were only 15 to 40% of the 

maximum strain usually sustained by concrete 
in compression (0.0035). These results 
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therefore exclude the possibility of 

diagonal compression failure. 

Measurements of longitudinal strains 
indicated that the beams T2, T 3, and T4 

suffered longitudinal extension after 

cracking which suggests that torque in 

cracked P. C. beam is resisted by the space 

truss action. 

The strain readings and the change in 

the prestressing force for this series are 

not reproduced here., 

. ý.. <ý 

.., 

._ýýý a ., 
ý, _t.. 



ppppppp, 

r 

After cracking 

10 

i 

]a e Crack patterns after cracking, before failure 

and after, failure for beam Ti 

.- 
fore :,; lure 

before failure 

'ý ,., 



-1 

*a 

I. r: , ý''c i'tl: iitu . i' :, i: Iui 
. 

Iv: ' : ̀ ýýi 

r " 

" r. 

1 

Plate 6 Crack patterns at failure for beam T3 

At maximum t. ortjue 

After maximum torque 



t OF SPECIMEN 

a 
0 

C3 
w 

0 

0 
co 

m 
m 
uJ 
3 

SPECIMEN No TI M 
T=0 

0 0 

Q 

m 
w 
3 

0 
0 m 

m 
C 
LL 
3 

W 

Q 
J 
U.. 

1 

W 
0 
z 
Q 
J 

SPECIMEN No. T2 M 
T =0 

FIG. 5.11 CRACK PATTERNS FOR No Ti AND T2 



Corner cnnllinn 

OF SPECIMEN 

. W 
0 

ý 

y z 
Jý 

ll. 

w\ 
cý L 

J 

, 

CL 
0 

C 
m 
w 
5 

0 

0 
co 

w 

Joint 

SPECIMEN No T3 M=0 
T 

Joint 

Corner spatting 
............ 

ui 
IL 

ui QD 
z 

LL 

a- 
0 

m 
w 3 

m 
0 
I- a 
Cc 

a 
a 
u 

SPECIMEN No. T4 T 
=0 

FIG. 612 CRACK PATTERNS FOR No T3 AND TI, 



TT 

,ý II 

LO .iN CD (D .., ý,.. r4 

uiNý anbjol, 

0 

D 

D 
O 

0 

M 

'O 

X E 
U 

D d 
C1. 

I- 
0 IL C 

D 
I) 

0 

o CD 
> 

o Cr U 
C 
0 

d 
0 

Y) 

C. 
L- H 

crj 

CD 
Q1 

L 

0 

I 



14 

12 

2R) 

1( 

8. 
E 
Z 
Y 

6 c 
Q 
L- H 

E 

li' 
L) 

i 
DO l1 

C_ 
C7 

4- o 

'1 L ic R 

Position of e. r. g. on stirrups 
Strain x 10 

Fig 6.14. Torque Versus Stirrups Strain For Specimen T3 

14 

12 

10 

z 

V 

Ultmte To rc, ue 

olý 

a 

U) 

b 

8 

12345 

Strain x103 
Fig6.15. Torque Versus Stirrups Strain For Specimen T4 

z1 I 



6.6.3 Test to Failure - Beam Subjected to Bending and 

Torsion Series 1 

a) General Observations, Cracking and Failure. 

For the beams of this series cracks were 

initiated at the bottom flange and propagated 

suddenly to the webs. The inclination of 

these cracks to the longitudinal axis varies 

in accordance with theapplied moment torque 

ratio as shown in Fig. 6.16 and 6.17. With 

increase in the moment one of these cracks 

opened up and propagated upwards. The 

reinforcement of the cage which crosses this 

crack ruptured resulting in the formation 

of a major crack and a further increase in 

crack widths as shown in plates 8 and 9. 

The beams of this series behaved after the 

rupture of the reinforcement as if they were 

without lateral reinforcement. Afterward,. the 

portions of the beam on each side of this 

major crack rotate relative to each other about 
the top compression flange.; This ratation brings 

into action dowel forces that occur between the 

bottom prestressing wires and the surrounding 

concrete which was evident from the spalling 

of the concrete in these zones as shown in 

plates 8 and 9. 

Finally the concrete in the compression 

zone crushed explosively as shown in plates 
8,9 and 10 precipitating, failure.,,; 

The ratio of ultimate bending moment 

capacity to the moment which caused-craýcking 
decreased with increase in the applied torque. 

Beam B15 which was subjected to equal 

values of moment and torque, exhibited a 
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cleavage failure of the compression flange 

accompanied by spalling of one of the corners 

of the beam as shown in plate 11. This mode 

of failure as shown in plate 11 suggests the 

presence of a'bi-moment in the top flange 

which was evidenced from the tendency of the 

top flange to bend laterally. This bi-moment 

could be the main restraining internal force 

resisting the applied to; que in this category 

of beams. 
A 

b) Deflections and Rotations 

Central deflections were obtained by 

averaging the readings of the two dial guages 

located at the central section. They are 

plotted against applied loads for all beams 

of this series in Fig. 6.18. 

Rotations were obtained from the deflection 

readings of the dial gauges which were located 

at mid span and under the load. The rotations 

between the central section and the sections 

under the load(averaged and reduced to a 

rotation per meter length)are plotted against 

torque in Fig. 6.19. 

These results indicate that the beams 

behaved almost linearly up to cracking and 

the simple theory of bending and torsion may 

be adequately used for predicting the 

deformation behaviour of these beams in the 

uncracked stage. In the cracked stage both 

torsional and bending stiffnesses are 

reduced. In general it'appears that the 

flexural stiffness decreases with increase 

in the torque'to bending'moment ratio. 

... '_� 
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It was not possible to record the 

deflection at ultimate load for all the beams 

because of the large deformations occuring 

and the sudden nature of failure required 

that dial gauges were'removed in order to 

prevent them being damaged. 

c) Forces in Prestressing Wires 

No significant changes in the prestressing 

forces were recorded until the appearance of 

the first crack beyond which the force in the 

bottom wires began to increase while the force 

in the top wires decreased as the applied load 

increased, as shown in Fig. 6.20. it can be 

seen that in no case did the force in the wires 

reach their ultimate characteristic strength 

as the beams reached their ultimate load 

carrying capacity. It can also be noticed 

that the maximum force occuring at failure' in 

the bottom wires decreased with increase in the 

applied torque. 

The strains on the lateral reinforcement 

were not measured since it was expected that 

they would rupture and not contribute signifi- 

cantly to the strength of the beams. 

d) Deformation of Concrete 

The results of the strain rosettes taken 

on the top flange are plotted against the 

moment in Fig. 6.21. 

The relationship between the'longitudinal 

compressive strains measured on the top flange 

and the applied. moments are shown in F, ig. 6.22. 

The longitudinal strains across five sections 

of the beams are presented for various loading 
stages in Fig. 6.23 to 6.24. 



It can be seen that the maximum concrete 

strains at failure show wide variations 
depending on the ratio of bending and torsional 

moment. These results also indicate that the 

strain distribution across a section of the 

box beams is influenced by the presence of a 

major crack. Although the assumption of plane 

sections before bending remaining plane after 
bending does not seem to be valid for sections 
in the vicinity of a major crack, it does 

appear to apply to the average strain distribution 

measured over the entire length of the zone. 

The depth of the neutral axis at failure 

appears to increase with an increase in applied 
torque. 

6.6.4 Test to Failure - Beams Subjected to Bending, Torsion 

And Shear Series 2 

In general the beams of this series exhibited 

similar characteristics to those of series 1. The 

presence of shear appeared to reduce the ultimate 

carrying capacity of the beam by 10% to 20% compared 
to the corresponding beams of series 1. Also fewer 

cracks were formed at the bottom of the specimens, 

as shown in Fig. 6.25 and 6.26, compared with the 

corresponding beams of series 1. Beam B21 to B24 

failed as a result of crushing of the top flange as 
shown in plate 12 whereas beam 25 failed by cleavage 
fracture of the top flange accompanied with 
longitudinal corner spalling as shown in plate 12. 

Deflection and rotation results are also given 
in Fig. 6.18 and 6.19 respectively. The force 

measurements in the prestressing wires are given 
in Fig. 6.20. The results obtained from the strain 
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measurements at the top flange are shown in Fig. 

6.21 and 6.22 and the results of the experimental 

strain distribution at various stages of loading 

and sectionsare shown in Fig. 6.27 to 6.28. 
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6.6.5 Tests to Failure -" Beams Subjected to Bending and 
Torsion Series 3 

a) General Observations, Cracking and Failure 

The addition of web reinforcement in the 

form of a cage, in the beams of this series 

resulted in an increase in the load carrying 

capacity for the beams subjected to high 

torsional moment, it also reduced the crack 

widths but resulted in more cracks which 

were evenly distributed along the length of 
the beam as shown in Fig. 6.29 to 6.31 and 

plates 13 to 15. Beams B32 to B34 failed by 

crushing of the concrete in the top flange. 

Simultaneously, both sides of the top flange 

at this failure. zone suffered transverse 

displacements relative to each other indicating 

that failure was due to the combined action of 

compression and shear. Beam B35, on the other 
hand, reached its maximum load carrying capacity 

when one of the corners of the box spalled as 

shown in plate 15, resulting in a drop in the 

applied forces of 20 to 30% and finally the 

beam failed without reaching this maximum load 

by the cleavage failure of the compression 
flange. 

Failure always-occurred suddenly and 

explosively and sometimes took*place while read- 
ing of dial. and demec gauges was in progress. 
For beam B32 and B33 failure'occurred under 

one of the loads and' no'. 'significant spalling 
due to the dowel action-of°'the bottom 

reinforcement took eplace. ' 

In this series ' cracking occurred-initially 
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in the bottom flange propagating immediately 

to the side webs and the axis of rotation 

appeared to shift towards the top compression 

flange. 

b) Deflections and Rotations 

The torque/rotation curves and the load/ 

deflection curves are given in Fig. 6.32, and 

6.33 respectively. From these results it 

can be seen that the presence of lateral 

reinforcement has no significant effect on 

the pre-crack stage and the beams exhibited 

similar characteristics to those in series 1. 

The addition of lateral reinforcement however, 

appeared to significantly improve the torsional 

stiffness of the beams in the post-cracking 

stage. In additionthis reinforcement 

considerably improved the ductility of the 

beams. 

c) Strains in Reinforcement and Forces in 

Prestressing Wire 

E. R. S. gauges were fixed to beam B32 and 

B33, the results of the strains readings 

obtained are plotted against torque in Fig. 

6.34. These results demonstrate again that 

the reinforcement does not contribute to the 

torsional strength prior to cracking but 

starts to play a major role in resisting 

torque after cracking. The maximum strains 

recorded, were in general below the yield 

strains. This must be attributed in part 
to the fact that the-electrical strain gauges 
did not always cross a cracked section and 
that the major crack did not cross the steel 
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at the position of the gauges. 

No strain measurements were recorded for 

beams B34 and B35 since it was assumed that 

the trend in the strain could be deduced from 

The results of strain readings taken on beam 

B33 and T3. 

The relationship between the applied load 

and the forces in the prestressing wires are 

shown in Fig. 6.35. These results indicate 

that the forces in the bottom wires of beams 

B31 to B34 almost reached their ultimate 

characteristic strength as the beams reached 

their ultimate carrying capacity. in contrast, 

the forces in the bottom wires for beam B35 did 

not increase appreciably at failure of the 

beam. 

d) Deformation of Concrete 

The results of the strain rosette readings 

taken by Demec gauge for the beams of this 

series are shown in Fig. 36 to Fig. 38. The 

strain readings taken from the rosette on the top 

flange showed that all the strains are in 

compression except for beam 35, for which 

diagonal tensile strains were recorded. 

The results of the longitudinal compressive 

strains measured on the top flange and shown 

in Fig. 6.38 indicate that the maximum 

compressive strains occuring at failure 

decreased with increase in the applied torque. 

The results of the strain distribution 

for various loadings and sections shown in 

Fig. 6.38 and 6.39 indicate that the presence 

of reinforcement in the form of cages 
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influenced these distributions and they 

approximate very closely to the assumptions 

of plane sections before bending remaining 

plane after bending. 

6.6.6 Test to Failure Beams Subjected to Bending, Torsion 

and Shear Series 4 

The experimental results obtained from this 

series were similar in many respects to those 

obtained from series 3. 

Cracks were initiated at the bottom flange and 

propagated first to the web in which the torsional 

and shear stresses were additive as shown in 

Fig 6.41 to 6.43. 

The mode of failure was crushing of the top 

flange under the load for beam B42 to B44 as shown 

in plate 16. Beam 45 however, reached its maximum 

load carrying capacity when one of its edges spalled 

as shown in plate 17. 

The rotations and deflections are shown in 

Fig. 6.32 and 6.33. 

No strain readings on the reinforcement were 

taken for this series. The forces in the 

prestressing wires at various stages of loading 

are shown in Fig. 6.35. 

The top flange strain readings'are given in 

Fig. 6.36 and 6.37. The distribution of 
longitudinal strains are given in Fig. 6.44 and 
6.45. 
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6.6.7 Additional Test On Beams Subjected to Bending, 

Torsion and Shear 

It was possible to cut four pieces of 1.22m 

length from some of the specimens of series 3 and 

4 and retest them. These tests were similar to 

beams 841, B42, B43 and B44 in all respects but 

tested over a span of 3.05m. The results of 

these tests indicated no reduction in the. strength 

of the beams and in some cases they sustained larger 

torsional moments at failure. These beams were' 

fully instrumented and readings were taken, for all 

the strains, deflections, rotations etc. Most 

of these beams were cracked but these cracks closed 

during prestressing. The results-of these beams 

are not included in this chapter since the concrete 

strengths were not known at the time of-testing. ' 
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Plate 13 Crack patterns after failure for beam B32 
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Plate 14 Crack patterns after failure for beam B33 
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Plate 17 Crack patterns after failure for beam B45 
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6.7 Discussion of The Results 

Any rational method for predicting the ultimate 

carrying capacity of reinforced and prestressed 

concrete structural members must consider the 

following conditions: 

a) Equilibrium of forces 

b) A law of strain compatibility. 

c) A rule of maximum strains for concrete at failure 

d) Accurate failure criterion. 

These are discussed in the light of the 

experimental evidence of this investigation as 
follows: 

6.7.1 Equilibrium of Forces 

This investigation demonstrated that torque can 
be transmitted through different load paths at 

various stages and conditions of the specimens. 

Many of the internal forces however, may be relatively 

small and can be ignored. "In'certain circumstances 

some of the internal forces may assume a secondary 

role in resisting the applied? torque but',, they 

could precipitate local failure which in turn could 

cause a complete change in the equilibrium conditions 

of the elements which couldthen'lead to failure. 
s .4 4. ; 

These alternative paths could be summarized as follows: 

1. Shear flow in the closed and uncracked. 'box or 
through the lateral reinforcementAn the 

cracked stage. 

2. Shear flow in the open section which may occur 
after cracking if no. transverse, reinforcement 
is present.. 

H 
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3. Dowel action of the longitudinal reinforcement. 

4. Differential bending of the flanges and the 

web after longitudinal cracks have occurred 

forming an internal bi-moment. 

5. Dowel action of the transverse reinforcement, 

particularly after longitudinal cracks or 

corner spalling has occurred. 

6. Aggregate interlock. The results of these 

experiments show however, for unbonded pre- 

stressed concrete beams subjected to high value 

of that cracks open up considerably as failure 

is approached. Therefore the interlock forces 

are negligible. This method of transfer of 

shear may contribute significantly to the 

resistance of torque, in beams where bond between 

longitudinal reinforcement and the concrete is 

fully operative. 

7. Resistance of uncracked concrete between 

adjacent cracks. In beams subjected to pure 

torsion, the concrete between cracks forms 

continuous helices from one end of the beam 

to the other which resists the applied torque. 

The multiplicity of load paths in-beams subjected 

to torque is the main reason for the lack of general 

agreement on how torque is resisted in reinforced 

concrete and prestressed concrete members and for 

the absence of a general method for predicting 

ultimate strength of members when they are subjected 

to torque. 

If the strength of specimen T1 and T is 
2 

assessed after cracking of specimen Tltand rupture 

of reinforcement of specimen T2, then it would be 
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found that new equilibrium condition is established 

at this loading stage where the applied torque is 

resisted by the differential bending of the flanges. 

This conclusion is reached after assessing the 

strength of the cracked concrete and the dowel 

action which was found to be small compared with 

the actual strength of the beams. 

In order to determine the manner in which the 

torque is resisted in the test beams, the numerical 

average of the diagonal strains measured on the top 

flange rosettes are plotted against torque for all 

the beams as shown in Fig. 6.4'6 and 6.47. 

Theoretical strain values obtained from the 

assumption that torque is resisted by: 

a) closed section, 

b) differential bending of the top flange, 

c) open section 

d) top flange 

are also plotted on the graph. It can be noticed 

that the measured strain readings closely follow 

those values obtained from the closed box assump- 

tion up to cracking. The strain rate can be seen 

to increase rapidly after cracking when it approaches 

the value obtained from the differential bending 

theory for beams of series 1 and 2. The rate of 

increase in strain after cracking is seen to be 

less rapid for beams of series 3 and 4 than for 

series 1 and 2. 

it can be shown that the prediction of 

torsional strength for these beams based on the 

torsional resistance of the compression flange 

will be considerably underestimated. 
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6.7.2 Strain Compatibility 

The results obtained from the comprehensive 

longitudinal strain readings agree in general with 

the assumptions that plane sections before bending 

remain plane after bending except in the case of 

beams without lateral reinforcement where the strain 

readings deviate from this assumption in the 

locality of major cracks. This phenomena could 

be more important in a fully bonded beam than in 

the case of unbonded reinforcement where the force 

in the tensioned wires remain almost constant over 

the length of the beam where major cracking occurs, 

therefore, this assumption can be generally applied 

for unbonded prestressed concrete beams subjected 

to a large ratio of M/T. 

6.7.3 Maximum Compressive Longitudinal Strain 

The maximum compressive strains occuring at 

failure are found to decrease with a decrease in 

the value of the M/T ratio, they are also influenced 

by=the presence or otherwise of lateral reinforcement. 

The strain results obtained from these investigations 

are plotted against the T/m ratio for beams of series 

1,2,3 and 4 in Fig. 6.48&6.49These results indicate 

that the maximum strain occuring at failure have 

the following relationship: 

!`= Ecu 

1+ (m) 2 

(VU = Ecu 

1+ (2m) 2 

For beams without stirrups 

For beams with stirrups 

where Ccu is the maximum compressive strain occuring 
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at the upper most fibre for beams subjected to 

bending only. 

6.7.4 Failure Criterion 

The results of this investigation show that beams 

subjected to bending and torsion on bending, torsion 

and shear may fail in one of two modes: cleavage 

failure occuring in beams subjected to low value of 

M/T. Typical failure of this mode is shown in plate 

18, or a crushing type of failure as show,, n in plate 

19 which is associated with beams sustaining a high 

value of M/T. Therefore, a. dual failure criterion 

is required for any general and rational theory. 

6.8 Correlation With Theoretical Results 

The Theoretical and experimental results for 

cracking and ultimate moments for, the test specimens 

subjected to pure torsion, combined bending and 

torsion and combined bending, torsion and shear 

are sutmarized in Table, 6.4. The cracking moments 

were computed by the elastic torsion theory proposed 

in chapter 2 and using ft = 0.45jfcuand 15% prestress 

losses. 'The ultimate strengths were computed on the 

basis of the theories given in chapter 4 and 5. 

The ultimate load carrying-capacities of the 

tested beams are presented in the interaction 

diagrarne shown in Fig. 6.50 and 6.51. The full 

lines represent the theoretical interaction curve 

for loading in torsion and bending and failing by 

the shear compression mode. The broken lines 

represent the theoretical interaction curves based 

on the assumption that all the reinforcement attains 

full axial yield strength. This comparison clearly 
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TABLE 6.4. Comparison of Theoretical Predictions with Test 

Results 

Cracking Torque Ultimate Moments 
Beam kNm kNm 

No. T exp T th Texp Tex Tth Texp Mexp M Mexp 
Tth Tth th M 

To 4.03 4.76 0.85 4.05 4.76 0.85 - - - 
T1 8.60 8.19 1.05 8.60 8.19 1.05 - - - 
T2 6.10 7.50 0.81 10.10 9.60 1.05. - - - 
T3 8.13 9.48 0.86. 11.11 13.01 0.88 - - - 
T4 8.20 8.46 0.97 13.03 13.4 0.97 - - -. 

B11 0 0 19.50 17.78 1.09 

B12 1.52 1.31 1.16 2.50 2.08 1.20 20.00 16.62 1.21 

B13 2.64 2.43 1.09 3.51 4.13 0.85 14.82 17.44 0.85 

B14 4.25 4.25 1.00 4.81 6.00 0.75 9.71 17.73 0.80 

B15 5.49 5.55 0.99 6.58 5.55 1.18 7.29 6.15 1.16 

B21 0 0 16.00 18.32 0.87 

B22 1.37 1.31 1.05 1.82 2.15 0.85 14.60 17.76 0.84 
B23 2.28 2.52 0.91 2.48 3.25 0.77 12.80 16.65 1.07 

B24 4.80 4.14 1.16 5.50 6.20 0.89 10.97 17.49 0.84 

B25 5.50 5.89 0.93 5.43 5.89 0.92 5.50 5.96 0.92 

B31 0 0 19.26 17.89 1.06 

B32 1.21 1.20 1.06 2.40 2.16 1.11 19.20 17.39 1.11 

B33 2.74 2.39 1.15 5.30 4.33 1.22 21.35 17.35 1.22 

B34 4.00 3.99 1.00 8.05 7.91 1.02 17.00 16.69 1.62 

B35 6.30 6.53 0.96 9.75 10.80 0.90 9.75 10.60 0.92 

B41 0 16.5 17.86 0.97 

B42 1.26 1.21 1.04 1.99 2.26 0.88 15.90 18.15 0.87 
B43 2.74 2.33 1.18 4.34 4.53 0.96 17.40 18.13 0.95 
B44 4.34 4.04 1.07 7.20 7.80 0.92 15.03 16.46 0.91 
B45 6.22 5.80 1.07 11.00 11.83 0.93 11.15 11.96 0.93 

Mean 1.02 0.96 0.98 
C. O. V. 10.16% 13.62/0 ; 1'2.80' 
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demonstrates that the tested beams failed in a 

shear compression mode before yielding of longitudinal 

reinforcement was reached. 

Table 6.4 also includes the ratio of the 

experimental cracking torque to the theoretical, 

cracking torque. This ratio has a mean value of 

1.02 and coefficient of variation of 10.16%. 

The ratio of the experimental strength of-the 

theoretical strength for these results has an average 

value of 
Mew---1'- 

= 0.9Band a coefficient of variation 
Mth 

of 12 . ß% 

6.9 Conclusions 

From the test results and observations made 

in this investigation, the following conclusions 

may be drawn: 

1. Inclination of initial cracks and the cracking 

torque are functions of the magnitude of the 

prestress and the moment to torque ratio. 

2. With decrease in moment/torque ratio, the 

margin between ultimate and cracking strength 

decreases. This margin can be increased 

appreciably at low values of moment/torque 

ratio by the use of closely spaced sitrrup 

reinforcement. 

3. For the box beams containing stirrups and 

subjected to combined bending and torque, 

two distinct types of failure occur depending 

on the magnitude of moment/torque ratio. 

With high values of M/T bending type (shear 

compression) failures occur. These failures 

tend to be violent and explosive resulting 

in the formation of 
considerable debris due 

'ä %". 



4. 

to crushing of'concrete. With low values 

of M/T cleavage failures due to spalling of 

one of the corners of the box occur. This 

mode of failure is sudden. 

For box beams without stirrups and subjected 

to combined bending and torque, three distinct 

modes of failure are possible: 

a) Crushing failure at the top flange 

associated with'beams subjected to high 

values of M/T, 

b) Torsional type of failure where the ulti- 

mate strength corresponds to the 

formation of the first crack and 

c) Transitional mode of failure where 

failure occurs as a result of cleavage 

fracture of the top flange. 

5. 

6. 

7. 

8. 

9. 

The presence of shear in combined loading reduces 

the ultimate carrying capacity of the beam by 

the order of 10% compared to beams loaded in 

torsion and bending only. 

For beams subjected to combined bending, torsion 

and shear, the ultimate torsional capacity 

appears to increase with a decrease in the 

length of test span. 

The use of stirrups can significantly improve 

the ductility of the beam. 

Cracking causes substantial reductions in 

torsional stiffness particularly for beams 

without lateral reinforcement. 

The maximum compressive strains at the extreme 
fibres occuring at failure decrease with a 
decrease in the moment torque ratio and are 
influenced by the presence or otherwise of 

328. 



lateral reinforcement. 

10. The strain distribution across any section 

follows approximately the Bernoulli law when 

lateral reinforcement is present and deviate 

appreciably for beams without lateral 

reinforcement. 

11. The proposed theories predicted the strength 

and carcking of the test beams with a good 

degree of accuracy. 

S 
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CHAPTER 7 

BEHAVIOUR AND STRENGTH OF DOWELS IN CONCRETE 

Summary 

Theoretical and experimental studies on the 

behaviour and strength of dowels are presented. 

The dowel problem has been classified in this 

study into two categories according to the boundary 

conditions. 

Rational theories for dowel behaviour and dowel 

strength are developed. 

The effect of various parameters influencing 

dowel strength are examined. 

The results of 76 dowel test are reported. 

The methods of analysis used show a satisfactory 

agreement with all the experimental results on dowel 

which are available in literature and from the results 

of this test programme. 

f- . 
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7.1 Introduction 

The use of stud shear connectors in order 

to obtain a complete composite action between 

steel and concrete structural components is only 

one example where shear is transmitted primarily 

by dowel action. Although the contribution of 

the dowel action of the reinforcement to the 

resistance of shear in reinforced concrete and 

prestressed concrete structures, is recognised, 

it has been ignored by many research workers 

studying the strength of reinforced and prestressed 

concrete beams subjected to shear and torsion. 

The reason has probably been the lack of information 

on this subject., However, a few research workers 

(7.1 to 7.4) studying the behaviour of reinforced 

concrete beams subjected to shear and bending 

have in recent years provided some information on 

the contribution of dowelresistance. Different 

testing techniques have been devised in each case 

to assess the behaviour and strength of dowel 

action and various empirical expressions have been 

suggested. It can be said that the previous work 

on dowel action is fragmentated, incomplete and of 

little use for applications to problems other than 

those studied by the various investigators. 

In order to examine the effect'of dowel forces 

in the reinforcement on the strength of concrete 

beams subjected to torsion, bending and shear, a 

thorough understanding of dowel action is needed. 

The aim of this chapter is to provide a comprehen- 

sive study of this problem. 

The solution may be simplified by classifying 

'. f '. ,. ýýr_r 
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the boundary conditions regarding the position 

of supports as shown in Fig. 7.1, into two 

categories: 

1. Where the distance between the dowel force 

and the vertical reaction shown in Fig. 7.1 

is zero. 

2. Where the distance between the dowel force 

and the vertical reaction shown in Fig. 7.1 

is infinity. 

7.2 Dowel of Category 
-1 

This dowel category represents the dowel action 

which is induced by the transverse reinforcement of 

reinforced and prestressed concrete beams subject 

to pure torsion. 

7.2.1 Elastic Analysis 

If we consider the bar embedded in the concrete 

block shown in Fig. 7.1 to be equivalent to a beam 

that is supported by elastic foundations (Fig. 7.2) 

such that when the beam is deflected, the intensity 

of the continuously distributed reaction at every 

point is directly proportional to the deflection. 

Under such conditions the reaction per unit length 

can be expressed by kw, in which w is the deflection 

and k is the modulus of the foundation. Consider- 

ation of equilibrium of an unloaded portion of the 

beam leads to the following classical beam on 

elastic foundation equation: 

d4w - kw =07.1 

dx 
4 EI 

where EI is the flexural rigidity of the beam. 

The solution of this equation for various loading 
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and boundary conditions may be found in a text 

book on the subject of beam-bearings-on elastic 

foundation by Hatanyi (7.5) with a complete 

discussion on the application and limitation 

of this method. However, despite the simplicity 

of this method, equation 7.1 usually yields 

solutions that are rather cumbersome. Therefore, 

an alternative treatment of the problem is 

followed. 

In addition to the assumption made above it 

is assumed that at some distance (L) from the 

point of application of the load, the bar will 

remain undeflected. Actually the bar does not 

become abruptly fixed, but oscillates about the 

unloaded line. The amplitude of even the first 

wave after the initial crossing of the unloaded 

line is small compared with the maximum deflection 

which occurs under the load and it is thus 

satisfactory to consider the bar fixed at some 

definite point. 

Assuming that the deflected shape of the 

beam and its elastic foundation is represented 

by the following equation: 

w -= as + a1 x+ a2 x2 + a3 x3 7.2 

where ao to a3 are constants to be determined 

from the boundary condition of this problem 

which are: 

at x=O , W=0 ; 
äX=O 

d2w 
x =L" dx2 =0w= 
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where is the maximum deflection under the load. 

If the above boundary conditions are introduced 

equation 7.2 becomes: 

x23 w=ý. 3(L)-(xL)7.3 
2dd 

The total internal en-rgy for the beam and its 

foundation is given by 

LL 
EI (w ") 

2dx+2 
w2dx 7.4 

2f 
ýD 

00 

where EI and k are as defined previously. 

Now substituting equation 7.3 into equation 7.4, 

the total internal strain energy equation becomes: 

U=3 EI d2+ 33 kL Lný 2 

2 Lj 28 
7.5 

but the external work done by the dowel force F 

is w= 
FdQ 

2 

Equatingthe internal and external energy, 

Fd3+ 1423 0 
l'I' 7.6 

To' find L so that the energy is 'a minimum =0 

dFd= 
-9 EI. A+ 33 

dL 
d L4 140 

d 

.. Ld= 
4 

420 EI 
11 k 

7.7 

Substituting equation 7.7 into equation 7.6 

35 
Fd 

11 kLd :. 
or L3 F 7.8 

dd_ 
12 E 

k, A =0 
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The pressure at any point may be found from wk 

Fd 

P= wk = 
22 

3 (Lx ä2 - iLäx 3 
Ld 

and the maximum pressure is given by: 

35 
Fd 

Pmax= k=11 
Ld 

7.9 

It can be shown that the maximum moment acting 

on the beam will occur approximately at 
2 from 

the load and is equal to 

M=0.2 FdLd 7.10 

7.2.1 Evaluation of kc` 

The bearing characteristics of concrete blocks 

subjected to concentrated loads has been studied for 

the purpose of this investigation. A typical load/ 

deflection relationship is given in Fig. 7.3. it 

can be seen that the load/deflection relationship 

is reasonably linear. The modulus of the foundation 

per unit area (ko) was found to be affected slightly 

by the shape, size of the loading areas and the 

position of the concentrated load on the concrete 

block. Howe er, koEwas found to have a value 

varying from 50 
to 

100 
kN/mm3, therefore, an average 

value of 75 is suggested. 

The modulus of the foundation per unit length 

k is therefore 

k= ko9l 

where 9' is the diameter of. the dowel- 
E 

C- 9(4 
substituting, ko=. LY and ,I=. 

in equation 7.7 75 20 
we get: 
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Ld 3.54 

I; 

e 
3/4 7.11 

where e is the modular ratio 
Es, 

and for 
c 

cite = 10 .L= 6«3/4 7.12 

7.2.2 Comparison With Test Results 

in a recent investigation on the behaviour 

of dowel action, Dulacsha (7.8) measured the slip 

(maximum deflection) in series of specially 

designed specimens and gave the following 

empirical expression for the slip: 

3Fd61 tan 
(Fafl 

QXd10 Pcu Fu 2 

is the where F is the dowel force in lb, 
U 

ultimate dowel force, feu is the concrete cube 

strength in kips/in2 and is the slip in inches. 

This expression is plotted in Fig. 7.4 for one 

of the test results. Also shown are the theoretical 

results obtained from equation 7.8. 

The theory seems to predict deflection with 

reasonable accuracy up to 50% of the ultimate dowel 

force. It can be shown that this will correspond 
to the dowel force causing initial yield in the dowel. 

7.2.3 Ultimate Strength 

A dowel embedded in concrete reaches ultimate 

strength as a result of the bar and for the concrete 
bearing strength reaching their limiting strength. 

Therefore, different modes of-failure-are expected. 

The clan be classified as follows: 
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Elastic Mode 

This failure occurs as a result of the 

concrete bearing stresses reaching the ultimate 

value, before the steel stresses reach the yield 

value. 

Plastic Mode 

In this mode, failure takes place when the 

bearing stresses reaches the ultimate value. 

after the formation of a plastic hinge in the 

dowel. 

Elastic-Plastic Mode 

in this mode, failure takes place when the 

bearing stresses reach the ultimate value after 

the yielding of the dowel has started and before 

the formation of full plastic hinge in the dowel. 

However, it is expedient at this stage to 

examine the bearing strength of concrete before 

considering these modes of failure further. 

7.3 Bearing Strength of Concrete 

Due to the lack of research information on 

bearing strengths of concrete relevant to this 

problem, it was found necessary to carry out 

such tests. These tests consisted of a number 

of concrete blocks subjected to concentrated 
loads, the details of which are shown in Fig. 7.5. 

The following factors have been investigated: 

a. Size and shape of loading area. 

b. Position of loading in relation to the 

concrete block. 
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c. Stress (bearing) distribution. 

d. Cover to width ratio. 

e. Size of specimen. 

f. Lateral restraint. 

The results and conclusions of this 

investigation are summarised below. 

In order to examine the effect of the-above 

variables on the bearing strength, the variation 

due to concrete stfength was removed by the use 

of the parameter cb 
which was suggested by fcu 

Hawkins (7.6) who found that the ultimate bearing 

strength fcb is proportional to the ý-. 
ýýcu 

1. The relationship between the parameter 

f 
cb 

and the cover (Cs) /width of loading area 
(q) is shown in Fig. 7.6. Cover is defined 

as the distance from the central line of the 

loading area to týe face of concrete. For 

small values ofs , the bearing strength 

is seen to increase linearly with C5/ß. 

2. The ratiofcb fcu has an upper limit which 

depends on the shape of loading area, and 

the stress distribution above which it will 

remain constant. 

3. For the unsymmetrical cover condition and 

with a square loading area, the upper limit 

occured at C/cl =2 whereas for the, 

symmetrical cover condition using a square 
loaded area, the upper limit was found to 

occur at CS/¢r = 3. 

4. Two modes of failure were observed, splitting 
and shearing (crushing). Shearing failure 
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was always associated with C/9' equal or 

greater than the upper limit stated above, 

otherwise failure occured as a result of 

vertical splitting. 

5. when the length of the loaded area was equal 

to or greater than twice the width; bearing 

strength continued to increase linearly with 

g/q' with an upper limit of C. 
S/Q' = 4.5. 

Failure was by splitting up to Cs/ 9' = 4.5 

above which failure mode changed to a shearing 

or crushing. 

6. When bearing failure was due to vertical 

splitting, the bearing strength was appreciably 

higher for the unsymmetrical cover conditions - 

than the symmetrical cover condition as shown 

in Fig. 7.6. 

7. The bearing failure characteristics for the 

case of triangular stress distribution using 

a rectangular loading area were similar to 

those obtained from the square and uniformly 

stressed cases. 

8. When a lateral restraint was provided as shown 

in Fig. 7.5, the bearing strength was unaffected 

when failure was initiated by splitting. For 

the cases where C3, /Q1 were above the upper limit 

stated before, failure was started as for the 

unrestrained cases, but the specimen continued 

to sustain further increases in load until 

failure occured by splitting. 

9. The bearing strength'was found-to depend on 

the position of loading in relation to the 

trowelled face of the specimen. The bearing 
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strength was found to be 20% less when 

loading was applied near the trowelled 

face than the opposite face. The bearing 

strengths given in Fig. 7.6 are based on 

the averages between the results obtained 

from the trowelled face and the opposite 

face. This variation agrees with Coles (7.7) 

findings which show that when a cube is cut in 

two halves and each half tested in compression, 

the half containing the trowelled face was 

approximately 20% less than the opposite face. 

10. Scatters in bearing strength were found. to 

be higher than the compression cube test and 

to increase as the loading area decreased. 

11. There were no significant differences between 

the bearing strength results obtained from 

the 100 x 100 mm blocks and those obtained 
from 150 x 150 mm blocks. 

12. The bearing strength may be found from the 

following expressions: 

fC 
f 

cb =8 
Cu 

ýs 7.13 

7.4 Ultimate Strength of Dowel - Category 1 

7.4.1 Elastic Mode of Failure 

As stated earlier, this mode of failure would 

occur when the maximum bearing stress induced by 

the dowel reaches the ultimate' bearing strength 

of concrete prior to the yielding"of reinforcement. 

If it is assumed that the load displacement 

relationship is to remain'linear up to failure then 

from equations 7.9 and 7.12 is obtained: 

353. 



7 
Fe= 1.85 ý4 fcb 7.14 

where 9' is the diameter of the dowel and fob is 

the maximum bearing strength obtained from 

Fig. 7.6 or equation 7.13. 

For equation 7.14 to be valid, the maximum 

stress in the dowel must be equal or less than 

the yield stress. Therefore, an upper limit 

to equation 7.14 may be found by determining 

the dowel force that would cause yielding (Fy). 

From equation 7.10 we get: 

10 
0.2 Fy Ld 

rearranging and substituting Ld 

9 
Fy = Q12r 1y7.15 

where f is the yield stress of the dowel. 
y 

7.4.2 Plastic Node of Failure 

For this mode of -failure , 
to occur a full 

plastic hinge develops in. the dowel and_. the 

final failure is reached when the. maximum 

bearing stress induced by the dowel reaches the 

maximum bearing strength for the concrete. At 

this stage of loading', the deformation of the bar 

and the bearing stress distribution underneath it 

are highly indeterminant . 

Dulacsha (7.8) and 

developed a theoretical 

of failure based on--the 

bearing pressure undern 

uniformly distributed. 

Tharmaratnam (7.9) 

expression for this mode 

assumption that the 

oath the dowel are . ',. 

The dowel strength 
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according to these expressions is a function 

of the diameter of the dowel and the material 

strength. These assumptions can be seen to 

be incorrect since the bearing stress below the 

dowel would vary along the dowel and the bearing 

strength of concrete is influenced by other 
factors as was shown-previously. 

The plastic dowel strength may be assessed 

with reasonable accuracy if it is assumed that 

the plastic hinge develops at a distance x+e 
from the dowel force as shown in Fig. 7.7 and 

the bearing pressure under the bar is assumed to 

vary from a maximum value q at point 1 to zero 

at the plastic hinge asindicated in Fig. 7.7. 

Taking moments about the plastic hinge: 

M =F (x + e) _5 

cb2r 
x2 7.16 

p dp 12 

where M is the plastic moment of resistance of p '3 fy the dowel which is =6 

By invoking the theorems of plastic collapse, 
the dowel force may be obtained by differentiating 

equation 7.16 with respect to x and equating it 

to zero. 

or 
äX 

=0 equation gives: 

6 
Fdp 

x=5 ý1 fcb 

Substituting for x and M 

7.17 

into equation-16 and 

rearranging equation 16: 

5 
FdP -- 6 

fcb 
to +()(i 

cb 9( 
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The second term under the square root sign 

in equation 17 can be shown to be very small 

compared to the first term under the square 

root sign and hence equation 7.18 may be 

simplified to 

F dp 62f cb 5 fý_ ( 9) 7.18a 
cb 

and if e=O 

Flp=0.53912ýb 7.18b 
cb 

AI 
fcb 

2 fy f 7.18c 
Y 

The position of a plastic hinge may be found by 

substituting equation 7.18b into equation 7.17 

as follows: 

f 
x=0.64 

cb 
f 

and for f=3; 
x1.1 Q1 

cb 

7.4.3 Effect of Axial Load on the Plastic Mode of Failure. 

The presence of axial force in a beam is 

known to reduce its plastic moment of resistance, 
hence, for a beam'of a circular section subjected 
to an axial load (F) the plastic moment of 

resistance may be obtained approximately from: 
. 

M=M 1 )2] 

dp 

where Mp is the full plastic moment of resistance 

of the section and Fdp is the full axial yield 

capacity of the section. 
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For the case where e is zero, equation 

2.18 may be written as: 

F dp2 =3f cbgr 
Mp 

and for the case where the bar is subjected to 

axial load, the dowel force will be: 

257.19 
Fd=3f 

cbý 
M 

Combining the above equations and rearranging in 

the following non-dimensional equation: 

Fd 2F )2 
+-=1 

r dp p 

7.20 

7.4.4 Effect of Bar inclination on the Plastic Mode of 

Failure. 

The ultimate dowel strength for the inclined 

dowel shown in Fig. 7.8 can also be predicted 

from equation 7.18 with the following modification. 

As a result of the hinge formation and the crushing 

of the concrete, the bar will rotate and take an 

"almost horizontal position before failure takes 

place. 

If the position of the applied dowel force is 

to remain unchanged, then as a result of this 

angular rotation of the bar, the dowel force will 

have an eccentricity e. If the initial distance 

between the dowel force and the plastic hinge x 

is assumed to be 
5 

¢' and if the dowel is assumed 

to rotate by an anglea prior'. to... failure, then 

the eccentricity of. the dowel.; force becomes: 

e= 91 i. 1-, Cos oc 7 . 21 

356. 
g =:. a 

i 



, Id li, 

7.5 

Substitutin equation. 7.21 into equation 7.18 

and takin4 f=3.6: 
cb 

Fdp = 9l 
2 

fob Cos°'1- 

Comparing this expression with-equation 7.18b it 

is seen that the dowel strength would be reduced 

by a factor = Cos O4 due to' the effect of bar 

inclination. Therefore, equation 7.18b may be 

modified to account for this effect which gives: 

FdP = 0.53-9( 
2 fcb CosOC 7.22 

rtcb 

Comparison of Proposed Dowel Strength Theories 

with Test Results 

Plum (7.10) has investigated experimentally 

the strength of dowel using. the specimen shown in 

Fig. 7.9. The effect of side covers (Cs) , the 

diameter of the bar and the effect of concrete 

strength have been examined. The theoretical 

dowel strength has been taken as the smaller value 

obtained from equation 7.14 and 7.18. The maximum 

bearing strength was taken 

mean ratio F (exp) /F (th) is 

of variation 14.8 percent. 

F (exp) /F (th) from unity is 

found in the investigation 

of concrete. These scatt 

from Fig. 7.6. The 

1.17 and the coefficient 

The scatter of 

well within the scatter 

of the bearing strength 

ers are also consistant 

with results obtained from tests on shear connectors 

reported by Menzies (7.11). 

Dulacsha (7.8) carried out tests on specially 

designed specimens shown in Fig. 7.9. In this 

investigation the inclination of the dowel, the 

diameter of the 'dowel and the concrete strength 
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were considered. A summary of comparison between 

the theoretical prediction and the experimental 
dowel strength are given in Table 7.1, and Fig. 7.10: 

The mean of the F (exp) /F (th) is 1.18 and the 

coefficient of variation is 14.3 percent. 

It can be seen that the proposed theory predicts 
the dowel strength satisfactorily and considers the 

various important parameters that are known to 

affect the dowel strength. However,. the dis- 

crepancy between the theoretical and experimental 

results may be attributed to the variation between 

the assumed and the actual bearing and yield stresses 

of the materials. 

in these tests the value of the bottom cover 
(Cb) was kept constant and the ratio of Cb/g' was 

relatively high, therefore, further experimental 

work was needed in order to examine these effects 

and provide further information about the subject. 

k 
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TABLE 7.1 Comparison between experimental and 

theoretical Prediction for dowel of 

Category 1 

Mode Number Mean Coefficient 
investigator Ref of of F exp of 

Failure Specimen F th Variation 

Plam 7.10 E 18 1. ]. 5 14.69. 

P 12 1.20 15.07 

Dulacsha 7.8 E 4 1.24 19.0 

P 11 1.16 11.22 

E 22 1.16 15.9 

Total p 23 1.18 13.56 

E 45 1.17 14.8 

P 

E= Elastic mode of failure 

P= Plastic mode of failure 
°e 3 
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7.6 Dowel Tests 

In order to examine the effect of CbIV and 

provide further test evidence on dowel strength, 

a series of specimens were tested. The effect 

of covers Cs and Cb and the dowel diameter were 

investigated. 

The details of the specimens and property 

of materials are summarised in Fig. 7.11 and Table 

7.2. The concrete mix used for fabricating these 

specimens was the same as the mix used for the 

bearing strength test. The specimens were tested 

in an Amesler Universal testing machine as indicated 

in Fig. 7.11 and the ultimate dowel strength is 

summarised in Table 7.2. 

The mean ratio of F (exp) jF (th) is 0.95 and 

the coefficient of variation is 10.9 percent. 

In calculating the theoretical dowel strength no 

adjustment was made for, the effect of CbThe 

ratio F (exp) /F (th) is plotted against Cb/Ql in 

Fig. 7.12. These results clearly indicate that 

Cb/9' has no apparent affect on the dowel strength 

in this experiment. 

It is interesting to compare these findings 

with those obtained on bearing strengths by Hyland 

and Chen (7.12) who found that the bearing strength 

of concrete is independant of Cb/' provided that 

CbN is greater than 2. 

P. 
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TABLE 7.2 Details of dowel test and Comparison between experimental 

results with theoretical Prediction 

Specimen 2Cb Q' Cb C f f f h 
* Mode F (exp) F (th) Fd (exp) 

S y cu c of No. 91 2 2 2 Failure 
Fd(th) 

MM 
I 

mm 
, 
N/mm N/mm N/mm kN kN 

1A 73 6 6.1 5.3 280 28 116 P 3.25 3.31 0.98 

1B 73 6 6.1 5.3 280 23 105 P 3.50 3.27 1.07 

1C 89 6 7.5 5.3 280 23 105 P ' 3.10 3.27 0. '95 

2A 73 10 3.7 3.1 265 28 75 P 7.36 7.50 0.98 

2B 73 10 3.7 3.1 265 23 68 E 5.83 7.10 0.82 

2C 89 10 4.4 3.1 265 23 68 E 7.48 7.10 1.05 

3A 73 16 2.3 2.0 315 28 53 E 12.1 12.50 0.97 

3B 73 16 2.3 2.0 315 23 48 E 8.0 11.30 0.71 

3C 89 16 2.8 2.0 315 23 48 E 9.85 11.30 0.87 

4A 73 20 1.8 1.6 280 28 43 E 13.93 15.1 0.92 

4B 73 20 1.8 1.6 280 23 39 E 12.90 13.6 0.95 

4C 89 20 2.2 11.6 1 260 23 39 E 15.35 13.6 1.13 

Plastic Mode : mean F exp/F th 0.93 

Coefficient of variation 13.10 

Elastic Mode : mean F exp/F th 4.00 

Coefficient of variation 3.1 

Total . mean r exp/F th 0.95 

Coefficient of variation 10.9 

* From Fig. 7.6 

P= Plastic 

E= Elastic 
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7.7 Dowel of Category 2 

This dowel category represents the dowel action 

which is induced by the longitudinal reinforcement 
for beams subjected to bending and shear, torsion 

and other combinations. 

A change in the position of the vertical support 

which was considered earlier would result in funda- 

mental changes in the stress path in the vicinity 

of the bar, such that, tensile and shear stresses 

are induced in the concrete surrounding the bar. 

If the vertical support is placed outside the 

length Ldwhich 

analysis to be 

of the dowel t, 

that the local 

reaction would 

induced by the 

has been defined in the previous 

the distance from the zero deflection 

3 the free and, then it can be assumed 

stresses produced by the vertical 

not influence the stress distribution 

dowel force. 

These tensile stresses due to the dowel forces 

could cause spalling of concrete surrounding the bar. 

Jones (7.1) was the first to propose a method 
for predicting the ultimate strength of this type 

of dowel which is based on the assumption that the 

reinforcement and the concrete below it (acting 

compositely) was equivalent to a beam supported on 

elastic foundation as shown in Fig. 7.13. This 

foundation was intended to reproduce the, action 
imposed by the concrete above the reinforcement. 

From the solution of the classical beam on elastic 

foundation problem, and his experimental results, 
he produced the following relationship for the 

dowel strength 
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3 
Fdu = 0.7 ft 

FZ 

I be 

where ft is the tensile strength of concrete, be 

is the effective width resisting these stresses 

at the level of reinforcement, I. the moment of 
inertia of the equivalent beam and Z is the lever 

arm. 

in deriving this equation a number of erroneous 

assumptions and approximations were made, such as 

the composite action of the reinforcement and the 

concrete below it. 

Krefeld and Thurston (7.2) carried out nine 

tests on especially designed specimens aimed at 

determining the contribution of the longitudinal 

tensile reinforcement of a reinforced concrete 

beam to the resistance of applied shear force. 

They have proposed two expressions for predicting 

dowel strength. The first was based on a similar 

mathematical model used by Jones and the following 

empirical expression: 
1 

Fdu= b 16 1-31+ 180P 
Cb +H 

where a is the distance from the support point to 

the crack and H is the depth of the specimen. 

Fenwick (7.3) carried out tests on a number 

of specimens using two testing techniques. The 

first was intended to model the conditions existing 

between the cracks of a reinforced concrete beam 

subjected to bending and shear (short dowel) and 
the second testing technique was intended to model 
the conditions at the end of areinforced concrete 
beam (long dowel). He also developed an expression, 

for the ultimate strength of dowels based on beam , 
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elastic foundations, but he assumed that this beam 

consisted of the reinforcement and part of the 

surrounding concrete. The flexural rigidity of the 

beam elastic foundation EI was taken as: 

EI Cl Es Is 

where c' is a constant depending on many factors. 

Substituting the equivalent flexural rigidity of 

the beam in the solution of the beam elastic 

foundation problem, the following expression was 

obtained. 

Fdu 
be fr 

/4C'EsI 

S 
2 

where C' and k' are to be obtained from test-results. 

This treatment to the problem appears to suffer 

from the same short comings as the solution given 

earlier by Jones. 

Fenwick also gave the following empirical 

expression for short dowel 

Fdu=C "frbSr 

where C" is a constant depending on the position 

of the bar in the mould and Sr is the length of 

the specimen. 

This brief review of the previous theoretical 

investigations clearly demonstrate the limitation 

of the various expressions that have been suggested 

for assessing the dowel strength. They, were either 

based on an erroneous mathematical model or based 

on a limited number of test results, hence, there 

is a need for a rational theory that can consider 
the actual behaviour of. the dowel as closely as 

possible. 
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7.7.1 Elastic Analysis 

A solution to this problem may be obtained 

if a dowel is considered to be equivalent to a beam 

supported on elastic foundation or a series of 

springs. If it is assumed that these springs 

are supported by a concrete beam which consist 

of the concrete below the dowel and in turn, this 

beam is supported by a series of tensile. springs 

which represent the contribution of the concrete 

above the dowel as shown in Fig. 7.14, then, this 

mathematical model is considered in this analysis 

to represent the behaviour of dowels of this 

category. If it is assumed that the deflection 

of the dowel and the compression springs which 

are supporting the dowel to'take the following form. 

Wl = 
Al 

3L2L37.23 
2dd 

where A1 is the vertical deflection of the bar at 

the free end. 

The deflection of a deep concrete beam is 

mainly due to shear deformations and the deflection 

due to flexural deformation is extremely small and 
hence may be ignored. 

If it is assumed that the average vertical 

displacement (due to shear) of this concrete deep 

beam is represented by the following expression: 

W2 *=A2 13 x)2-C x)3 7.24 
2dd 

where L2 is the average deflection of this concrete 
beam at the free end. If it is further assumed that 

the shear deformation of this concrete beam is to 

vary linearly from a maximum (" 
c) at the level of 

N 
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the dowel to zero at the sofit of the beam such that 

0y= YC tl - Cb 
7.25 

where 
Yc is the shear deformation of the concrete 

beam at the level of the dowel, Cb is the cover 

to the dowel measured from the bottom of the beam and 

y is the distance measured from the bottom of the 

beam to the point under consideration. 

In order to find a solution to this statically 

indeterminant problem, the principle of minimum 

total Potential Energy is employed. 

Now, the total internal strain energy stored 

in the structure is 

U total = Ub + Uc +Ut+ Us 7.26 

where Ub is the flexural strain energy in a dowel 

Uc is the strain energy stored in the concrete 
below the dowel (compression spring) 

Ut is the tensile strain energy stored in the 

concrete above the dowel (tension spring) 

Us is the strain energy stored in-the concrete 
deep beam. 

The strain energy may, be expressed in term of 

deflection as follows: 

EI 
Li 

Ub s2 s (Wl")2 dx 

where Es is is the flexural, rigidity of the dowel 

W11, _d2W 

Li 

Uc = kc (W1 - W2) 
2 dx 

2 
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where kc is the stiffness of the spring's per 

linear length of the dowel. 

Ut = 2t 
(W2 )2 dx 

where kt is the stiffness of the springs per linear 

length of the dowel 

Gb 
d Ch 

2 US =2 ýy dy dx 

where G is the shear modulus of concrete and b is 

the width of concrete beam. Equation 26 may be 

written as follows: 

I 
Ld 

2 +kc 

LJ 

`2k 

Ld 
2 U total =ss (W111) dx 

2 
(Wl ýT2) 3x +t (W2 ) dx 

2- 2 
00 100 

Gb 
JLfb 

oy dy dx 7.26a 
2 

f 

0 

substituting equations 23 to 26 and their derivatives 

into equation 7.26a carrying out the integration, 

equation becomes 

EI2 
U total 2 

L3 

ý1 
+ 280 

kc Ld, 61- Q2)2+2833 
0 

ktLd2 + 
L 

Gb Cb_A 2 

5 L2 d* 

The loss in the potentail energy of the dowel 

force is V=-F41 

Using the theorum of stationary total potential 

CU +V=0, the following equations are obtained 

U+ V) =3E 
IS 

33 k L' Al 0 ödl L3 140 
C Ed 

372. 



Ö U+V = 33 kcLd(- 31+ %, 
2) + 33 kttt 

2+2 GbCb Q2=O 
140 140 5L 

equations 7.27 have the following solution 

F_ 33 2G bCb 3 . sIs 
kt 

56 
Esls 

G bCb 
140 

ktLd+5 
Ld 

+ 
L3 

(1 + kos+11 ke I 
7.28 

2ä 
kt 

56Gb%b 
++A7.29 1 

lko 
33k 2 

Again Ldremains to be determined and may be found 

by minimising equation 7.28 by setting 
dF 

= 0. 

This may be done either algebracally by differentiat- 

ing equation 28 which lead to a complex transdental 

equation or can be obtained numerically by trying 

few values of L and finding the minimum value of F. 

If we take as before kc = 9' ko, and if we 

assume that kt = be ko, where be is the effective 

concrete resisting tensionEwhich is Cs - 9' and 

if wetake G= c ko= j1 I= andre=s 2.5 75 s 20 
Ec 

. then equation 28 becomes: ;, 

F=A+B++ 
1k0 

bL 7.30 d246ed (min) 
A2 Ld (rain) Ld (min) Ld (min) 

where A= 
33 
140 

_2G 
12 bCb b Cb B'5 kt = be 

EIk 
C_ 3 

kt"S (1+kc ) =11.25 (1+ba) 
9( be 

EI 
D 11 k G. bCb = 48 O(e V3 B 

ct 

However, the deflection of. the concrete beam 2 
is small compared with L1 and hence the ýdef lection 

of a dowel of this category may be determined from 
the method given for category 1. 
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7.7.2 Ultimate Strength 

The ultimate strength of a dowel of this 

category may be obtained if it is assumed that this 

structure would behave elastically until the 

maximum vertical stress at the level of the dowel 

reaches the tensile strength of concrete i. e. 

kt = ko be = ft be 

substituting these values into equation 7.30 we get: 

F_ r33. +2 b Cý 
+ 

11.25 (1 +b '-) 
2-L+576 c<e bb ý3ý. 

du 140 L9min be dein eL d6min be 

ft beL&nin 

Solution of this equation for wide range of 

problems indicates that the contribution of the 

third and fourth terms in the bracket which contain 

the effect of ' are usually small compared with the 

first and second terms. Such that 100% increase 

in the dowel diameter would produce approximately 

10 percent increase in dowel strength. Therefore, 

equation 7.31 may be considerably simplified by 

putting Ql =0 as follows: 

FJU 

_k 
33 Ld 

min +12 
b 

7.32 ft be 9' 140 be L: nin 

where k9, is a coefficient allowing for the simpli- 

fication of equation 7.31. 

F 
L 

cinin may be found by puttingddL' o, we get: 

C 

_bb L7 
. 33 d min .27 be x 
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Substituting equation 7.33 into equation 7.32 we get: 

F=3.4k, ý 

fbLa 

be ft 7.34 
du ý° e 

Available test data suggest that kgr may take the 

following form: 

k91 = 
(i+\ 

b Cb 

It is seen that dowel strength is a function 

of many parameters. These will be considered in 

detail. in the following section. 

7.7.3 Factors Influencing Dowel Strength (Category 2) 

It is impractical to include the effect of 

all the factors that are know to influence dowel 

strength into any simple theoretical or empirical 

expressions. Therefore, a detailed study of the 

importance or otherwise of these factors is necessary 
in order to determine the accuracy and limitations 

of the proposed theory. 

1. Concrete Strength 

Equation 7.34 indicate that the dowel strength 

is directly proportional to the tensile strength 

of the concrete, hence, the accuracy'of this 

theory depends'on the accuracy of prediction 

of tensile strength of concrete which has been 

discussed in chapter two. For this problem, 
the relation ft =-0.4, 

ITCU appears to give a 

reasonable estimate of the tensile strength of 

concrete. 
r 

Fenwick found that there-is a considerable 
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difference in the strength of dowel located in 

top and in the bottom position in the mould 

during casting. He attributed these differ- 

ences to the phenomenon of water gain which 

leads to a weaker concrete strength near the 

trowelled face than the concrete inthe bottom 

of the mould. His experimental results 

indicated that the average strength of a dowel 

located near the trowelled face is only 58% 

of that obtained from dowels located in the 

bottom of the mould. Hence unless the position 

of the dowel is known,. when predicting its 

strength, considerable scatter in the results 

will be expected. 

2. Side covers or effective width of the beam. 

The proposed theory and available experimental 

results (7.1 to 7.4) suggests that the dowel 

strength is directly proportional to the 

effective width of the beam. However, these 

test results were carried out over very narrow 

range of width of test specimens and do not 

provide sufficient information on the effect 

and limitation of this factor such that there 

must be a limit on the width of specimens above 

which an increase in the side covers will not 

produce an increase in dowel strength. Hence 

further experimental research on the effect of 

this factor is needed. 

3. Diameter of the dowel ' 

As shown earlier, a considerable simplification 

can be made by ignoring the terms containing Q15 

in equation 7.31. This simplifying assumption 

requires further experimental verification. 
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4. Bond strength 

in deriving equation 7.31 to 7.34, the effect 

of bond or adhesion between the dowel and the 

" surrounding concrete has been implicitly 

ignored. This has been based on test results 

reported by Fenwick who found that the bond 

characteristic of a dowel has a negligible 

effect on the dowel strength. 

5. Distance to the vertical support (a) 

Although an.. infinite distance to the support 

has been assumed in deriving the proposed 

theory, this theory may also be used for the 

case where (a) has a finite value. The stresses 

caused by the dowel force are usually similar 

in nature to the stress concentration that would 

occur in the vicinity of the support i. e. these 

stresses are localised and decay rapidly, becomes 

negligible at a distance Lmin from the point of 

application of the dowel force, hence, a minimum 

distance of 2Lmin for (a) may be taken as a 

limit to the application of this theory. 

The effect of (a) on the dowel strength has been 

studied experimentally by Krefeld (7.2) who 
found that the dowel strength increases with a 

decrease in (a) even for (a) greater than 2Lmin 

This finding has been contested by Taylor (7.4) 

who found from tests on model' specimens scaled 
down from the Krefeld specimens-that (a) has 

insignificant effect on dowel strength. 

Therefore, further experimental work is needed 
to verify the assumption made above and clarify 
the confusion existing between Krefeld and Taylor 

claims. 
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6. Method of tests 

There is no standard method used for deter- 

mining the dowel strength and all the published 

results on dowel strength are based on 

different testing technique by researchers 

studying the shear strength of reinforced 

concrete beam. Krefeld (7.2 ) devised a 

method which simulates the dowel action in 

a longitudinal reinforcement in reinforced 

concrete beam. This method reproduces the 

conditions which exist in a reinforced concrete 

beam in relation to the presence of axial force 

in the reinforcements and rotational displace- 

ment that take place at a crack section. On 

the other hand, simple testing techniques have 

been suggested by Fenwick which do not reproduce 

these conditions. 

In order to make use of the available test data 

it is necessary to determine whether a testing 

technique has any influence on the dowel 

strength. Therefore-further experimental 

work is needed in this area. 

7. Dowel length 

Fenwick found that dowel length is proportion- 

al to dowel length up to ,a certain limit above 

which it has no effect on dowel strength. 

This limiting dowel length may be taken as 
2L 

min and the dowel strength of a short dowel 

may be determined from equation 7.34 by 

multiplying by a reduction factor equivalent 
to the ratio of the length of the dowel over 
2L 

min' 

378. 



7.8 Experimental Work on Dowels of Category 2 

The aim of this work is to provide further 

experimental information on dowel strength in order 

to verify the validity of the proposed theory and 

to establish its limitation. 

The experimental work presented in this chapter 

may be divided into three, parts: 

1. Tests on specimens of narrow width. 

2. Tests on specimens of wide width. 

3. Tests on specimens under torsion. 

All the specimens were cast in steel mould using 

3: 1 : and/cement mortar having 0.7 W/C ratio. Three 

100 mm cubes were made with each set. 

7.8.1 Tests on specimens of narrow width. 

In this group 7 sets of specimens were manu- 

factured and tested. The influence. of the following 

factors were investigated: 

a, the diameter of the dowel 9, 

b. bottom cover Cb, 

c. bond characteristics of reinforcement and 
d. initial prestressing of the dowel., 

In examining the effect of items a, b and c, 

the test arrangement given in_Fig. 7.15 was employed. 

This method was used by Fenwick. In contrast, the 

effect of prestressing of the dowel was examined 

using the test arrangement shown in Fig. 7.16 which 

was originally suggested by Krefeld. The testing 

technique shown inýFig. 7.15 and 7.16 are referred 
to as method type A" and B respectively. Further 
details of these specimens, concrete strength and 
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TABLE 7.3 Details of specimens and test results for specimens of narrow 

width b< bL 

Spec Size a G be Bar size fcu F. 4, F60 F,, exp Fjj th v exp 
and exp th Fa� th Eg7.35 F®j) th 

No. min mm mm mm bond 2 N/mm kN Eq7.31 eq 7.31 kN Eq7.35 
kN 

1. 18 56.5 6M 1.24 1.71 0.73 1.67 0.74 
62.5 

2. 
X 

175 52.5 1021 22.5 1.51 1.76 0.65 1.71 0.88 

3. 125 46.5 16M 1.36 1.96 0.70 1.80 0.76 
4. 42.5 20M 1.83 2.06 0.89 1.91 0.96 

5. 26 56.5 6M 2.16 2.02 1.07 2.01 1.07 
62.5 

6. 
X " 52.5 10M 23.0 1.60 2.08 0.77 2.02 0.79 

7. 125 175 46.5 16M 2.10 2.2 0.95 2.07 1.01 

8. of 42.5 20M 2.54 2.73 0.93 2.14 1.18 

9. 63 56.5 GM 3.9 
62 5 

10. X 120 U 52.5 101-1 23.0 5.7 1.91 

11. 125 10 46.5 16M 6.12 2.18 

12. 42.5 20N 6.02 2.14 

13. 26 56.5 6M 2.71 2.19 1.24 2.22 1.22 
62 5 

14. X 175 52.5 10M 28 3 3.33 2.26 1.47 2.23 1.49 
. 

15. 125 46.5 16M 2.57 2.38 1.08 2.29 1.12 

16. 42.5 20M 2.50 2.45 1.02 2.37 1.05 

17. 26 56.5 611D 1.83 2.19 0.8 4 2.23 0.82 
62.5 

18. 175 " 52.5 1OHD 28.3 2.19 2.26 0.97 2.23 0.98 

19. 125 46.5 16HD 2.47 2.38 1.04 2.29 1.08 

20. 42.5 201ID 2.78 2.45 1.13 2.37 1.17 
21. 26 56.5 6M 2.08 2.18 0.95 2.23 0.93 

62 5 22. X 175 11 52.0 10M 26.0 1.96 2.25 0.87 2.23 0.88 

23. 125 46.5 16M 1.92 2.37 0.81 2.29 0.84 

24. It 42.5 20M 2.52 2.44 1.03 2.37 1.06 

25. 26 56.5 5PS 2.58 2.57 1.00 2.93 0.86 
26. 

62.5 
X 

205 " Of 37 2.83 2.57 1.10 2.93 0.96 

27. 150 It IS 2.90 2.57 1.13 2.93 0.99 
28. of as 2.46 2.57 0.96 2.93 0.84 

M Mild Steel 

IID High yield 
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dowel strength are given in Table 7.3. 

In table 7.3, specimens 1 to 16 were designed 

to examine the effect of diameter and the effect of 

bottom cover. The effect of yield strength of a 

dowel was examined by testing specimen 17 to 20 

which were identical in detail to specimens 13 to 

16 but dowel of high tensile yield strength was 

used. The effect of bond characteristics. of a 

dowel was examined by testing specimens 21 to 24 

which were identical in detail to specimens but 

were cast dowel greased to eliminate bond strength. 

Examination of these results indicates that yield 

strength of a dowel and the bond strength has no 

apparent effect on a dowel strength confirming 

assumption made earlier. Specimens 25 to 28 were 

tested with different initial prestressing force 

from zero prestressing force for specimen 25 to 75% 

of the characteristic strength of the prestressing 

wire as prestressing force in specimen 28. These 

results also show that the axial force in the wire 

has no significant effect on dowel strength. 

The results given in Table 7.3 are average 

values obtained from 4 test results, for each specimen 
2 of which were obtained from dowel-cast near the 

trowel face and the other two were obtained from 

dowel cast near the bottom of the mould. Specimens 

9 to 12 were tested with distance (a) being less 

2L .. min 

7.8.2 Tests on specimens of wide width 

in this group 5 sets of specimens were manufac- 
tured and tested. Again each set'consisted of 
4 specimens. The influence of the following 
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parameters was investigated: 

a. width of the specimen, 

b. the side covers Cs1 and C52 of the specimen, 

c. the bottom cover Cb 

d. method of test. 

The detail and the varied parameters of these 

specimens are shown in figure 7.17. Table 7.4 gives 

detail of specimens, concrete cube strength and the 

experimental dowel strength of these specimens. 

The outer portion of these specimens was cast 

first in a 150 x 150 x 750 steel mould, an 8 mm 

duct was formed in each corner using plastic tubing 

which was held in position by steel wires stretched 

between the ends of the mould and located to provide 

the desired covers as shown in fig. 7.17. The 

specimens were stripped 24 hours later and the 

central portions were filled with concrete. Before 

filling the central portion, a thin sheet of 

polystyrine was used to separate the 2 portions of 

the specimen. 24 hours later the complete specimen 

was stored in a curing tank for 7 days, then taken 

out and stored in the laboratory for another week 

before testing. Prior to testing, 7 mm dia 

prestressing wires were inserted in the ducts and' 

their ends were firmly secured to both ends of the 

specimens by prestressing anchorages. These 

wires were slightly stressed by means of mecahnical 
jacks placed between the end of the specimen and 

the anchorage. 

Each specimen was tested according to method b 

where the load was applied in small increments up 
to failure. 

method b. 

The specimen was then tested using 
The results are given in'table 7-. 4. 
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8mm duct provided 

b, vories 150mm 
for the torsion test 150mm 
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Fig. 7.17 Cross sectional detail for specimens used in the wide 
width specimen torsion tests . 
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TABLE 7.4 Details of Specimens and test results for specimens of wide width 

b)bt 

Beam Size bar No. Cs Cb be f FU (exp) kN Fot, th Fd exp 
CU t d .N 

No. 
& 

dia mm mm mm mm N/mm 
2 ho Me 

A 
Method 

Average kN Ed, O th 

1 50 x 2/7 18 18 17 26.32 0.51 0.83 0.67 0.65 1.03 
150 

2 75 x " 29.5 23.70 0.98 1.26 1.12 1.04 1.08 
150 

3. 100 x 27.50 1.50 1.35 1.43 1.32 1.08 
150 

4. 125 x of N 31.57 1.35 1.39 1.37 1.44 0.95 
1"50 

5. 2/7 10 75 67 25.70 - 4.6 4.22 

6. 150 x 18 " 27.10 - 5.4 4.17 
150 

7. 26 ", ' 23.00 - 6.0 4.01 

8. 34 " 22.30 - 5.2 4.0 

9. 1/7 75 10 25.70 0.63 0.85 0.74 0.65 1.14 

10. 150 x It 18 ', 27.10 2.20 1.60 1.97 1.60 1.23 
150 

11. " 26 ,, 23.00 - 2.70 2.70 2.52 1.07 

12. " 34 22.30 - 3.8 3.80 3.72 1.02 

13. 2/7 10 18 "' 27.50 0.9 0.7 0.8 1.07 0.75 

14. 150 x 18 11 a 25.50 1.2 1.14 1.17- 1.25 0.94 
150 

15. 26 " 23.90 1.1 1.19 1.15 1.45 0.79 

16. 34 26.70 1.5 1.78 1.64 1.56 1.05 

17. 2/7 10 10 29.0 0.7 0.59 0.65 0.58 0.89 

18. 150 x 11 18 18 y 29.5 1.38 1.17 1.27 1.37 0.93 
150 

19. 11 26 26 32.90 1.95 2.12 2.18 2.61 0.84 

20. 34 34 31.80 2.73 2.80 2.77 3.21 0.87 
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The results of these investigations are plotted 

in figure 7.18 as- a ratio ft 
uCb against the varied 

parameter Cs or Cb. These results confirm that 

the dowel strength increases with increasing covers 

up to a limiting value beyond which any increase in 

the side cover or width would not produce an increase 

in dowel strength. This limiting width is seen 

to be influenced by the bottom cover. Therefore, 

this limiting side cover or width may be expressed 

in terms of the ratio of the side cover to the 

bottom cover (Cs/Cb). This ratio was found to be 

1.4 for specimen 1 to 4 and 1.9 for specimen 13 to 

16. Hence a suitable average limit of Cs/Cb may 

be taken as 1.5 for all cases. These results 

indicate that the limiting width for wide specimens 

should be taken as the lesser of the following.: 

b1=Csl+Cs2 

or b1= 1.5 Cb+ Cs1 
7.35 

or bl = 1.5 Cb + Cs2 

orb1= 3Cb 

from which the effective width can be taken as 

bl = be - c. Where CSl and Cs2 are side cover 

one and two measured to the centre line of the 

dowel. 

7.8.3 Tests on specimens under torsion 

Simultaneously with each specimen made for 

the group 7.8.2 another specimen having identical 

cross-sectional detail was cast. The property 

of concrete and detail of each specimen can be 

found in table 7.4 such that specimen 1 in table 
7.4 and specimen Ti in table 7.5 are cast sim- 
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ultancously. 

Before testing, each specimen was sown into 

2 halves as shown in figure 7.19. The 2 halves 

were then assembled into one specimen using 7 mm 

prestressing wires and the end details shown in 

figure 7.18. The specimen was then tested under 

pure torsion where the dowel was the main media 

for transmitting the torque between two halves of 

the specimen. The specimen was loaded in about 

10 increments of loading where the rotation between 

the 2 halves of the specimen was recorded. 

The cross-sectional detail of these specimens 

are suchthat the centre of rotation. coincided with 

the centre of specimen cross-section. Consequently, 

the applied torque can be assumed to be resisted 

equally by the corner dowel where the maximum dowel 

force developed in each of the corner wires is 

Fd= 4r where r is the distance between the centre 

of the rotation and the dowel. The direction of 

this dowel force is perpendicular to the line join- 

ing the centre of rotation and the dowel.. This 

dowel force may be resolved into 2components 

Fsx and Fsy parallel to the short and long side of 
the specimen cross-section respectively. The 

relationship between these components of dowel 

force and the applied torque may be written':. 

F=T 
dx 

2Y, 
ß 

1+ (x,. ý 2 
Yet 

7.36 

and Fdy =F { 
Yet cl %I 
X" 

, 'a 
1 
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Fl G 7.19 Dowel test under pure torsion 
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FIG 7 . 20 Dowel forces in specimen under pure torsion 



TABLE 7.5 Test results for specimens subjected to pure torsion 

Beam r T 
u 

F (exp) 
du 

F dux F. 
uy Ix 

F 
t ux 

F 
t uy 

F exp du 
e p 

No. mm kN mm kN kN kN kN kN Fav th 

Ti 57.4 168 0.73 0.73 (0.09)' 0.65 0.65 1.12 

T2 60.3 280 1.16 1.09 (0.35) 1.04 1.04 1.05 

T3 65.3 480 1.84 1.59 (0.89) 1.32 1.32 1.20 

T4 72.3 600 2.04 1.64 (1.28) 1.44 1.44 1.14 

T5 65.0 360 1.38 1.38 1.38 3.13* 

T6 57.0 650 2.46 2.46 2.46 4.30* - 

T7 49.0 1180 6.02 6.02 6.02 4.85* -- 

T8 41.0 900 5.50 5.50 5.50 5.8 

T13 86.5 480 1.20 0.92 (1.04) 0.76 (1.07) 1.21 

T14 80.5 610 1.90 1.34 1.34 1.29 1.29. 1.04 

T15 75.0 360 1.20 (0.91) 0.73 (1.76) 1.45 1.54 

T16 70.0 650 2.30 (1.88) 1.35 (2.44) 1.56 0.87 

T17 92.0 430 1.17 0.82 0.82 0.58 0.58, 1.42 

T18 80.5 627 1.95 1.37, 1.37 1.37 1.37 1.00 

T19 69.5 1080 3.88 2.75 2.75 2.61 2.61 1.04 

T20 58.0 1208 . 5.51 3.68 3.88 3.21 3.21 1.12 

The values without parentheses represent-the critical dowel 

forces. 

* These obtained assuming this dowel is the type of category No. 1 
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where X� and Y� are the smaller and larger 

dimension between the centre of the dowel as shown 

in figure 7.20. One of these components will 

produce a stress field similar to the dowel of 

category 1 and the other will produce stress field 

similar to those induced in dowel of category 2. 

Since the dowel resistance of category 2 is. 

small compared to that of category 1, failure will 

always be initiated for a dowel located at the 

corner of the specimen by that component of dowel 

force which produces stress field similar to that 

of a dowel of category 2. Assuming that the 

stresses produced by the other component of the- 

dowel force has a negligible effect on dowel failure 

then the dowel strength may be. predicted by the 

proposed theory. 

7.9 Comparison of Theoretical Prediction' With Test 

Results for Dowel Of Category 2 

7.9.1 Specimens of Narrow Width 

The proposed dowel strength'theory has been 

compared with the test results of. this investigation 

and those available in technical literature. The 

theoretical dowel strength for tests have been 

calculated using equation 7.31 and the simplified, 

method of equation 7.34 and they are given in 

Table 7.3 with a summary of results given in Table 7.6. 

These comparisons indicate that the position of 
the dowel in the mould and-the casting procedure has 

a pronounced effect on the dowel strength. Hence 

accurate prediction of dowel-strength can not be 

achieved unless the condition of casting and the 
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local strength of concrete are known. 

s 

Comparison of the mean value of Fdu (exp) /)'du (th) 

for Krefeld and Fenwick results reveal that the 

testing technique has negligible effect on dowel 

strength. in other words-the axial force in the 

dowel and the relative rotation which are developed 

in the dowel by Krefeld testing technique has no or 

little effect on dowel strength of this category. 

As a consequence to the considerable variation 

between dowel strength obtained from an identical 

specimen and the effect of the position of a dowel 

which cannot likely predetermine the use of refined 

dowel theory is not justified. Comparison between 

the theoretical prediction from equations 7.31 and 

7.34 suggest that the prediction of equation 7.34 

is almost as accurate as the prediction of equation 

7.31 and hence equation 7.34 is to be recommended 

for its simplicity. 

This investigation also indicates that the 

position of the support (a) and the length of a 
dowel (Sr) do not effect the dowel strength provided 
that they are greater than 2Lmin. ` For beams 

tested with (a) less than 2L min exhibit an increase 

in dowel strength than for specimen with a= 2L min. 

Therefore, a limit must be imposed on a and Sr 

Sr = 2L min for the use of'the proposed theory. 

This comparison indicates that the proposed 
theory considers the effect of various parameters 

accurately and confirms all the assumptions and 

simplifications which have been used. 
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TABLE 7.6 Comparison between theoretical and experimental dowel strength For 

b< bý 

1 

F exp/Fdu th F exp/I? du th 

Position 
Equation 7.31 Equation 7.34 

of dowel Test. * Number Coefficient Coefficient 
investigator Ref in the arrange of of of 

mould ment specimen mean variation % mean variation % 

Fenwick 7.3 BF A 14 1.52 12.2 

TF & 9 0.89 17.4 

Average C 23 1.27 27.5 1.2 
. 
27.6 

Krefeld and 7.2 BF B 9 1.65 20 1.98 17.1 
Thurston 

Taylor 7.4 BF + TF B 34 1.19 8.4 1.18 11.5 
2 

This BF + TF A 24 0.98 17.0 0.99 17.0 
investigation 2 

B 

Total - 90 1.2 25 1.21 29.4 

0 

BF = Bottom of the mould 

TF = Trowelled faced of the specimen 
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7.9.2* Specimens of Wide Width 

The dowel strength for the wide specimens 

given in section 7.8.2 has been computed using 

equation 7.34 and the rules. of. the limiting width 

given in equation 7.35. These results are listed in 

Table 7.4 and a summary of'comparison with test 

results is given in Table 7.7. The average value 

for Fdu(exp) /, (th) is 0.96 and the coefficient of 

variation is 16.5 percent. This comparison is based 

on the average test results obtained in each-case 

from testing techniques A. and B. The results of 

specimens 5 to 8 were excluded from this comparison 

because (a) was less than 2L min. 

The proposed theory has also been compared with 

tests carried out by Gergely (7.13) with specimen 

can be classified according tothe rules given in 

equation 7.35 as wide specimens. For these results, 

the average value Fdu(exp) /Fdu(th) is 1.03 and the 

coefficient of variation is 23 percent. However, 

if the actual width is used in. the computation-of 

dowel strength instead of the proposed effective 

width, the theory overestimates the dowel strength 

appreciably and yield higher coefficient of variation 
4_ 

for the Fdu(exp) /Fdu(th). Johnson and Zia (7.14) 

compared their theoretical prediction (which are 

based on the mathematical model due to Jones) with 

these test results. The ratio Fdu(exp) A - (th) for / du 
this comparison of 1.06 and coefficient of variation 

of 32 percent. Therefore, 'the proposed theory gives 
better agreement with test results than any existing 
theories. 
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TABLE 7.7 Comparison between theoretical and experimental 

dowel strength For b) bI 

Position exp F Coefficient 
of dowel Test Number, 

du 
of 

Investigator Ref in the arrange- of Fdu th variation 
mould ment specime mean % 

Gergely 7.13 - A 16 1.03 23 

This BF + TF A 16 1.0 30 
Investigation 2 

B 14 0.96 30 

A+B 16 0.98 16.5 

T 12 1.06 30 

7.9.3 Specimens Subjected to Pure Torsion 

Equations 7.34,7.35. and 7.36 were used to 

predict the dowel strength for the specimens under 

pure torsion. These results are given in Table 7.5 

and 7.7. The average value of Fdu(exp) /'düth) is 

1.06 and coefficient of variation is 30 percent. 

The results of specimens 5 to 8 have, been excluded 

from this comparison since the stress distribution 

induced by the dowel and the mode of failure are 

similar to those produced by dowel of-category 1. 

These results confirm once again that the testing 

technique has little influence on dowel strength. 

7.10 Conclusions 

Based on the results of this investigation, 

the following conclusions may be drawn:. ` 

The classification of the'dowel problem into 

two main categories considerably simplify, 
dowel analysis., 

2. Comparison of the proposed theories with all' 
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test data available in the technical literature 

and those reported in this chapter indicate that 

the dowel strength can be predicted with 

reasonable accuracy. 

3. it has been found that dowel strength of 

category 1 increases with increase in diameter 

of the dowel, the concrete strength and the 

side cover. For this category there is a 

limit to the side cover above which an increase 

in the cover would not increase the dowel 

strength. 

4. Dowel strength of category 2 has been found to 

increase with increase in the side cover, 

bottom cover, concrete strength. 'and to, a lesser 

degree with the dowel diameter. For this 

category a limit has been found, to the side 

cover where any additional increase in the 

side cover would not produce any increase in 

the dowel strength. This limit on the side 

cover was found to be a function of'the bottom 

cover. 

5. The testing technique has little-influence on 
dowel strength. 

6. The proposed theory can be used to'assess the 
dowel action of the longitudinal and transverse 

reinforcement subjected to shear and or torsion. 
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CHAPTER 8 

8.1 Conclusions 

As a summing up, it can be concluded that: 

1. The degree of accuracy of predicting the 

cracking strength of reinforced and 

prestressed concrete beams depends primarily 

on the accuracy of estimating, the tensile 

strength of concrete. 

2. The cracking strength of reinforced and 

prestressed concrete beams is influenced by 

the size and shape of the member. 

3. For reinforced and prestressed concrete 

beams with web reinforcement, space truss, 

action is the primary machanism for resisting 

applied torque. 
M 

4. The contribution of dowel action and aggregate 

interlock in resisting applied torque depends 

on the mode of. failure and ' for beams failing 

by yielding of all reinforcement, the 

contribution of dowel action is almost" 

negligible whereas for beams without web 

reinforcement, the resistance of torque 

by dowel action of the longitudinal reinforce- 

ment may account for up, to 20 percent of the 

applied torque. 

5. Although the dowel resistance to shear and 
torsion in general is 'small, the dowel 

forces may be sufficient to cause dowel 

failure . 

N 
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6. For reinforced and prestressed concrete 

beams with web reinforcement, the resistance 

of torque by aggregate interlock depends 

on the ratio of the volume of longitudinal 

to transverse reinforcement, the ratio of 

applied moment to torque and the bond 

characteristics of the longitudinal 

reinforcement. 

7. Reinforced and prestressed concrete beams 

subjected to bending, torsion and shear 

may fail in one of-12 modes of failure. 

8. Expressions for predicting the strength 

of reinforced and prestressed concrete 

beams subjected to combined bending, 

torsion and shear have been derived. 

In general these expressions were obtained 

from consideration of the equilibrium. 

conditions and gave a coefficient of 

variation for the ratio of the experimental-to 

predicted strength of the order of 10 to 

15 percent which is an acceptable accuracy 

for reinforced concrete members. 

9. It has been found that the effect of applied 

shear force and shear lag on the strength of 

unbonded prestressed concrete box beam is 

negligible. This may be: due to the fact that 

shear unbonded prestressed concrete beams 

behave as a shallow tied arch rather than a beam. ' 

10. For unbonded beams the contribution of aggregate' 
interlock in resisting torsion 
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decreases as the M/`r ratio increases and 

for beams subjected to M/I' greater than 

2, this contribution is completely 

destroyed. 

11. The contribution of the uncracked part of 

the concrete to the resistance of. torque 

in reinforced and prestressed concrete 

beams by St. Venant torsion is small. 

12. Yield theories which are based on the 

inclination of the compressive field 

underestimate test results by an order 

of 5 percent whereas yield theories which 

are based on the inclination of a crack 

calculated from the directions of the 

principal tensile stresses prior to 

cracking over estimated the torsional 

strength by the order of 5percent. 

13. Prestressed concrete box beams may fail 

prematurely by corner spalling, hence 

reducing the maximum torsional strength 

appreciably. 

14. The majority of the failures that have 

been investigated (modes 2"and 3) can be 

avoided by provision of an appropriate 

volume of longitudinal reinforcement at: 

the top of the beam. In addition an 

unsymmetrical arrangement of longitudinal 

reinforcement would produce a more efficient 

use of material., 

15. For beams containing both longitudinal and 

transverse reinforcement, the interaction 

diagrams between bending, torsion and shear 
failure depend on many parameters and 

therefore diagrams which have been obtained 
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' cmpirically must be considered with 

caution. 

16. Partial yield failures may be attributed 

to the failure of aggregate interlock. 

8.2 Suggestions For Further Research 

1. Further research is needed on the resistance 

of shear stresses by aggregate interlock 

under various loading conditions. 

2. There is a need for more detailed study 

of the mechanism of transfer of torsion 

in reinforced and prestressed concrete 

beams failing by yield, partial yield 

and over-reinforced modes. 

3. Research information on the contribution to 

the resistance to torsion of warping restraint 

in the cracked stage and ultimate load 

condition for reinforced and prestressed 

concrete beams. 

4. The strength of beams with other cross 

sections such as trapezoidal., and multi-cells 

box girders is needed. - 

5. The effect on the strength of box. beams'of 

transverse forces on the walls of the box beams 

(such as those occuring in the deck of a 

bridge) acting in addition to the forces 

considered in this investigation. 

6. The effect of distortion of a cross section 

due to non-uniform torsion on-the-strength 

of these box girders is needed. 

7. Research is required into the behaviour'of 

concrete cores in multi-storey structures, 
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the cores (box beams) usually contain 

holes and they are subjected to axial 

load in addition to bending torsion and 

shear. 

8. The effect of the shear lag. on the strength 

of box beams has not been fully understood. 

9. Research aimed at determining the changes 

in the shear centre and other torsional 

properties of box girders as cracking 

occurs is needed. 

10. Although eccentric loadingzapplied to the 

deck of a box girder bridge appears to 

induce an "equilibrium torsion", in reality 

the applied torsion depends on the change in 

stiffness occuring after cracking and hence 

the torsion applied to any section cannot 

be estimated from the condition of equilibrium 

alone. This problem may be solved by a 

development of a finite element programme 

with an element stiffness, changing as 

cracking and plasticity progress up to failure. 

11. Research is needed to. quantify the plasticity 

of various modes of failure. This is 

particularly important for analysing the 

redistribution of forces in continuous 

structures. 

12. Further research is needed on the effect of 

shrinkage, creep and temperature stresses 

on cracking strength. 
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