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Preface 

The following work. is an investigation into methods of 
Cluster Analysis and Ordination. The main objective of this 
thesis has been to investigate the capabilities of these 
methods for practical usage. An important subsidiary aim 
has been to collect together related work which has been 
carried out in many different areas - ecology, biology, 
archaeology, _ psychology, 

, , 
etc.., into, one work. 

After a_ brief introduction to the general concepts of 
multivariate analysis in Section A of the thesis, Section B 
gives an introductory account of the methods of Clustering, 
Ordination and Seriation, putting them into the context of 
the by now better established multivariate techniques. 
Section C considers Cluster Analysis in depth, explaining and 
examining various methods reported in the literature, 
together with methods developed by the author. The 
suitability of the methods for practical use is discussed and, 
decision rules are set out for the choice of method to be 
used in any particular study, based on the results of 
extensive comparative tests of the methods. 

In Section D the various ordination methods are. 
considered, giving an, overall viere and relating the methods 
to each other. Particular emphasis is paid to the rather 
neglected metric methods. 

Section E, after a survey of published applications of 
the methods, suggests new areas where the methods previously 
discussed could be valuable aids for data investigation and 
problem solving. An Addenda is included which describes 
several operational research case studies using these 
methods. 

Computer programs are given for the most successful of 
the newly introduced cluster methods, and an extensive 
reference section is also included. 



LIST OF SYMBOLS USED CONSISTENTLY THROUGHOUT 

Nin the number of observations or objects 

bS ,m the number- of variables 

s any similarity measure, unless otherwise 
specified 

S(a, b) the similarity between the objects or sets 

aandb 

D any dissimilarity measure 

D(a, b) the dissimilarity between the objects or sets 
a and b. 

da dissimilarity measure, usually constrained to 

be in a lower dimensioned space than D 
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A. MULTIVARIATE ANALYSIS AND OPERATIONAL RESEARCH 

In various disciplines such as psychology, biology, 

botany, and, more recently, business studies, there are many 

situations where we have large sets of data which depend on 

many variables. The analysis of many of these data sets is 

complex because of the interaction between variables - one 

useful statistical approach is the use of multivariate 

analysis techniques, which can take account of inter-variable 

relationships. These methods were developed largely in the 

psychological and biological fields, where large data sets 

are abundant, and few methods previously existed for their 

adequate analysis. These methods are now used in most 

sciences, and their use is currently being examined in the 

social sciences. 

The definition of multivariate analysis (m. v. a. ) is 

rather vague; in its widest sense it could be thought of'as 

encompassing the whole field of statistics, but in practice, 

boundaries need to be placed on our definition. For our 

purposes we use the definition due to M. Kendall (1968) which 

extracts two essential features of m. v. a: 

(a) We are concerned with a set of n individuals, each of 

which bears the value of p different variates. The 

multivariate character, so to speak, lies in the 

multiplicity of the p variates, not in the size of the 

set n. 

(b) The variates are dependent among themselves so that we 

cannot split off one or more from the others and 

consider it by itself. The variates must be considered 
together. 
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Although there exist several mathematical methods of 

m. v. a., the sum of the methods do not comprise the science. 

The same remark can be made regarding-operational research. 

Both m. v. a. and operational research are approaches to 

problems which may involve models but they are primarily ways 

of looking at problems. 

The approach of multivariate analysis is that of a 

search technique. Information is sought from a set of data 

as to Whether or not it has structure, and the nature of any 

structure present. Because of the large computer times with 

some multivariate methods, this analysis of data can be 

costly and thus, as with other search techniques, one 

important aspect is to balance the cost of the search with the 

expected gain. 

The operational research worker is concerned with the 

solution. of problems in the control of all aspects of an 

organized system (often by mathematical means), but-not with 

the decision taking within that system. The trend towards 

increased complexity of organizations, and the need for 

greater control led to the early growth of O. R. The 

continued growth is a measure of the effectiveness of O. R. as 

an aid to organizational control, and as a m. -trod of 

increasing the knowledge of systems behaviour, which may lead 

to future benefits. 

Most management situations, which are amenable to an 

O. R. approach, involve many variables. Often, in order for 

any solution to be found at all, one salects from interacting 
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variables those which seem most relevant. However any 

attempt to study the effect of change in one variable in 

isolation fmrA the rest is often meaningless. Multivariate 

analysis brings to these problems a battery of techniques, 

which are essentially multidimensional in their approach, 

taking into account the interplay between variables. It is 

surprising that so many published works and degree courses 

concentrate on methods for deterministic situations. In 

organizational problems there are relatively few such 

situations. Multivariate analysis however represents a set 

of techniques for predictive and descriptive operational 

research. 

History 

Multivariate analysis has been in existence as a 

statistical method for most of this century.. Its history 

can be divided into three parts: 

1890 - 1930 Isolated early works on multivariate 

methods following Galton's correlation coefficient first 

published in 1888. 

1930 - 1950 The discussion on the structure of human 

ability by Burt, Thurstone, Spearman, etc., in 

psychology, which demanded new methods to analyse sets 

of intelligence tests to try and determine the structure 

of intelligence. 

1950 to date The rapid expansion of techniques to 

other disciplines, and the increase in number of methods 

available and the size of problem that could be tackled, 

with the advent of modern computers. 
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The Data Box 

One convenient way of displaying the relationships 

between some of the multivariate analyses that may be carried 

out is by use of what has been called by Cattell (1965). the 

data box. This is based on a classification of 

organizational phenomena into three classes on which 

measurements may be made: 

1. Individuals (e. g. people, countries, flowers) 

2. Responses (e. g. size, temperature, colour) 

3. Situations (e. g. times, places, environments) 

These form a three-dimensional matrix which can be visualized 

as a box., the faces of which refer to types of multivariate 

analyses. 
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Thus we can describe six types of technique: 

Q-techniques analyse individuals according to responses e. g. 
cluster analysis, discriminant analysis, correlation. 
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R-techniques analyse the relation between responses using 
individual scores e. g. principal components analysis, 
factor analysis. 

P-techniques are concerned with variations in response over 
time e. g. spectral analysis.. 

O, S, T-techniques are more difficult to visualize but their 

meaning can be extracted from the diagram of the data 

box. These methods have been little used, but Cattell 
(1965) refers to 0-technique being used in meteorology 

and Goronzy (1969a) refers to it being used in clinical 

psychology. 

In a particular analysis, which constitutes the individual, 

the response, or the situation may not be clear cut and 

indeed one may decide to use a particular technique twice on 

the same matrix, by simply transposing the matrix and 

repeating the analysis. 

Cattell (1966) has since proposed a more comprehensive 

data box in ten dimensions called the Basic Data Relation 

Matrix (BDRLI). The suggested dimensions of the- BDRTNI are: 

1. Person or organism 

2. Focal stimulus 

3. Non-focal stimulus (environmental background other than 

stimulus) 

4. Response or unitary ongoing process 

5. Observer 

ö. State of the organism 

7. Variant of the stimulus 

8. Phase of the environmental background 

9. Style of the response 

10. Condition of the observer 
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Of these, items 1,2 and 4 refer to the co-ordinates of the 

original 3D data box. 
. 

Items 6,7 and 9 are related to the 

exact nature of the items 1, 2 and 4. Co-ordinates 3 and 8 

refer to subsidiary stimuli or situations, and items 5 and 10 

refer to the observer who can be a further influence on the 

situation. 

The listing of the data box dimensions is of particular 

use in consideration of how the dimensions which we are not 

including, in a study may affect it. Most present techniques 

only enable a face of the box to be examined and thus other 

dimensions we usually ignored. Since many of the faces of 

the box represent techniques which are difficult to picture, 

and indeed, the exact face we are examining may be doubtful, 

the BDR2,1 is of more use as- a set of variables which have an 

effect on data, than a method of picturing techniques. The 

list can also be extended to include, for example, the effect 

of several non-focal stimuli, several observers, etc. 

itiultivariate analysis is best explained by the 

consideration of some of the techniques. We enlarge upon 

these in the next section. 
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MULTIVARIATE ANALYSIS 

1. Methods of DIVA 

2. Cluster Analysis 

3. Ordination 

4. Seriation 

5. Dissimilarity and Similarity rleasures 
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B. 1 METHODS OF MULTIVARIATE ANALYSIS 

There are several types of multivariate analyses, all 

having their own approach to simplifying data blocks. The 

major methods may be listed: 

1., Principal components 

2., Factor analysis 

3. Canonical correlation analysis 

4. Spectral analysis 

5. Discriminant analysis 

6. Cluster analysis 

7. Ordination techniques 

Explanations of some of the above methods may be found 

in LT. Kendall (1968), Hope (1968) and Cooley and Lohnes 

(1971). There have also been several books published 

recently on the application of these techniques in particular 

disciplines, such as L. King (1969) on geography, Miller and 

Kahn (1902) on geology, D. Clarke (1968) on archaeology, ' and 

Green and Tull (1970) on marketing. 

Principal Components Analysis 

This method is perhaps the most well-known and most 

widely used of the multivariate methods. If we consider 

data as a set of points in n-dimensional space then principal 

components analysis is concerned with the rotation and 

translation of the original co-ordinate axes to a new frame 

of reference in this space. The first principal component 

is that linear combination of the original variables which 
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contributes the maximum to the total variance. The second 

principal component is orthogonal to the first and is such 

that it contributes the maximum to the residual variance. 

Further principal components may be obtained until the total 

variance has been 'explained'. 

The model is therefore given by: 

n 
Pi = ai jxj 

(i=1, 
... n) 

j=1 

where Pi is the ith principal component and xi are the 

original variables, and the Pi 's are orthogonal. 

The aim of the model is to determine the effective 

dimensionality of the original variables, and to study the 

underlying variables of the data set. By using p. c. a. , one 

hopes to be able to reduce the number of variables, and to 

obtain a more meaningful set. Since the method is dependent 

on the total variance of the original variables it is 

customary to normalize the variables before performing p. c. a. 

in order to have variables measured in the same units. 

Details of the mathematics involved in extraction of 

components can be found in Cooley and Lohnes (1971), Harman 

(1967), and Seal (1964). 

Factor Analysis 

Factor analysis is currently one of the most important 

techniques of multivariate analysis. The aim of factor 

analysis is the resolution of a set of variables linearly in 

terms of a smaller number of variables, called factors. We 
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thus are trying to explain our M dimensional data in terms of 

a specified' number of factors m, and a unique variation-(an 

'error' term) in each variate. The model is: 

m 
Xik 

j=1 
aijFjk + diUik (i=i,... n)(k=1,... M) 

each of the Fjk is called a common factor and each of 
the Ui a unique factor. The common factors- are usually 

orthogonal, although methods for the construction of 

oblique axes exist. 

There are an infinite number of ways of obtaining factors from 

a set of data, depending on the required form of the factors. 

Thus several methods exist (see Harman 1966, M. Kendall 1968, 

Horst 1955, Lawley and Maxwell 1971). Perhaps the most. 

widely used methods are Lawley's maximum likelihood (Lawley 

1940) and the Minres method of Harman and Jones (1966). A 

typical example of a study using factor analysis is Baehr and 

Williams' (1967) study of personal data and its relationship 

to occupation. 

Canonical Correlation Analysis 

This concerns two different sets of data on the same 

individuals and the method assesses the correlation between 

the two sets, and the-linear function of each set of variables 

which gives that correlation. This is repeated as in 

principal components to find the largest correlation 

orthogonal to the first and so on. The aim of c. c. a. is to 

determine the redundancy in two sets of variables-and the 

connected factors. This is covered in Cooley and Lohnes 

(1971)t 11. Kendall (1968) and Hope (1968). 
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Spectral Analysis 

This is the analysis of time series, especially that of 

sinusoidal series, and the removal of autocorrelation in 

multivariate data, which is used in forecasting, and in 

pattern recognition and signal detection. The methods and 

problems of this type of analysis have recently come into 

prominence with the introduction of a new technique by Box 

and Jenkins (1970) (see also Chatfield and Prothero 1973, and 

Box and Jenkins 1973). Spectral analysis is also discussed 

in a book by M. Kendall (1973). 

Discriminant Analysis 

If a set of data consists of two or more known classes 

(i. e. two types of plant, people who failed or passed an 

exam, etc. )-then the. data matrix is divided into 
. 
that number 

of groups and gives an identification routine so that a new 

set of observations can be assigned to these classes so that 

the probability of incorrect assignment is minimized. This 

is normally performed for only a few classes (2,3 or 4) and 

is designed for normally distributed classes which overlap. 

For a discussion of the method see Cooley and Lohnes (1971) 

or M. Kendall (1968), or the original work of R. Fisher (1937). 

Some interesting recent examples are Brainerd 
. 
(1973), Massey 

(1971) and Graham (1970). 

Cluster Analysis 

This is concerned with the existence of groups of 

similar objects within a given set of data. The purpose of 

the study might be to determine if such groups do exist or 
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not, or to divide a set of data into the 'best' groups for a 

particular purpose. The techniques will be discussed at 

length in this work. There are few (if any) major published 

works on cluster analysis. The best references are chapters 

from books on pattern recognition such as Meisel (1972) and 

Duda and Hart (1973)p there is also a good review by 

Bolshev (190-9). 

Ordination 

This is the representation of data in ordinate, form, 

normally with the. view of drawing the objects as points in 

one, two or three dimensions, so that their structure can be 

visually examined. Both principal components analysis and 

factor analysis can be used as ordination methods, but other 

newer techniques also exist (such as multidimensional 

scaling), which are primarily designed for producing ordinate 

representations. 

Classifications of rmultivariate methods have been 

attempted by LT. Kendall and Babington Smith (1950), Sheth 

'(1971) and Kinnear and Taylor (1971). In all three, the 

methods are divided firstly into dependence and 

interdependence techniques. Of the above techniques, 

spectral and canonical correlation analyses are of the 

dependence type, and principal components and factor analysis 

are interdependence models. The other three techniques do 

not fall into either of these categories, since they are 

concerned both with dependence and interdependence. We thus 

feel that the division is an artificial one. 
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Of the methods we have outlined above, we have selected 

cluster analysis and ordination as the subject of this work. 

The reason for the selection of these two techniques is the 

lack' of, and need for, research into these areas. All the. 

other methods which we outlined have been the subject of 

lengthy analysis by other workers, and, over the years one or 

two methods of performing each technique have come out as the 

'best' methods. Also each method has been applied to many 

fields of interest, has been programmed into readily avail- 

able packages, and been discussed in several books. In 

contrast, there have been proposed over a hundred, different 

cluster analysis methods, and most of these have not been 

compared or analysed to any great extent. In fact, the 

progress of cluster-analysis has been hampered by the lack of. 

a 'best' method. Ordination methods have not as yet 

suffered from over-plentiful methods. However, especially 

with the new multi-dimensional scaling techniques, there is a 

lack of comparative studies between the methods. 

Thus one reason for our selection of these two methods 

is the need for a comparison study in each case. Another 

area of investigation from which each technique would benefit 

is the practical applications in which each could be used. 

The rationale in examining both methods together is that 

they are complementary techniques for examining data 

structure, which do not have underlying assumptions of 

dependence, etc. 
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One of our aims in this work will be to bring together 

the large amount of literature on the subject, and the 

methods which have been proposed, into one volume. The need 

for techniques for examining data structures in many sciences 

has lead to the development of cluster analysis and 

ordination in many fields, most workers having been unaware 

of parallel developments in other sciences. 

Our second aim, following this introduction of the 

techniques, will be the comparison of a variety of cluster 

analysis methods, and an investigation of the properties of 

ordination techniques. 

The third part of the work will be designed to show 

} 
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applications of the methods, as operational research 

techniques. Case studies will be given, and a discussion of 

other applications, to shovr the power of cluster analysis and 

ordination as management decision aids. 

d 



16. 

B. 2 CLUSTER ANALYSIS 

General 

in order to reduce large nasses of data into more 

compact and usable sets, it is often necessary. to arrange 

items into groups. For example, in order to discuss the 

behaviour of human beings it would be almost impossible (and 

of doubtful use) to discuss the behaviour of each individual - 

thus we group them into classes, by various attributes - by 

country, age, weight, size of family, etc. - depending upon 

our need in a particular instance. Thus if we were 

concerned with human social behaviour we might group into 

classes such as age, sex or social class, and if we were 

interested in genetic characteristics we might group 

according to colour of hair, height or weight. In order for 

these or other groupings to be of use, we need the following 

two axioms to be observed: 

1. All members of the population are assignable to a group. 
(A group may consist of a single member, or no members 

at all. ) 

2. All elements of a group possess a property (or- 

properties) which all elements in other groups lack. 

For instance, when we classify individuals according to their 

age, then the people in a group possess the property of 

having a certain age, which no other people possess, and also 

each person has an age and is hence assignable to a group. 

Groupings which abide by these two axioms are called 

dissections. The boundaries between groups are often 
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arbitrary, for instance if we group people according to the 

age groups: under 21,21-40,41-60, over 60, then there is 

no suggestion that the ages 21,41 and 60 are anything more 

than a convenient division point, we might easily have, chosen 

the groups: under 18,18-35,36-53, over 54. 

Any set of data can be dissected, but if we try and 

obtain groupings with less arbitrary divisions between them, 

and find 'natural groupings', then the groups contain more 

information, and may give more of an indication of the 

structure of the data. Thus we place a stronger condition 

on our dissection to obtain groups that will give insight to 

the data, or at least a more meaningful dissection. This 

condition replaces axiom 2: 

21. We require members of each particular group to possess a 
degree of similarity which is not possessed by items not 
from the same group as each other. 

This type of grouping is called clustering. (Note that 

overlapping groups whilst obeying axiom 2', do not obey 

axiom 2, and that any non-overlapping groups do form a 

dissection. ) "kith clustering we are searching for evidence 

that the data is multi-modal, and thence grouping the 

observations. We can probably best visualize this as 

looking for 'swarms' of points in two dimensions. These 

'swarm s' may be visualized in three dimensions (but of course 

cannot be displayed so easily) and one can hence use the 

analogy for higher dimensions. 

The problem may be stated more formally as follows: 
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Given a set B of N observations (bl, b2,... bN) measured on 

a set of M attributes such that bi is defined by the attribute 

profile (ail' ai2 ,... aiM) for i=1,... N. We wish to partition 

B into K subsets Bk(k=1,... K) such that - 

UB =B 
k 

(Axiom 1) 

If we wish our groups to be non-overlapping then we have 

Bi nBj=0 (for all i, j such that i/ j) 

We define a clustering function between the observation 

bi and a subset A of B where comprises the p elements ba 
m 

(m. 1,... p) by: 

s(i, (>) _ f('5º(Gýº)CYT, %) .. o ), 92(&2) cb , ".. .. 
... 13,1 (iM, N . "m ) ... 

where gj( ) is some function relating the jth attribute of 

observation bi with the jth attributes of those bi Eß and 

f is some function combining the attribute functions. 

We can thus express Axiom 2' as 

S(i, q) > S(j, r) 

for all i, q such that b, 
_, 

bq r= Bk, all j such that bjE BZ 

and all br BL. 

The different choices of the various functions in the 

expression for S gives rise to a wide range of types of 

clustering method. An approach used by many methods is to 

base the clustering function between a point and a group on a 

defined relationship between a pair of points. Thus we have 

S(i, j)ý, (IN(ct 
, ai º), gý (a; 

r.,, ct i' 

for all it jEB 
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and S(i, ß-) = fa c(L)/? 
i) )S 

(ý) 7z. ) 
, ... 

s (. 
i 

)/ 
P 

The first expression is simply a similarity function and 
thus the procedure in a great number of methods is to define 
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a similarity function between points, and from this to 

construct groups. Often the functions gi (i=1... J) are 

identical or simply multiples of each other, and similarly 

with hm (m=1... n) so the expressions simplify further in 

practice. 

The relationships between principal components analysis 

and a certain type of clustering called least squares cluster 

analysis can be illustrated. v hilst p. c. a. attempts to 

summarize the observation vs. variables matrix by reducing 

the number of variables, with cluster analysis we attempt to 

reduce the number of observations. However, p. c. a. always 

gives an optimum result, which is not true for least squares 

classification. 

E. g. If we are able in p. c. a. to reduce tvio- 

dimensional data to one dimension then graphically we are 

approximating a series of points to a series of linear 

points. 

U 
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With the same set of points, if we cluster the seven 

observations, we obtain two groups. 

With p. c. a. we have reduced the 2 variable 7 observation 

matrix to a1 by 7 matrix and with cluster analysis obtained 

a2 by 2 matrix. 

In a particular study of a set of data one might well 

use more than one multivariate technique - e. g. p. c. a. and 

cluster analysis. However, if data has clusters present 

then principal components may give misleading results since 

each cluster may have different underlying dimensions. 

y"ö" 

.f 

X 

zý 
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In the above diagram a principal components analysis 

would yield a first component of : C', whilst each cluster has 

its own major underlying dimension of YY' or ZZ'. 

Applications 

The number of fields in which cluster analysis is being 

used is increasing rapidly. Also in each of the fields 

where it has been used, its use is becoming more widespread. 

Some aspects of most sciences have been subjected to 

clustering methods in the past, and now the methods are being 

applied in the business and social science fields. 

Some examples of the use of clustering include: 

1. Palaeontology, Botanical and Zoological Sciences: the 

main application in this field has been in taxonomy --the 

grouping of plants, animals, insects, etc., into species. 

Previous to the use of mathematical techniques, detailed 

measurement of specimens (a measurement is called an 

operational taxonomic unit or OTU), together with the. past 

experience of the taxonomist, produced possible groupings 

into species. The problem is clearly one which cluster 

analysis can tackle - finding homogenous groups from many 

measurements of specimens - and-thus it is not surprising 

that this field was one of the first to use clustering. 

Indeed, some of the first numerical methods viere propounded 

by such practitioners of the zoological sciences as Sneath, 

Sol-al, Rohlf and L ichener. one of the first major works in 

this field of numerical taxonomy is Sokal and Sneath (1963) 

which covers the Whole process of taxonomy and discusses the 
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clustering methods then available. Earlier articles which 

introduced new methods are Sneath (1957) and Sokal and 

P: Zicrener (1958). (See also Sneath 1902,1964a, 1964b, 1967; 

Rohlf and Sokal 1965,1967; Rohlf 1965,1957,1970; 

Kubica et al 1973; and a book by Blackith and Rayment 1971") 

Similarly Cheesman and Berridge (1959) attempt grouping of 

bacteria from chromatography results. 

t1nother early application was in ecology, where the 

object of study is the relationship between different plant 

species, and between them and their environment. By 

dividing an area of land into equal sized squares (called 

quadrats or stands) each square can be examined and it can be 

noted which plants are present in each particular square. 

From this, by clustering methods, plants can be grouped, so 

that plants which tend to co-exist are in the same group. 

From this the effects of, say, burning off grass, or of 

nearby canals, on vegetation can be assessed, and the effects 

of one species on another. The early work in this field was 

carried out at about the same time as the first investigations 

in taxonomy and the ecology methods were then quite different. 

The pioneers of these methods were Lance and Williams and 

their co-workers, currently in Australia. Their papers 

include lilliams and Lambert (1959), Williams and Dale 

(1965), Lance and Williams (1967). However, perhaps the 

earliest work in this particular application is Sorenson 

(1948) who made a study of the vegetation on Danish commons. 

Other methods have been introduced by Rogers and Tanimoto 

(1960), Fisher (1937) and Hall (1967a, b). 
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2. Psychology: One of the uses of clustering in this field 

has been to try and cluster individuals into groups on the 

basis of the results of psychological tests, either to group 

people into 'types' as in McQuitty (1957,1964), for use in 

personnel administration (Ward and Hook 196-1. ), or to 

allocate people to jobs, as in the armed services (see 

Thorndike 1953). Another use is in trying to group 

psychological tests into similar sets on the basis of test 

results, and thus to gain insight into the nature of the 

particular tests, as in Harman (1966). In psychology 

cluster analysis is used as a method of data investigation in 

order to seek structure in the data; this type of 

application is very different from the taxonomy problem in 

%fai ch the groupings are the required results. Thus in this 

type of data investigation, the clustering methods are used 

similarly to factor analysis, as a method for possible 

hypothesis generation. A typical application of. this type 

is Liller (1969) who investigated the perceived similarity 

between meanings of words. 

3. Earth Sciences: The problem, in geography, of defining 

'regions' is one which can be partially resolved by the use 

of cluster analysis. The definition of a region is very. 

similar to that of a cluster: an area, the parts of which 

are very similar to each other but dissimilar to the parts of 

other regions. An often desired property of the resultant 

groups is that they must for.: contiguous areas (there is a 

discussion of this in Johnston 1970). This can be achieved 

in two ways, either by clustering without this constraint and 
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observing the resultant groups, which may well turn out to be 

contiguous (as shown in King 1969) or by incorporating such a 

constraint in the clustering algorithm. Another geographic 

application is simply as a method of classification, as-in 

the classification of American business districts by Berry 

(1967). or British towns by Andrews (1971) and Moser and 

Scott (1961). Richter (1969) has clustered the geographical 

location of firms to investigate industry grouping. 

Another problem similar to that of the regionalization 

problem is that of political districting, where an area must 

be divided into equal-sized parts for parliamentary 

constituencies or wards. Here, apart from the constraints 

of contiguousness and equal size, there is normally that of 

compactness. Whereas geographical regions are often long 

thin meandering areas, it is normally considered necessary to 

have political regions as compact as possible. Given a 

completely evenly spaced population the solution is that of 

tesselated hexagons (although this is still unproven). See 

; leaver and Hess (1963), Harris (1964), Thoreson and 

Lüttschwaoer (1907), Kaiser (1966 ), Bunge (1966) and 

Garfinkel et al (1969).. 

Another geographical aspect in which classification 

methods have had some recent success is . that of land use 

analysis which is of particular use in environmental planning. 

Clustering has been used to find areas (not contiguous) in 

cities, in which similar activities occur. For example, 

Goddard (1970), by analysing taxi flows in London split the 



25. 

city into five regions - the liest End, Nestminster, Soho, 

The City and Bloomsbury. Alexander (1972) has divided the 

centre of Perth, Australia into five regions on the basis of 

the business activities present. In an earlier paper, 

Goddard (1958), grouped London into five regions also on the 

basis of the location of types of business activity and 

grouped the business activities into eighteen groups. See 

also Gittus (10954), Jones (1968), Dear (1969) and Golder and 

Yeomans (1973). 

Pedology is another of the earth sciences to which 

clustering has been applied in order to discover soil 

- regions. Grouping is carried out by measuring the soil 

coiposition, colour, type of stones, roots present, etc. 

The main exponent of modern numerical methods in soil science 

is Rayner (see Rayner 1965,1966,1969, and also Bidwell and 
Hole 1964 mid Grigal 1969). 

4. Life Sciences: Apart from the use of classification in 

biological taxonomy, the other main life science in which 

cluster analysis has been used is that of anthropology. One 

of the areas of study has been the evolution of the American 

Indian tribes - by obtaining information on the social 

customs and behaviour of each tribe, it is suggested that by 

grouping together tribes which are similar on these counts, 

one can trace the origins of each tribe. Research has been 

carried out along these lines by Froeber (1939) and Clements 

(1954). Linguistics is another subject to which cluster 

analysis has been applied in order to detect the evolution of 
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particular tribes or races, either by comparing languages or 

dialects for linguistic similarity (see Levelt 1970). 

Driver (1965) in a review article discusses the progress of 

numerical classification and other statistical methods in 

anthropology up to 1963. 

5. Archaeology: This field is related to anthropology, and 

clustering has been used in a similar way, to discover past 

relationships between cultures, by measuring similarities 

between artefacts. The use of cluster analysis has been 

discussed in Hodson, Sneath and Doran (1966) who compare. the 

relationships between 30 brooches found in Iron Age 

cemeteries in Switzerland, as measured by numerical methods 

and by the intuitive groupings by four archaeologists and an 

anatomist, and conclude that the numerical methods came out 

at least as good as the best intuitive results. Another 

well written piece is that of Clarke (1962) who applied 

simple cluster analysis to early British beaker pottery. 

Other applications are found in the book of readings by 

Hodson, Kendall and Taut-a (1971). (See also Von Hagen- 

Bordaz and Bordaz 1970. ) 

6. Information Retrieval: In information retrieval the 

user's requirements are often that he wants related 

information to a particular subject. This can be stated as 

requiring to know other similar information to a particular 

given piece of information, i. e. one wants to find the other 

members of the cluster to which the possessed information 

belongs. For instance one could measure the similarity 

between journal articles by the number of references to other 

articles they had in commQn, amend produce clusters from this 
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data, or better, analyse articles and classify each into 

several descriptors (called keywords) and measure similarity 

by the number of descriptors in common. Since one piece of 

information may be of use in several different fields the 

emphasis in this field has been on clusters which overlap, 

and i&i ch, in information retrieval, have been called 

clumps - the subject has been discussed by Minder et al 

(1973). A large amount of the English work in this field 

has been done by Needham and Jones at the Cambridge Language 

Research Unit. A great deal of work has been done on the 

type of classification needed in information retrieval (this 

is covered in Jones 1971), but little has been attempted in 

terms of practical results; one of the methods used is 

explained by Needham (1965). 

7. Medicine: One can consider the task of a doctor or 

psychiatrist as the allocation of patients to groups 

corresponding to diseases, according to their symptoms. Any, 

patient with a particular disease or disorder will have symp- 

toms similar to those of other patients with that condition. 

Thus cluster analysis could possibly be used for fast 

diagnosis, or as an aid for human diagnosis. The numerical 

methods are of more use in the psychiatric field where the 

diagnosis problem is more difficult. By investigation of 

data on patients with known disorders, cluster analysis may 

be used to find the major discriminating variables between 

disorders and thus diagnosis of new patients may be achieved 

rapidly. This use in psychiatry is explained in Kaskey et al 

(1962), and in several works by Lorr (1966, and Lorr et al 
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1963,1965), and an overview of statistical methods in 

psychiatric research is given by Moran (1969). See also 

Strauss et al (1973), Everitt et al (1971), Pilowsky et al 

(1969) and Paykel (1971). Applications in diagnosis of 

liver diseases are given in Baron and Fraser (1968), and the 

use of clustering in investigating child deaths has been 

investigated by Carpenter (Royal Statistical Society, 

Multivariate Study Group Meeting, 9th October 1973). 

Another application in medicine is that of clustering 

particular cases of a disease, in space and time, in order to 

detect epidemics early. This is discussed by Knox (1964), 

Armitage (1971) and Pike and Smith (1968). 

8. Signal Detection and Pattern Recognition: In the 

physical sciences, there has been a large amount of work done 

in analysing noisy data such as in radio signals, or pictures 

from satellites (see Haralick and Dinstein 1971). Here 

cluster analysis can be used to reduce this noise. Another 

similar problem is in machines which are required to 'read' 

or interpret other visual material. With machine readers, 

clustering can be used to reduce input characters to 26 

groups, which hopefully represent each of the letters of the 

alphabet. There is a large volume of work on this type of 

subject, , which also includes work in related fields such as 

classification into known distributions,, discriminant 

analysis, etc. See Sebestyn (1962a, b, 1966), Ball and Hall 

(10,66), Rutovitz (1966), 
. Casey. and Nagy (1968), Switzer 

(1968), Sermon (1970), Dorofeyuk (1971), Meisel (1972) and 

Duda and Hart (1973) 
" 
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9. Business: Because of the varied aspects of management, 

and the large amounts of data available, business is one of 

the largest areas for cluster analysis applications. The 

main discussion of the use of clustering methods is left 

until later in this work, but at this point we can outline 

one or two areas in which clustering is of obvious use. 

In marketing, because of the abundance of data from 

surveys and the lack of detailed knowledge of many aspects of 

marketing such as buyer behaviour, advertizing effectiveness, 

product market, etc., many multivariate methods have, been 

applied. Examples include: clustering towns in order to 

select one from each cluster as a representative set in order 

to test market products (see Green, Frank and Robinson 1967, 

Morrison 1967) ; clustering stores, in order to find similar 

stores to test product prices (see Day and Feeler 1971); and 

clustering different models of the same product to. ensure 

your company is-competing in each sector of the product 

market (see Green and Tull 1970, and Frank and Green 1968). 

0 

In investment analysis the grouping of shares into sets 

which behave similarly over time can enable one to build a 

portfolio which minimizes expected risk, i. e. one selects one 

investment in each group, to protect the portfolio from a 

particular slump in one area of the market (see King 1966, 

Farrar 1962 and Russell and Taylor 1068). 

Other Applications 

Although the major fields of current cluster analysis 

usage are outlined above, numerous other areas have been 
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investigated by these methods -a few examples are listed 

below: 

Geology - Miller and Ka: 1n (1962 ),. Parks (1966), 

Gower (1970). 

Sociology - Chabot (1950), Alexander (1963), 
. Beum and 

Brundage (1950). Coleman and McRae (1960), Forsyth 

and Katz (1946), Laumann and Guttman (1966). 

Criminology - Wilkins and BlcNaughton-Smith (1904). 

Experimental Design - Cochran and Cox (1957), Kish 
(1965), Kennard and Stone (1969), Marriott (1970), 

Ca. linski (1971), Golder and Yeomans (1973). 

Economic Aggregation - Skolka (1964), Fisher (1969). 

DNA Classification - Ehrlich (1964), Silvestri and Hill 
(1904), Fitch and Margoliash (-1967) . 

Discarding Variables in p. c. a. - Jolliffe (1972,1973). 

History 

The early work on clustering was carried out in two main 

fields - those of psychology and of zoological classification 

(numerical taxonomy). Cluster analysis was first used in. 

the. great debate on the structure of human ability which. 

followed Spear-man's 1927 book 'The Abilities of Irian' which 

brought together all the ideas of the structure of the mind's 

processes which had begun to germinate in the 1920's. In 

the ensuing discussing over the twenty years after Spearman' s 

book, psychologists such as Thurstone and Burt used early 

multivariate techniques, especially factor analysis in order 

to try and add weight to their own favourite theories. Some 

of the researches involved the use of factor analysis as a 
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clustering method, trying to group intelligence tests 

according to the precise ability they were testing, such as 

mathematical or verbal ability. 

Classification methods in their own right were first 

used in the late 1930's (see Holtzinger and Harman 1938) and 

it was about then that the term cluster analysis was first 

used. The first major published work on method was Tryon 

(1939). These early methods were simple and fairly rough 

since they had to be computed manually - they normally 

involved simple investigations of correlation matrices. 

Because of this limitation on methods, the subject advanced 

very slowly after the publication of these few hand methods, 

and it was not until the advent of the high speed computers 

in the 1950's that the subject was to advance to any great 

extent. 

The first breakthroughs of the computer age were in 

zoology, where the first computer-based methods began to 

appear in the late 1950's (see Sneath 1957, Sokal and 

I,: ichener 1958 and Michener and Sokal 1957). These methods 

were used as a simulation of the way in which the taxonomist 

was able to group species, and resulted from the realization 

of the fact that taxonomy was a simple clustering problem. 

With the publication of the first few methods and with larger 

and faster computers, larger problems could be solved by the 

existing methods, and more complex methods were introduced 

which could only be implemented by use of the new computers. 

At about the same time as the use of clustering in taxonomy, 
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other fields were also experimenting with other forms of 

clustering, especially in ecology and information retrieval, 

and also workers in psychology had continued their early 

work. Because of this growth in parallel, with each stream 

of investigation having little knowledge of the work in other 

streams, came a great deal of duplication of work, and 

differing terminology. However, as these areas of interest 

became aware of each other, methods discovered in one subject 

were used in others and cross-fertilization expanded the use 

of cluster analysis. Thus cluster analysis became a subject 

in its own right and was another mathematical tool to be used 

in many kinds of research. 

In the last five to ten years the subject has expanded 

rapidly in two directions - new applications and new methods, 

and along with this expansion has been a related increase in 

the theoretical difficulties. One of the more unique and 

troubling properties of this new technique of cluster 

analysis is that over recent years the number of methods in 

use has increased rapidly, and there have been few attempts 

to rationalize the use. of particular methods. If there has 

been one factor which has inhibited the growth 'of the use of 

clustering, it is the fact that there exists no one-method 

which has been proved 'best'. 

In the last six or seven years, operational research 

scientists have begun to look at cluster analysis and other 

multivariate methods and to use these techniques as methods 

of data analysis in the management field. Marketing was the 
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first area to be subjected to these methods, being an area in 

which data is abundant and knowledge about that data is 

scarce, and the first published works appeared in 1966 and 

1957. Another management function currently using 

clustering is the personnel field where studies in psychology 

are of relevance to selection and placement. 

Methodology 

One definition of cluster analysis is that we are 

searching for 'a degree of similarity between members from 

the same group, which is not possessed by members not both 

from the same group' and another definition is that we obtain 

clusters 'which are in some sense optimal'. The exact 

meaning of these definitions is one of the central problems 

in cluster analysis - what do we mean by 'a degree of 

similarity', what do we mean by 'similarity', what does 'in 

some sense optimal' mean, and in what sense? The answers to 

these questions will vary with the particular application and 

thus the method used will be dependent on the application. 

In general, however, all cluster methods reach their 

conclusions by passing through four stages - Measurement, 

Similarity, Method and Analysis of Results. Measurement is 

the obtaining of the required data and the process of putting 

this in the required form for our investigations,. Similarity 

is the production of a measure of similarity by which we will 

be able to compare the objects under study, Method is the 

process in which the similarity measure is used on the data 

and clusters are obtained, and Analysis of Results is the 
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testing and consideration of the clusters found. We shall 

examine these four aspects in detail, in the above order. 

Mo asurenent 

In order to judge the extent of the similarity between a 

pair of objects, we must measure each object on various 

attributes such as weight, temperature, colour, etc. In 

fact einen considering the similarities between all pairs from 

a set of objects we must measure each object on all 

attributes that may have some bearing on the similarity 

between objects from the point of view of our specific 

investigation. The first problem is thus deciding which 

variables are pertinent and which are not. If we exclude 

variables that are relevant then we may invalidate our 

results, and if we introduce unnecessary variables, we at 

best cloud our results, and at worst arrive at meaningless 

clusters derived in part from the irrelevant variables. The 

particular clustering method used on the data could possibly 

help minimize the risk of large errors from the selection of 

the VVTong set of variables, but the basic problem is-one of 

experimental design. Such problems are best overcome by 

detailed knowledge of the objects under study, from 

experience with similar objects and experience with 

clustering techniques. 

Having decided which variables to measure, the next 

problem is how to measure them. We may conveniently define 

measurement as the process of representing properties by 

numbers. There are an infinite number of types of scale by 
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which one could measure, but five well-Imown types have been 

selected as examples. These are, in order of 'exactness': 

1. Nominal Scale: This is the giving of numbers to objects 
to represent them as being either the same or different 

in a particular property, without any ordering of the 

objects being possible. For example, if objects from a 

particular set could be one of the three colours - blue, 

brown yellow, then we could not order the objects on this 

property, but we could label all blue objects with the 

mutier 1, brow with 2 and yellow with 3, to show they 

were different. Another good example is the -nwnbers on 
the shirts of football players, all players with the 

number 9 are centre forwards but no more similar to 

players numbered 9 than those numbered 6. 

2. Ordinal Scale: This type of scale is a ranking of 
objects according to their degree of possession of a 

property. For example, one could order a set of plants 
by the darkness of their leaves by simple comparisons 
between them. 

3. Interval Scale: An interval scale is one in which 
distances between points on the scale can be meaning- 
fully compared. For example, if we measure the 

temperature on a set of days, we have a meaningful 
difference between any two days' temperatures. 

4. Ratio Scales: These scales are interval scales with a 
zero on the scale being. a zero of the property. For 

example, measures such as height and weight, because 
they have a zero which corresponds to no height or no 
weight, we are able to say that 2 pounds is twice as 
heavy as 1 pound, whereas we cannot say that 20°C is 

twice as hot as 10°C. 

5. Absolute Scales: Absolute scales have one unique scale 
on which. one can measure, such as counting the number of 
legs an animal has, or the number of leaves, a plant 
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possesses. Ratio scales such as height can be measured 

Meaningfully on many different scales such as feet or 

me tres. 

Tote that each of the above scales is a special case of 

all those scales preceding it. With interval scales, the 

relative positions of objects on that scale are fixed and 

thus similarities are preserved. Thus data on absolute 

scales (number of toes on an animal), ratio scales (height 

of a tree), and interval scales (boiling point of a liquid) 

are readily usable for cluster analysis because most 

similarities are invariant under any linear transformation. 

However, nominal and ordinal scales cause difficulties, since 

they do not fix objects to a relative positional point. 

7 7ith these types of scale we oust either approximate them to 

an interval scale or find other ways round the problem - we 

discuss this below. 

Ordinal Scales - the individuals may all be ordered or 

they may be in ordered groups (for example a person may have 

to rate his opinion of a radio programme into one of the 

categories excellent/good/fair/poor/bad which would form an 

ordinal scale of groups of programmes). Ordinal values 

could be used as if they were on interval scales, but by 

grading the objects subjectively one could arrive at a better 

approximation to an interval scale (in the above example the 

person would be asked to give each programme a mark out of 

fifty according to how good he considered it to be). 

Alternatively, once the measurement on the ordinal scale was 
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made, further investigation may help one decide hove 'close' 

the objects are on that scale, and produce a subjective scale 

(i. e. instead of approximating to an interval scale by using 

1,2,3,4, etc. one would consider how close 1 was to 2, 

2 was to 3, etc. and perhaps use 1,3,. 4,7, etc. as a better 

approximation). A further alternative would be not to try 

and measure that particular variable but to try and measure a 

related variable, which would give the same information, but 

which could be measured on an interval scale (for example, 

depending on the particular application, perhaps the number 

of listeners to each particular radio programme, or the 

number of letters about the programme, etc., could be used in 

our previous example). 

Nominal Scales - since these scales do not give an 

ordering of objects measured on them they are even more 

difficult to convert to interval scales. The problem is of 

putting such variables as colours for example into an order. 

If we have variables which are dichotomous, i. e. objects 

either possess or do not possess a particular property (. this 

is called bim data) then these are or. interval scales, so 

one solution is to split our nominal data into dichotomous' 

data. For example birds of different colours could be 

measured on the nominal scale black = 1, blue = 2, brown = 3, 

etc., this could be converted into several, binary variables 

such as black/not black, blue/not blue, broom/not brown, etc. 

Alternatively, we could try and measure alternative related 

variables. For example we could measure the birds on 

brightness of plumage. 



38. 

If we have doubt about whether certain variables should 
be included in the study, or about the way we have scaled or 

measured then, then the cluster analysis should be performed 

both with and without these variables, in order to determine 

their effect on the results of the analysis. A possible 
future -aid in the scaling of nominal and ordinal data is the 

= current psychological work on for example the scaling of 

colours using ordination. 

We can divide scales into three types - binary data 

. 
(sometimes termed dichotomous, or two-state data) which we 

have previously referred to, multi--state data which is data 

that can possess only a finite number, of numerical values, 

and continuous data which can hold any value in a particular 
(possibly infinite) range. Note: the above problem of 

converting non-interval scales to interval scales is often 

discussed as the problem of trying to convert multi-state 

data into either binary or continuous data. This is not 

quite equivalent since some multi-state data is on. an 

absolute scale and thus it is not necessary to transform the 

data in any way. 

Once we have our data in the form where we have selected 

all relevant variables and measured each object on a suitable 

scale then we-have the problem of the correct scaling between 

the variables. . 
This is a related, but often more complex 

problem. This problem can best be illustrated by an example; 

consider the following pair of diagrams, representing the same 

set of weight, height vectors: 
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- Since height and weight are different scales and cannot be 

equated, we could equally well choose to represent our data 

in either of the two cases above. In both cases we have two 

clearly defined clusters, but the membership of the clusters 

is not constant. 11. Kendall (1966) has suggested that rank 

correlations should be used in discriminant analysis as a 

distribution-free method, but the use of rank correlations in 

clustering is discouraged because any gaps between clusters 

'would be reduced. However this could be a useful check for 

misclassification after clusters have been extracted from the 

data. Since one cannot equate measures such as height and 

weight, the normal procedure in order to reduce this problem 

is either to normalize each variable to unit variance, or to 

.. use a method which is designed to find groups of any shape 

--(see later). 

Another problem is that if we have a mixture of discrete 

and continuous variables then data may tend to group itself* 

according to the discrete variables. We suggest this could 

be overcome by converting the discrete variables to continuous 

ones by randomizing and performing several analyses with 

different random numbers. 

v -- 
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It may be that we consider some variables to be more 

important than others in our analysis and we wish to give 

these more weight by scaling them up and thus produce 

clusters more accurately and efficiently. Sneath has 

proposed (1962) (after Adanson -a famous eighteenth century 

botanist), that all variables should be given equal weight. 

He gives as an example-(see Sneath 1967) of false weighting 

(of observations in this case), that if one were calculating 

an average height of British adults, one would not, for 

example, count policemen and bishops twice because they are 

'more reliable'. However consider the same example, and. 

suppose we had obtained the height measurement of several 

hundred people, but had only been able to measure half as 

many women as men, then we would be perfectly correct in 

counting women ti vice to obtain 'a balanced sample. Certainly 

if little is known of the relative importance of the 

variables then any weighting is dangerous. 

The question of weighting is related to the problem of 

correlated variables - if several variables in a study are 

correlated, then an implicit extra weighting is given to the 

variables. For example, if human body dimensions are 

studied, then measurements of thigh length, leg length, 

overall height are all correlated as measures of tallness. 

This correlation could be corrected for by use of certain 

similarity measures (e. g. Liahalanobis D2), or by 

using principal components analysis or factor analysis to 

determine the underlying dimensions of the variables. 

However a part of the correlation present can be due to the 
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clusters in the data. For example if we wished to try and 

cluster apples and oranges into two groups, and we measured 

the diameter and circumference of each fruit, then these 

variables would be highly correlated because of approximate 

sphericity, whereas if we measured the fruits on the binary 

variables: segmented (0) or not (1), coloured orange (0) or 

not (1), smooth skinned (0) or not (1), then we would again 

have high correlations between the variables, but this would 

not mean that the variables were all similar measures of an 

underlying dimension, but rather that they are discriminating 

features. The possible ill-effects of correlated variables 

can perhaps best be eliminated by careful selection of 

initial variables, and by inspection of the correlation 

matrix of the variables. Another useful aid in the 

consideration of the input data is to print histograms of 

variables. 

A recent problem is in trying to adapt current methods 

to n-dimensional matrices (where n> 2). For example we 

might have a series of data on several business firms, such 

as turnover, sales, etc., for a set of years. This problem 

is as yet largely unresolved and the current method of 

procedure is to take several two-dimensional matrices from 

the larger one. A similar but more complex problem arises 

in pedology where several places are used from which to take 

soil samples, and at several depths. These samples are 

analysed as to chemical composition, etc., and so a three- 

dimensional matrix of places against depths against 
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composition variables. The problem here is further 

complicated by the fact that* a sample taken at a depth of 

2 feet may correspond to a sample taken elsewhere at 4. feet, 

because of the shift of the land. This is related to a 

biological concept called homology which is concerned with 

the changing physical form of animals in evolution, and thus 

in comparing animals one has to consider how similar they 

are, taking into account the fact that parts may be in 

different places or new parts may have grove or old ones 

disappeared. 

The measurement phase of cluster analysis, and indeed 

of most other statistical methods, is of extreme importance. 

A method is only as good as the data it uses. More emphasis 

should be placed on reliable information - from data or by 

some form of cross-validation. It is hoped that, as this 

thesis is concerned more with method than data, the reader 

, will not forget the importance of these preliminary stages. 

Having considered the major problems in proceeding from 

the initial stage of having a selection of objects to be 

clustered to the stage where data has been gathered, 

investigated and processed into the desired form, we can 

continue to consider the second phase of cluster analysis - 

obtaining similarities. 

Similarity 

The usual step from the data matrix is to produce a 

similarity matrix, since clusters are defined as groups of 

'similar' objects. It is, however, possible to obtain 
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similarities data directly from the objects under study by, 

for instance, rating each pair of objects subjectively on 

overall similarity. It is also possible to proceed directly 

from the data matrix to the method. Since any measure of 

similarity between two objects reduces two vectors to a single 

number, information is lost in the process of replacing the 

data matrix by the similarity. matrix, and thus the choice of 

similarity measure is of some importance. Since ordination 

measures also rely to a great extent on the choice of 

similarity measure we will leave the consideration of the 

various measures to Section B. 4. 

Any group of objects measured or. a set of attributes can 

be considered as a set of. points in space - each dimension 

being one of the dimensions of that space. Any objects 

which are 'similar' will have 'similar' vectors of 

attributes and thus will be close together in this space. 

Thus distance measures are types of similarity measures 

(strictly speaking they are dissimilarity measures, since the 

smaller the distance between points, the greater their 

similarity). 

The types of measures depend to some extent on the data 

in the data matrix. There are four main categories: 

(a) binary data; 

(b) multi-state nominal; 

(c) multi-state ordinal; 

(d) continuous data. 
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The actual choice of measure depends somewhat on the choice 

of method because some methods work better with some measures 

than others, and some methods are based on the properties of 

particular measures. 

We leave further discussion of similarities to 

Section B. 5 and proceed to the third stage of cluster 

analysis - the method. 

I Ie thod 

The methods of clustering are numerous, and apart from 

differences within the methods themselves, external 

considerations such as the type of data used, type of 

similarity used and the type of output required also produce 

differences in method. 

The type of data in the data matrix may restrict the 

choice of method, for example special methods have been 

developed for binary data, and with some methods the problem 

of standardizing variables is more important than with other 

methods. The similarity measure used may also restrict the 

methods which can be used, since some methods are not 

compatible with all measures, indeed some are based on one in 

particular. Tost methods may be adapted to deal with either 

similarities or dissimilarities data simply by reversals of 

sign, or by other simple linear transformations. Storage 

space in the computer can often be reduced by not storing the 

whole similarity matrix but by computing similarities, when 

required, from the stored data matrix. This can, however, 

increase the calculation time and is only advantageous when 
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the number of variables is less than the number of 

observat. ons, although the number of variables can be reduced 

by the use of principal component analysis. The output 

required may also reduce the possible methods that can be 

used - for example output may be desired to be in a 

hierarchical form, especially in taxonomic investigations 

where animals or plants are grouped into genus then species 

and then sub-species. Alternatively overlapping-groups 

might be required. 

Hierarchical methods produce a linking of objects which 

forms a tree diagram called a dendrogram. This has form: 

BANANA 
APPLE 
PEAR 
ORANGE 
LEMON 
GRAPEFRUIT 

I0s0 SWMACATy 

The similarity between objects is shown by the position 

on the scale where objects link in the dendrogram. The same 

dendrogram can be drawn in several ways - for example if 

Apple and Pear are reversed then the trees are equivalent, 

similarly Banana could be at the end of the list and still 

linked at the same similarity to the other points. In fact 

the tree is perhaps best visualized as a mobile, where 

inter-object similarity can only be measured along the tree. 

Note that one of the properties of a dendrogram is that the 

similarity values decrease as the points merge. 
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The nature of the specific data used may cause problems 

for some methods. Outliers (an observation which is very 

different from all other observations) may cause difficulties 

because they can seriously distort the similarity matrix, and 

sometimes the method. Once any outliers are found, which is 

normally fairly simple (histograms of variables may help 

detect them), they should be eliminated and the analysis 

repeated without them. The shape of any clusters present 

will have a bearing on the accuracy of the method - whilst 

most methods are designed so they can detect hyperspherical 

clusters, some are not designed to find clusters of more 

elongated shapes. Also, if clusters are of unequal sizes, 

large clusters may tend to 'swallow up' nearby clusters. 

The procedures of the different methods vary 

tremendously and explanation of particular methods is 

contained in Section C. 2, but general comments may be made. 

I: Tost methods are performed by mathematical algorithms. 

A large number of these are executed in a hierarchical manner, 

either by gradually combining objects into groups 

(agglomerative algorithms), or by splitting the set of all 

objects into smaller groups until all groups contain one 

object (divisive algorithms). Note that although an 

algorithm may proceed by hierarchical agglomeration or 

division this does not necessarily imply that a dendrogram 

can be produced from it. Since most methods use algorithms 

and specific methods tend always to be performed by very 

similar algorithms, there is sometimes confusion between 

properties of the method and properties of the algorithm 
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used. Thus some methods have been erroneously referred to 

as divisive or agglomerative methods (see Lance and Williams 

1966). This has been pointed out by Jardine (1970) who has 

given examples of methods which may be performed by various 

types of algorithm. 

Methods which produce dendrograms normally proceed by 

agglomerative algorithms for computational convenience, and 

the main difference between such methods is the criteria used 

in deciding which existing groups are to be amalgamated at 

any stage. Similarly with divisive algorithms criteria by 

Which groups are split into smaller groups are the main 

difference between methods. Another type of method which 

can be performed by agglomerative or divisive algorithms (but 

not necessarily), is the iterative relocation methods. 

These are different from the hierarchic type in that they 

allow objects to change groups. For example, iterative 

relocation methods performed by agglomerative algorithms 

begin with each object in a group on its own then gradually 

join groups until all objects are in one group, and at every 

stage when a pair of groups have joined, each object, or set 

of'objects are examined to see whether they would be better 

placed in a different group and if so they are moved to that 

group. Thus with iterative relocation not only must a 

criterion be used in amalgamating, groups but also to decide if 

objects should change groups. 

In some applications such as information retrieval, 

where a particular piece of information may be related to two 
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different fields of interest, and thus one would like it to 

be grouped with information on each field, overlapping groups 

are necessitated. These methods are at present very slow 

and normally restrict the degree of overlap possible. 

Another major part of any cluster method is to decide 

whether clusters are present or not, and if so,. to. determine 

how many. This question is basically-that of how 'good' 

does a group have to be to be called a cluster. There is a 

marked lack of significance tests or published studies with 

methods run with random data. One of the difficulties is 

defining our null hypothesis - if we use random data should 

it be uniform through space, from a single group based on a 

unimodal distribution, and if so what type of distribution. 

many methods, especially hierarchic. ones output the value of 

an objective function at each stage of the clustering and 

clustering is indicated by a large jump in this function at 

any stage. 

The process used in choosing a particular method for a 

given study is initially that of narrowing the possibilities 

by the type of input and output wanted, those available, 

those capable of handling the size of data, and those which 

will be executed fast enough. In order to proceed from this 

short-list. one must either survey the sparse 

relative merits, or do preliminary selection 

similar to that of the proposed study. One 

use more than one method to compare results. 

analysis of results we move on to our fourth 

of clustering. 

information on 

tests on data 

useful aid is to 

To discuss 

and final stage 
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Analysis of Results 

Because of the shortage of significance tests for 

cluster results, the analysis of results is a very important 

stage. In order to test the validity of results it is 

advantageous to be able to check with alternative data. If 

alternative data is not available the present sample could be 

divided into two parts and the analysis performed separately 

on each part. One of the most important guides in 

considering results is knowledge of the original objects, and 

using personal judgment to assess the results. It is 

helpful to output the similarity matrix, sorted so that 

members of the same cluster are adjacent. In order to test 

the rigidity of the clusters, sensitivity analysis can be 

performed - adding small random elements to the data matrix 

and re-analysing. 

Assessing the characteristics of each cluster is, at 

present, more a job for the analyst than for the method, 

although the centroid of each cluster and some measure of its 

dispersion can easily be output from the computer program. 

The process of drawing conclusions is neatly summed up 

by Herne (1973): 

"... belief in an interpretation of a numerical 
analysis grows diffidently and slowly only when 
data sample after data sample lead repeatedly to 
practically the same conclusions. Confirmation, 
confirmation, confirmation, ... , and then faint 
belief". 
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This may be overstating the case, since at any stage of 

our investigation we will have a 'best estimate' of the 

structure of the data, which may be better than no 

conclusions at all, but serves as a useful caution to all 

data analysts. 

General Procedure 

Once we have decided to use cluster analysis in our 

investigation of a certain set of objects we must, in general, 

follow the four stages outlined above; these can be 

explained diagrammatically as follows: 
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DATA 

WHAT VARIABI S DO EVE WISH TO MEASURE? ON WHAT 
SCADS? HAVE WE THE RIGHT DATA? HAVE ME 
ENOUGH TO CLUSTER? ARE, ALL VARIABLES AND 
OBSERVATIONS PERTINENT? DO ME NEED MORE? 
HAVE E MISSING VALUES? ARE THERE CORRELATED ýý 

- VARIABLES? DO WE WISH TO MEIGHT THE 
VARIABLES? DO NE WISH TO STANDARDIZE? 

N 
METHCD 

DO WE "CANT ROUND OR STRAGGLY I GROUPS? DO VIE WANT OVERLAP- 
PING GROUPS? DO WE WANT 
DENDROGRAM? DO WE WANT TO 
USE MORE THAN ONE METHOD AS 
A CHECK? VoHAT T+ETHODS ARE 
AVAILABLE? WHAT METHODS ARE 

I SUITABLE? WILL AVAILABLE 
COMPUTERS BE ABLE TO HANDLE 
IT? W-VHAT DISTANCE MEASURES 
CAN BE USED WITH IT? 

II I 

! ̀ --ý- -J 
ýi 
Ii 
f 

II 
rl 

1ý 

r i 

L THOD IMPROVEMENT 

!f 

SI1,11LARITY 

WHAT TYPE OF 
DATA HAVE WE - 
BINARY, MULTI- 
STATE OR 
CONTINUOUS? 
. '[HAT METHODS 
CAN VIE USE THE 
MEASURES WITH? 
`WHAT DEASURES 
ARE SUITABLE? 

WHAT ARE THE SHORTCOMINGS OF 03THOD? 
HOW WILL IT REACT TO RANDOPI DATA? CAN 
VIE AJ ND THE 12MOD TO HELP OVERCOly 
SHORTCOMINGS? HOW WILL DEFECTS IN THE 
T. THOD AFFECT THE RESULTS? WILL 
RESULTS BE N ANINNGFUL? 

RESULTS 

T1 

1 
I' 

Lam! 

ARE THERE CLUSTERS? HOW DEFINITE ARE 
THEY? HOW MANY? WHICH ITEMS BELONG 
TO EACH CLUSTERS? DO THE CLUSTERS 
SEEM 4 ASONABLE? WHAT ARE THE CHARAC- 
m TT 'rn-t-#. r. i1T T" rer* i r,, rV TrrT. i- rrrti eT ýrf 1 

1'1'tilº7'1'lliý Ui tiAuri IiLUJ''X tt'; LU 'l'yt; '1ll0A 
TO PERPORIMMT SENSITIVITY ANALYSIS? DO 
WIVE WISH TO CHECK WITH OTHER DATA, OR 

i DIVIDING PRESENT DATA?. 

Main feedbacks are shown as dotted lines. 
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Programming 

As with most multivariate methods, the major use of 

cluster analysis is to reduce large volumes of, data to a 

manageable and perhaps more meaningful set. Thus it is 

important that a method should be able to handle large 

numbers of observations and variables, and thus programming 

considerations become important. 

If the method requires storage of the full similarity 

matrix then storage is of the order (N2). However in most 

cases only the lower (or upper) off-diagonal elements need be 

stored thus requiring storage order ( N(N-1))" 

However if rd is small it may be possible to adapt the 

program to calculate similarities as required from a stored 

data matrix (and as mentioned previously IrI can be effectively 

reduced by use of p. c. a. ) 
. Thus storage of order (Pit) is 

needed. This can however increase calculation time. 

One or two of the simplest methods which are in 

existence (e. g. single linkage, see page 133) can be 

programmed so that storage of the order (N) is necessary. 

However these methods are only elementary and are not so 

exact as the more complex methods. However this can 

increase the problem size which can be attempted by a large 

amount. 

For example, if storage of 20K is available: 
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N Pr1 

STOA N2 141 unlimited 

STORE 2N(N-1) 200 unlimited 

STORE NM 200 100 

300 66 

400 50 

500 40 

STORE IT 20,000 unlimited 

External storage can of course increase the problem size 

which can be tackled by a particular computer but this 

increases execution time. 

One approach to clustering large populations is to use a 

simple method which requires storage of order (N), to reduce 

the size of clusters to a size which can be tackled by a 

better method which can solve problems of order (. N2) or 

(NIA). 

An alternative approach is that of Ross (1970) who has 

discussed the possibility of analysing a set of groups of 

observations, and merging the results, or analysing a 

reference set and introducing other observations one by, one. 

Ross obtained encouraging results using the merging method. 

Programs which have been published include Wishart 

(1971), Veldman (1967), Bonham-Carter (1967), Liather (1969), 

Sibson (1973)t Sparks (1973). Other related programs, to 

output various clustering representations are published in 

Ling (1971) and McCammon (1970) (see T+IcCa coon. 1968). 
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B. 3 ORDINATION 

General 

A special set of techniques which can be used in similar 

instances to cluster analysis in order to examine data 

structure, is the set of so-called ordination methods. 

These techniques, although having differing approaches, all 

attempt to produce a mapping of observations (or objects) in 

a space of low dimensionality, in order that the structure of 

the data may be visually inspected. This new configuration 

can be obtained from one of two types of data: data from a 

higher dimensioned Euclidean space, or data from non-metric 

data (which as it stands cannot be shown as a Euclidean 

configuration of points). The method can be used on data 

sets of observations which are known to have a certain 

underlying number of dimensions, or if a certain 

dimensionality is required in a specific case. The 

importance of the representation of data in ordinate form is 

swnmed up well by Gnadesikan and Wilk (1969), they say: 

"One of the most important strategies of data 

analysis is, and always has been, graphical 

presentation and pictorialization". 

Factor analysis and principal component analysis can 

both be used as ordination methods, and in fact, they were 

the first ordination methods to be introduced. Other 

ordination methods may be used similarly to factor analysis, 

and indeed some are termed as 'non-metric factor analyses'. 

In data structure investigation, ordination has a wider 

purpose than the search for underlying structure of variables 
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in factor analysis, for example p if clusters exist then these 

may be seen by inspection of the final ordination 

configuration. 

Ordination methods, as well as producing low dimensioned 

mappings of points, also produce information from which the 

best number of dimensions to use, in a particular 

investigation, can be determined. This is normally 

facilitated by use of a measure of how much the original data 

has been changed to reduce the dimensionality. This measure 

is calculated for several different dimensions. From a 

graph of this measure against dimensions, the 'best' or 

lowest meaningful dimensionality may be estimated by 

inspection. This measure is sometimes called the stress of 

the configuration. 

The methods may be divided into two distinct types: 

metric and non-metric. Non-metric methods are those designed 

for use with non-rzetric input data, often from a rank order 

distance matrix. These methods are normally called the 

multidimensional scaling methods, although this term is 

sometimes in fact applied to ordination methods of any type. 

The non-metric methods seek only to preserve the rank order 

of the original distance matrix, in a space of given 

dimensionality. The most well-known method of this type is 

the method of Shepard (1962a, -b) which was formalized by 

Kruskal (1964a, b). The metric methods of ordination which 

include factor analysis and p. c. a. -are based on input data 

which is metric, but which has more dimensions than required. 
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Applications 

Ordination methods as such are a recent development and 

nearly all the progress in this area has been achieved in the 

last decade. This is possibly due to the large amount of 

interest aroused by Shepard's paper in 1962. The areas of 

application, as yet, are mainly those in which cluster 

analysis has been used with some success. However, as the 

subject is one of the newest multidimensional methods, the 

practical applications have not been numerous, although they 

are increasing rapidly. At present, applications have been 

suggested or attempted in the following fields: 

1. Psychology: Non-metric methods can be said to have been 

founded in the area of psychological scaling. The 

early investigations were normally based on methods 

which could be executed manually, and hence have been 

partly superseded by more recent computer methods. An 

excellent overview of the pre-Shepard psychology work is 

contained in Coombs (1964). Since Shepard's innovative 

paper, many areas of psychology have been subjected to 

multidimensional scaling. Ordinations have been made 

of people's perceptions of colours (Shepard 1966, 

Doehlert 1968), Morse code (Shepard 1963), facial 

expressions (Abelson and Sermat 1962. ), social attitudes 
(Messick 1956) and job status (Burton 1972). 

2. Ecology: The use of ordination in ecology has largely 

arisen from the use of heuristic manual methods, such as 
that of Bray and Curtis (1957), and the use of factor 

analysis. An overview of early references is contained 
in their paper. Ilore recent studies have been based on 

more mathematical methods, examples include Austin and 
Orloci (1966), Bannister (1968) and Anderson (1971). 

t 
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3. Archaeology: In this field the innovative use of 

ordination has stemmed mainly from the interest in such 
techniques of D. Kendall and Hodson. Ordination 

methods are seen in this area to be a useful way of 

gaining more information from incomplete data. 
Examples of the use of the techniques are very wide, see 

several of the papers in Hodson, Kendall and Tantu 
(1971), Hodson, Sneath and Doran (1966) and Tobler and 
\7ineburg (1971) 

. 

ý. Marketing: Here ordination was first used in the form 

of factor analysis, but the majority of work has been 

accomplished recently with non-metric methods. A lot 

of research has been done in trying to produce an 

ordination of products (called a product-space), from 

which relationships between products may be assessed. 
For examples of this application, and others, the works 

of Green are of particular note, and of abundance (see 

Green and Tull 1970, Green, Frank and Robinson 1907, 

Green and Rao, 1971,1972, Green and Carmone 1969,1970). 

A discussion of ordination in marketing is contained in 

Neidell (1969). 

Applications have been suggested in other specializations 

but, as yet, these have been isolated exploratory papers, for 

example Anderson (1971b) discusses the use of ordination in 

geology, . Thompson and Woodbury (1970) consider medicine and 

Green and LIaheshwari (1959) have used non-metric methods in 

investment analysis. Soils have been subjected to 

ordination by Bidwell and Hole (1964), and a sociology study 

on the existence of social classes is contained in Laumann 

(1966). 
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The initial procedural steps of ordination are very 

similar to those in cluster studies. In both cases the 

process of obtaining data input to the methods, normally in. 

the form of a distance matrix, is a very important stage. 

However the method stage is very 'different, because of the 

less concise structure which one is investigating, and 

because of the differing aims of each method. The analysis 

of results is also very different from that in cluster 

analysis - the result of an ordination requires much more 

user interaction to abstract its meaning, and for this reason 

it is suggested that its use will be best performed by those 

with knowledge of'the underlying concept of the method, and 

with detailed background knowledge' of the data under study. 

Optimization 

Some of the techniques of ordination involve the 

minimization of non-linear functions, normally quadratic 

functions. One of the most wall-known methods to solve such 

problems is the search technique of the method of steepest 

descent. This method begins with an initial set of values 

for the variables, Which can be either random or estimations, 

and seeks to improve upon the value these give to the 

objective function. The direction of maximum improvement in 

this function from this starting point is simply given by the 

gradient of the objective function at this point. 

This if our objective function is fp(xi) and our 

starting- point is given by the values ai of our variables xi 

then we calculate the value of -grad(fp(xi)) at this point 
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and obtain an improved estimate of the optimum by: 

fp+1 - fp -> rad(fp) 

>is a parameter which controls the distance which is 

travelled along this line of maximum improvement. X 
may be 

either estimated or by gradually increasing /\ until fp+1 

just bei ns to increase. 

The proceduro may be illustrated in two dimensions by 

tho f o11o: 7ing diagrai: 

One of the disadvanta os of this procedure is that local 

optima can son. tics s be found. This is normally partially 

avoided by following the procedure several times with 

different starting positions. 

For further details of this technique of optimization 

cnd others see Kruskal (1954), Spang (1962) and Milde and 

Peightlsr (1957). Other methods which are faster in some 

instances are given by Pletcher and Powell (1963), Rosenbrock 

(1950). 
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B. 4 S-RIATICN 

For certain types of problems in multivariate data 

reduction it nary be necessary to order objects on a one- 

dimensional scale. Techniques which perform this type of 

analysis are called seriation methods. The aims of these 

m3thods ar very similar to some scaling methods (as used in 

psychology), they only produce rank orderings and do not give 

any measures of relative closeness on a scale. The methods 

of psychological scaling and seriation overlap to a large 

extent, and the use of different names and approaches is due 

to different historical roots - archaeology where temporal 

ordering is of importance, and scaling methods have been 

developed independently in psychology. 

The principle on which archaeological seriation is based 

is that if objects are from a similar time period then they 

will be more similar than objects from totally different 

periods. This concept (which is at least partially due to 

Robinson 1951 and Brainerd 1951) implies that if we have a 

matrix of similarity between archaeological artefacts, such 

as bea;: ers (see Clarke 1952) or brooches (see Hodson et al 

1956), and the order in which the artefacts appear in the 

matrix corresponds with the historical order then we would 

expect to have similarities increasing towards the diagonal 

of the matrix. In other words, we would expect, in a 

perfect case: 

a(i, i) s(i, i+1) ? ', s(i, i+2) >, ..... ) s(i, n) 

and s(ii) >' s(i, i-1) > s(i, i-2) ). ..... >V s(ill) 
(where s(k, j) represents the similarity between artefacts 
k and j ). 
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Thus in a real situation with an unordered matrix, by 

interchanging the rows and columns corresponding to objects, 

one should be able to find the ordering which best reproduces 

the above form. This form is termed the Robinson form by 

Kendall (1969), but is more generally known in mathematics as 

the Toeplitz decreasing pattern (Renfrew and Sterud 1969). 

The development of seriation can-perhaps best be 

described with the aid of a diagram depicting the references 

between major papers on the subject. This is shown in 

Figure 1. (Note: if paper B refers to paper A and paper C 

refers to both A and By then the link C-A is not shown. ) 

The first appearance of seriation comes under the nahe 

of sequence-dating and was performed by Petrie (1899) by a 

'masterly combination of subjective and objective methods' 

(Kendall 1963) " However a more scientific approach was 

proposed (apparently independently)' over fifty years later by 

Robinson (1951) and Brainerd (1951). 

The Brainerd and Robinson papers initiated a chain of 

heuristic computer programs to arrange a matrix into near- 

Robinson form - see Ascher and Ascher (1963), Kuzara et al 

(1966), Hole and Shaw (1967), Craytor and Johnson (1968 ), and 

Johnson (1968), each of which attempts to improve upon the 

results of the preceding paper (and increases the computer- 

time). The seriation problem is very much related to 

psychological scaling in one dimension (as in. Torgerson 1958 

and Coombs 1964). 
, 
although this was not apparently recognized 

until the middle nineteen sixties, when Kruskal's program 

LIDSCAL was seen to be able to be used for seriation (see 
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Doran and 1: odson 1966, Hodson et al 1966, Cowgill 1968). 

Recent work by Kendall (1969,1970,1971) and papers 

contained in Hodson et al (1971) have continued-the 

application of one-dimensional scaling to archaeological data 

and have begun to consider the implications of higher- 

dimensional scalings (see Kruskal 1971). Wilkinson (1971) 

has related the travelling salesman problem to seriation. 

A difficulty with all methods mentioned so far is that 

of local optima. Since the methods cannot consider all 

possible orderings of the objects (10 objects can be ordered 

in 10: = 3,628,800 ways, 20 objects can be ordered in over 

2x 1018 ways), the heuristic programs consider subsets of 

the maximum number, and may thus find local optima. The 

psychological scaling methods of MD-SCAL type (see later) 

employ hill-climbing methods which also can result in 

sub-optimal solutions. 

! "lith the heuristic programs, as different orderings are 

considered, a criteria has to be used to determine if a 

particular reordering is 'better' than the previous ordering. 

With this type of method it can be defined by two 

considerations: 

ý. 'Which reorderings are evaluated. 

B. How improvement is measured. 

Vle proceed to define the major methods by these 

I 

criteria: 
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Robinson (1951) (see also Troike 1957 and Belous 1953) 

A. Reorderings by inspection. 

B. For the initial stages a reordering takes place if the 

number of negatively signed differences 
. 
(the number of 

cases where the similarities do not increase towards 

the diagonal) can be reduced. In the later stages 
the magnitude of the similarities is used by. trying to 

decrease the ratio of the sum of squares of all. the 

negative differences, and the sum of squares of all 
differences. 

Ascher and Ascher (1963) 

A. Agglomerative building of the matrix. Take the first 
two objects and consider if the third object is best 

placed in front, between, or at the end of the first 
two. Then take the fourth and find the best position 
for this, and so on. If any objects cannot be placed 
so that the matrix has Robinson form then they are 
discarded until all other objects which can be put 
into the matrix with Robinson form have been included, 

and then' the 'best' position for these discarded 

objects is found. No exchanges are attempted. 

B. A 'best' position is determined by the mini-mum number 
of negative differences. 

Kuzara et al (1966 ) 

A. Every object is tried in every position relative to 
the others until the 'best' is found. This is 

repeated until no improvement is found. This 

procedure is initiated several times with different 

starting positions. 

B. 1. The sum of negative differences over the sum of 
all differences. 

2. The sum of squares of negative differences over 
the sun of squares of all differences (as' in 

Robinson). 
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Hole and Shavi (1907 ) 

A. Alternating between two strategies - pairwise 
interchange which considers swapping each of the 
2n(n-1) pairs of objects for improvement, and 

successive rotation, trying each object in, all n 

possible places in the matrix, until no improvement 

can be found. 

B. Sum of squares of negative differences. 

(Note: Kivu-Sculy 1971 discusses the method with further 

elaborations. ) 

Craytor and Johnson (1968), Johnson, 
-(1908) 

A. Every object is tried in each position (as in 
Kuzara et al). 

B. Surn of all differences. 

Clarke (1962) has also used a sorting routine to produce 

seriations but does not fully report his results. Tugby 

(1965) suggests the use of mechanical sorting devices. 

Kendall (1963) also discusses and comments on Robinson's 

paper. 

The foundations of seriation from the psychological 

field date back to the first multidimensional scaling 

experiment by Richardson (1938) which lead to the non-metric 

multidimensional scaling method due to Shepard (1962) and 

Kru. skal (1964). The first use of this method in 

archaeology was in Doran and Hodson (1966)p although the aim 

of this study was not primarily seriation. Hodson, Sneath 

and Doran (1966) used the method for seriation and obtained 



66. 

encouraging results. Kendall has also used the method with 

some success (Kendall 1969,1970,1971). 

(Surprisingly, the fact that other one-dimensional 

ordination procedures might produce good seriations appears 

to have been passed by, even other non-metric multidimensional 

scaling methods have not been used. ) 

An unusual approach of Kendall' s work is that he does 

not produce a one-dimensional ordination but employs a two- 

dimensional plot so as to incorporate more user control and 

to reduce the possibility-of local minima (Kendall 1971). 

A more appropriate procedure would be to use the stress 

values from the program for different dimensions to determine 

the true dimensionality of the data and investigate that 

ordination. Kruskal (1971) suggests that one dimension may 

not be enough to describe the data, and the example given in 

Doran and Hodson 'refused to yield a low strain configuration 

in one dimension'. Wishart and Leach (1970) have attempted 

a one-dimensional T. iD-SCAB, on Platonic texts and below is 

their similarity matrix rearranged in the order they suggest. 
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P: i AEDRUS X 

REPUBLIC 0.45 X 

SYLIPOSIU, l 0.67 0.07 X 

TI L'IAEUS 1.08 1.01 1.11 X 

SOPdISTES 1.23 0.78 0.80 0.15 X 

CRITIAS 1.22 0.63 0.57 0.27 0.15 x 

7TH EPISTLE 1.28 0.70 0.71 0.40 0.27 0.19 X 

POLITICUS 1.68 0.90 0.92 0.40 0.27 0.16 0.27 X 

PHIIEBUS 1.73 0.61 0.58 1.03 0.63 0.44 0.34 0.33 X 

LAVt'S 2.23 0.87 0.79 1.45 0.91 0.69 0.57 0.53 0.08 X 

It can be seen that apart from Republic and Symposium 

there is almost perfect Robinson form, but these two cannot 

really be fitted anywhere in the diagram with satisfaction. 

Boneva (1971) has also analysed Platonic prose and did not 

proceed to a on3-dimensional ordination. (Griffith 1967 has 

referred to the use of clustering in literature studies. ) 

The suggestion that a one-dimensional solution may not 

give a true representation is not new, Ford (1954) suggested 

that the regional might be more than the temporal variation. 

It has been suggested that if clusters are present in 

the data then this can be seen by inspection of the seriated 

matrix. A process similar to seriation has been used in 

sociological studies for determining group structure in human 

social behaviour (see Coleman and MacRae 1960, Chabot 1950, 

Beum and Brundage 1950 and Forsyth and Katz 1946). The use 

of seriation as cluster analysis is not recommended, but if a 
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seriation is available or required then it may give some 

indication of whether clustering would be a fruitful 

approach - Hodson (1970) sums up with the words - 

"it is difficult to accept seriation as a serious 

approach to find clusters". 
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B. 5 DISSIMILARITY AND SIMILARITY LCH ASURLS 

As : ras discussed in Section B. 2, the similarity stage in 

any cluster analysis is a very important stage. This stage 

is possibly even more important in an ordination study.. The 

need for the similarity matrix arises from the definition of 

a cluster - requiring 'similarity' between cluster numbers - 

this can be assessed directly from a similarity matrix as it 

enables us to compare a pair of objects by a single measure 

of closeness. Ordination is also necessarily based on 

similarity, since that is what one seeks to represent in an 

ordination study. 

The inputs to the similarity phase are normally fror a 

data matrix of several observations measured on several 

variables, but they may be obtained directly from the 

observations themselves. An example of directly obtained 

similarities is if subjects are asked to rank a set of pairs 

of objects in order of similarity. In the cases where the, 

data matrix is bypassed, the distance matrix is not-obtained 

by calculation, thus in this section we shall restrict 

ourselves to distances obtained from data blocks. The 

similarity matrix obtained is the input for the next phase 

the method. This may constrict the similarities phase 

because some methods require a certain type of similarity 

input, thus in a particular study, before calculating 

similarities, one must consider the possible methods. 



70. 

Metrics 

Jardine and Sibson (1971) define a dissimilarity 

coefficient as a function P: P. x P-ý-R (R p 0) such that: 

1. d(a, b) >, o 

2. d(a, a) 

3. d(a, b) 
=o 

d(b, a) 

for all a, b¬ P 

for all ar. P 

for all a, be P 

(Note in Jardine and Sibson (1968) they define it differently 

including: 

d(x, y) =0 if and only if x=y 

which is a stronger condition than above. For our purposes 

we use their later version which allows two observations to 

haare the ae. ̂ýe values in the data matrix. This can easily 

occur for example in biology where two animals of the same 

species may well be identical ona set of measurements. ) 

Ho ever,. these are only necessary conditions and not 

sufficient - for any syatiuetric matrix with zero diagonal and 

no negative elements fulfils the requirements of the above 

definition. To be a meaningful dissimilarity coefficient 

the matrix must have a relationship with the observations 

which preserves our intuitive meaning for dissimilarity. 

This relationship is difficult to define, and indeed its 

definition will vary with the particular' measure in question. 

If we add a further condition, we obtain the set of 

coefficients which we - call metric coefficients or simply 

distance measures' (although this latter term has lost its 

meaning through misuse). ' This condition is: 

ý. d(a, c) . d(a, b) + d(b, c) for all a, b, c. P 
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This is the so-called triangle equality which if we 

imagine the observations as points in space requires the 

longest side of the triangle formed by the-lines joining 

three observations to be no greater than the sum of the other 

two sides. 

Metric coefficients are of importance because most of 

the ividely used dissimilarity measures are of this type. 

A similarity coefficient can be defined by analogy to a 

dissimilarity coefficient by the axioms: 

1'. s(a, b) .Y for all a, beP 

2'. s(a, a) =K for all a,. P 

3'. s(a, b) = s(b, a) for äll a, b. P 

(Note: This is at variance with the definition given by 

Harrison (1968) who states that "a similarity function only 

takes values in the interval [Oil]". This definition Is 

clearly at fault for it excludes, amongst others, the 

correlation coefficient which takes values in the range 

E1,13. ) 

There is no direct equivalent of the metric coefficient 

with similarities. 

If, further to our conditions necessary to define a 

metric space we use another stronger condition, to replace 

a-xi om 4: 

5. for max(d(a, b), d(b, c)) or all a, b, cE P 

then we-have an ultranetric space and the above relationship 

is called the ultrametric inequality. Axiom 5 implies (if 
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we consider the yam eN1ied tI e times to r triad) that any three 

observations form a triangle with the two largest sides equal. 

The importance of an ultrametric space is that it defines 

a hierarchic dendrogram. We can show that a hierarchy obeys 

the ultrametric inequality as follows: 

Any three points in a dendrogra can be arranged in the 

following form: 

A 

9 

C. 

ýI 

nc 

,'! e have d(A, B) = oc, d(A, C) =, d(B, C) =A 

and since x 

we have d(A, B) max(d(A, C), d(B, C)) max(/', F) 

d. (A, C) max(d(A, B), d(B, C)) ýraax(ýý%) 

d(B, C) max. (d(A, C), d(A, B)) fy ýiuax(f, %) 

Hence any dendrograrn is ultrametric. 

Thus the process of forming a dendro ra-i can be 

considered as the -process 

matrix into a distance ma' 

inequality in a way which 

clustering method of Roux 

systematically reduces to 

the distance matrix. 

of transforming the given distance 

trix which obeys the ultrametric 

is in some sense optimal. The 

(1969) is based on this fact and 

the 'sub-dominant ultrametric' of 
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Metric measures are not always appropriate, especially 

in some particular applications. For example, in linguistics 

one word can have two different meanings and thus. be very 

similar to two very dissimilar words. Another example is 

given by Ornstein (1965). where spectra, such as the following 

three, may occur in an experiment. 

I 2 I 

Here spectrum 3 is similar to both 1 and 2, but spectra 1 and 

2 bear no relation to one another. 

A useful transformation given by Maj one (19068) and 

i: ajone and Sanday (1971), transforms from one metric to 

another vrhich has range 0 to 
. T, ý. The expression is: 

T. Ixd(a, b) d(a, b} = 1+d J b 

which can easily be shown to obey the triangle inequality. 
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Types of Similari 

As discussed 

data which may be 

Each variable may 

and a data matrix 

types. 

ty Measure 

in Section B. 2 there are several types of 

produced for input to the similarity stage. 

be measured in one of four general types, 

can thus contain any combination of these 

The types are: 

1. Binary (or Two-State or Dichotomous) 

2. Unorderable Liulti-State 

3. Ordered Iiulti-State 

q. Continuous 

e shall continue to discuss each of these types individually 

before proceeding to the, question of mixed data types. 

1. Binary T, ie asure s 

If we consider the following 2 by '2 contingency table we 

can express most similarity coefficients in the terms of the 

elements within. 

Observation X 

10 

1ab a-r.. Observation 
Y 

0cd c+d 

a+c b+ä I a+b+c+d. = ri 
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Thus a is the number of variables on which both X and Y 

score j, b is the number of variables on which X scores Q 

and Y scores 1, etc. Thus a, b, c, d and n- are non-negative 

integers. 

In order to describe the similarity between X and Y, a 

fairly obvious measure would be to use the ratio, of the 

number of variables in :, which X and Y have the same value, to 

the total number of variables. 

a±d which has been called the Simple Matching I. e. n 
Coefficient by Sokal" and Michener (1958). 

However, in many applications such as botany and biology, 

all the variables may be of the so-called presence-absence 

type. With this type of variable, 0 signifies that an 

observation does not possess this variable (or attribute) and 

1 signifies that this attribute is possessed. In this case 

d is less meaningful than a since two objects that 

possessed none of the attributes would attain maximum. 

sinilarity with the Simple Matching Coefficient. Thus in 

these 
-cases one could use 

C which is the coefficient due to Russell and Rao 
n 

(1940). Alternatively, since in many studies observations 

are so diverse that many variables are needed a particular 

object may only score on a small percentage of attributes, 

thus 

am be more meanie 
a+b+c 

ý_ meaningful in these cases. This 

coefficient can be traced back as far as Jaccard (1908). 
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Kulczynski (1927) has suggested a 
b+c 

first t«o coefficients. 

which is related to the 

Two other coefficients of a similar nature have been 

suggested. That of Dice (1945) is 2a This is an 
2a+b+c 

apparent attempt to reweight- the denominator of the Jacca_rd 

coefficient so that presences have the sane weight as 

absences. The other which Sokal and Sneath (1963) call the 

Tanimoto. coefficient (and give the reference Rogers and 

Tanimoto 1960 - although in this reference the similarity 

measure used is Jaccard's) is 

a+ä which weights mismatches double in the 
a+2b+2c+d 

denominator. 

Other workers (such as O'neetham and Hazel 1969) still 

refer to this coefficient with the reference Rogers and 

Tanitioto 1960, but we believe this arises from an error by 

Solcal and Sneath, and -also since no simple logical basis can 

be propounded for counting mismatches twice, vie regard this 

coefficient as of little value. 

other similar coefficients have been suggested, but 

these bear simple relationships with the above measures. For 

example, the Coefficient of Floral Community (which, unlike 

the measures discussed so far is a dissimilarity measure) 

Which iS 

b+c 
2a+b+c 

This is simply 1-SD where SD is the measure of Dice. 
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The Coefficient of Floral Community can be shown not to 

be a metric measure by a simple counter-example 

variable 
12 

object 111 

201 

310 

1 
d12=d13=3 d23= 

d 12 +d 13 .< d23 thus d is not a metric function 

Clements, Schenk and Bronn (1926) have proposed the 

coefficient 

a+d-b-c 
'ri n 

but this is a variation of Sokal and I ichener's coefficient, 

since 

S 
sm ? 

Stephenson, -Williams and Lance'(1968) have proposed the 

Number of Features of Difference (UUFD) as a dissimilarity 

coefficient 

NNFD =b -ý- c 

However this measure cannot be compared for different studies 

since any increase in the total number of attributes measured 
b+c 

must increase the NFD, thus if we standardize to Yºe n 
obtain 

NFD =1-. SST, I 
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Thus we can consider all these measures as being based 

on the following set: 

a+d 1. SSill -n 

2. S=a 
n 

3" SJ =a 
a b+c 

2a+b+c 

The relationships between these can be shown graphically. 

If we consider the case where n=10 and graph similarity 

against a, we can obtain a set of points depending on the 

particular values of d and (b+c). See Figures 2 and 3. 

From these graphs it can be seen that 

E1 ýR SJ SSM 

and SJ SD 1 

This can easily be proved mathematically from the coefficients. 

The graphs for other values of n are similar to thos 

shown, for example with n=20 on the graph shown the a scale 

is re-labelled in steps of 2 up to 20 and the curves become 

b+c=20, b+c=18, b+c=16, ..... b+c=0. 

The curves drawn on the graph have no meaning in 

themselves as a takes only integer values, but serve to 

connect points in the sdras sequence. 
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It can be seen that SJ and SD produce similar curves - 
both are fairly insensitive to changes in a when b+c is low 

and a is over n/3, and sensitive to changes in a when a 

is less than n/3. ' All four methods give similar results 

with a slightly less than n, and may be markedly different 

with a< n/2. 

In choosing between the four coefficients it can be seen 
that SJ and SD are little different except that SD is more 

sensitive to. error when a is small, thus SJ is preferred. 

SSIII should not be used with presence/absence data since d 

does not contain as much information as a. Thus S and 5 

are left for consideration. Each has its own advantages. 

We may argue that the addition of a new attribute to our list 

should make no difference to our similarity between 2 objects 

if neither possesses this new attribute. SJ is unaffected 

by this new attribute, but SRR is decreased. Alternatively 

we may argue that with SJ the values are not comparable 

between different studies as its value does not alter as d 

alters. 

The distribution of SSI- has been examined by Goodall 

(1967). He has shown that Sokal and Sneath's (1963) 

estimate of the variance of the coefficient is not correct 

and its true variance is that of the Poisson binomial 

distribution. 
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We proceed to consider other similarity-measures not of 

the simple form so far discussed. Another set of binary 

measures is based on X2. Perhaps one of the first 

specifically for binary data was the fourfold point 

correlation coefficient or Pearsons phi coefficient, where 

ad-bc 
(a+c) (b+d) (c+d) (a+b ) 

(Note that 2 
=. )(, 2/n) 

Measures based on , ý2 are applicable to multi-level data 

(see later) and more general formulae may be reduced to their 

special 2 by 2 cases, for instance Tschuprows coefficient 

becomes the same as and that of Cramer (1946) is %2 for the 

2 by 2 case. 

Pearson has also proposed +ýz which has been called 

the coefficient of mean square contingency. 

Other writers have used the same numerator as that of 

Pearons .A famous example is Yules coefficient. of 

association 

QT ad - be 
ad + be 

and a variation called Yules coefficient of colligation 
Jad - be 

y= Fad 
+ be 

It can be shown (Kendall and Stuart 1967) that 

_ 
2Y 

1+Y-2 

and Kendall and Stuart state that hence nothing much is to be 

gained from Y. In fact Wilson (1931) states that Yule carne. 

to the conclusion that neither of his two methods was safe. 
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All the above measures include terms with bc, * thus if. b. 

is increased by 1 and c is decreased by 
. 1, the similarity 

measure generally changes. This seems intuitively wrong for 

a similarity measure. For the case where data is not 

presence/absence and a variable may thus be coded in the 

reverse way by replacing 1 by 0 and 0 by 1, the measures 

including terms of be change with any reverse coding. 

E. g. X 0 1 1 1 0 
Y 1 0 1 1 0 

becomes y10 
X 

21 
011 

Thus 0.1 Q_1 63 

whereas if we reverse the first variable we have 

x 1 1: 1 1 0 
Y 0 0 1 1. 0 

which gives 
Y 1 0 

X 

1 2 2 
0 0 1 

1Q=1 
Thus I ý= 46 
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Thus for presence/absence data the methods are suspect 

and for other data the coefficients are of no value. 

Goodman and Kruskal (1954) write: 

"the fact that an excellent test of independence 

may be based on ý2 does not at all mean that x2 

of some simple function, of it is an appropriate 
measure of degree of association". 

Dao elie (1965) has used the coefficient n(ad-bc), and 

Freeman (1970) has used (ad-bc)2 and (ad-. bc( � which are 

virtually identical. 

The coefficient of Forbes (1907) is 

na Gehich When 1 is subtracted from it, as (a+b) (a+c) 

suggested by Cole (1949) becomes 

ad-be SF " (a+b) (a+c ) 

which is the same as , but with a replacing d in the 

denominator. Cole also dismisses the 'coincidence index' 

falsely attributed to Dice (1945) 
2a 

g 

simply Forbes' original coefficient multiplied by 2p however 
n 

Forbes. ' measure is dependent on d,. whereas the other measure 

is independent. 

Michael (1920) has used the measure 

4 (ad-b c) S which is again of similar form M i, -+d)2 + (b+c )2 

to the above measures. 

Thompson (1916) has used 

a which is' the square root of that used 
(a+b ) (a+c ) 

by Sorgenfrei (1959). 
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The coefficient due to Cole (1949) depends on the 

relative magnitude of a, b, c and d. 

ad-bc 
(a+b) (b+d) 

Sc ad-b c 
(a+b) (a+c) 

ad-bc 
(b+d) (c+d) 

when ad i/ be 

when ad 4 be and a -< d 

when . ad <. be and a>d 

Hurlbert (1969) has shown that this can be expressed in 

the form 

S_ ad-be 
ý iad, bcý 

Ob s x2 
2 

where Obs `X, 2 is the value of 'x2 from the contingency table 

and Max 'X, 2 -is the value of x. 2 
as large (if ad 'T be) or as 

small (if ad < bc) as the marginal totals (a+b, a+O, b+d, 

c+d) will permit. Hurlbert shows that the measure is biased 

in that it is influenced by any observation that scores on 

either many or few attributes. 

Hurlbert suggests 

0_ ad-bc 0'o s ý' 2 
-- Min °, C 2 

8i 
ad-b c 

to remedy this bias. 

Wallis (1928) has suggested the use of 

Sa s Mina+b, a+c) 
and that due to Braun-Blanquet (1932 ) 

is given by a 
max (a+b 

, a+c ') 
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Savages Coefficient of Difference is simply one minus this 

last expression. 

Hole and Hironalkas (1960) coefficient 

2 rein (a+b 
, a+c ) 

SI- i2 a+b +c 

is a simple relationship of other measures-. 

s'TT. 
= 

Srvss 

Pager (1963) has proposed the measure 

a -1 
(a+b) (a+c ) 24ax(a+b, a+c ) 

the first expression of which is the same as that of Thompson 

and the second expression is similar to that of Braun- 

Blanquet. 

Kulczynski (1927) has used a( 1+1) which is a 2 a+b a+c 
similar type of coefficient. 

Sokal and Sneath have suggested an, average taxonomic 

distance which reduced to b+c for binary data, this is 
n 

simply the square root of 1- SRR. 0 

Finally, perhaps the most complicated measure that has 

been used is Preston's (1962) Resemblance Equation, were the 

similarity Z is calculated from the following expression: 

(a+c )1 /Z 
+ (a+b )' /Z 

= (a+b+c) h /Z 

Unfortunately Z cannot be calculated directly from this 

expression. 
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We summarize our list of coefficients in Table 1, 

excluding those which are variations of others, (and Table 2 

shows, for completeness, these remaining coefficients). 

We have already discussed the first four measures in 

detail and the discussion on'. 
2 

, covers measures , Sp and C8. 

With measures 6 to 18 in Table 1 it can be seen that the 

relative numerical values of b and c are of importance. We 

have considered the case of non-presence/absence data and 

shown that the similarity may be altered by the reversal of 

the coding of a particular attribute. Consider now the 

following two examples of presence/absence data: 

A. A set of insects are under study. They are coded as to 

whether they possess various attributes e. g. do they 

possess wings, antennae, jointed legs, etc. 

B. An area of marshland is divided up into quadrats and 

each quadrat is examined to see which plants, e. g. 

reeds, grasses, etc., are found in that square. The 

plants are thus scored (0) if they-do not exist together 
in a particular quadrat and (1) if they do co-exist. 

Suppose the contingency table in both cases was as 

f allows: 

insect/plant Y 

110 
insect/ 120 
plant -ý---- 

x046 

In case A, the insects X and Y agree on only two out of 

a possible twelve attributes and thus one would expect the 

similarity between them to be, small and indeed Sj = 1/3, 

S =-116 and S 1/2. One might assume that for the RR D 
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1. SOKAL & MICHENER 
(1958) 

2. RUSSELL & RAO 
(1940) 

3. JACCARD (1908) 

4. DIcE (1945), 
BURT (1958) 

5" lAIVTIVIOTO 

PEARS ON 

7. YULE 

8. DAGI E LIE (1965) 
FREEIr1AN (1970 

9. FORBES (1907), 
COL (1949) 

10. COLE (1949) 

11. (IJIcEVIAId &) 
MIGIRAE L (1920) 

12. THOLISOTv (1916), 
nerv r 

OTS UK & 
OCHIAI (1957) 

13. HURLBERT (1969) 

14. WALLIS (1928), 
sILIBSON (1943) 

15. BRkUIT-BLAY. Q12 T 
(1932) 

16. 

17. 

18. 

FAGS R (1963) 

X[JLCZYTNS. --, I (1927), 
DRIVER & 
KR G4" 133 R (1932 ) 

a+d Sb -n 

a 
RRý'n 

SJ a 
ate 

_ 
2a 

SD ' 2a+b+c 

Sl a+d 
a+2b+2c+d 

ad-be 
(a+c) (b+d (c+d) (a+b) 

Q_ ad-bc 
ad+bc 

SDI = n(ad-bc 
) 

_ 
ad-bc SF0 - (a+b)(a+c) 

SC 2a 
(a+b (a+6) 

4 (ad-b c) Sri (a+d) + (b+c ) 

STH = 
a, -b) tc 

- 

C8 _ id-bc Obs iß 2- I+Iin) 2 
lad-b cl Max 2- TAI; ý, 2 

a S 'd = Tdin a+b, a+c ) 

a. SB Max (a+b, a+c ) 

a 
F= (a+b)(a+c) 1. Iwx(a+ba+c 

1 1) 51(2 = 2(a+b 
+ 

a+c 

PRESTON (1962) Z where (a+c) "' + (a+b)'/" = (a+b+c) `ý" 

TAB IS 1 
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Variation of 

1" KULCZYNSKI (1927), 
HARRISON (1968) Sr _ 1(1 = 

a 
b+c s %(1S ) 

RR SDI 

2. COEFFICIENT OF b+c 
CLO , RALL ITY 

SFC r 2a+b+c 
SD 

r, *-, r*tir °, CLE LLNTS ET AL 
(1920), SCS - 

a+d-b-c 
n 

SST I HA IA71,7 (1901) l 

4. S T23PHENSON, 
WILLIALIS & 
LA.; CE (19o8) 

NFD b+c 3S, j 

5. PEARS ON S= 
P 

ad - be 6. YULE y^ 
. ýad + be 

Q 

2 c 7. SORGENFREI (1959) S- S (a+b)(a+c) S, 

8. COLE (1949) Sc - ad-bc Obs 2 C 8 
(ad-bcl T: Iax )2 

9. SAVAGE (1950) S? A - rnax {b c) SB 

a+nav 
(b 

, c) 

10. HOLZ &H IRONAICA S_ 2rnin (a+b, a+c) 
ýc 

SD % 
(1960) 

ý-tI ++ rS 

11. SOIAL & STEATH s A 
b+c . S (1963) SS R. R 

TABLE 2 
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two plants, the same statement would be true - they co-exist 

in only two out of twelve places, and thus'they are 

dissimilar. However, the argument used in ecology is that 

plant X exists in only two places and in both of these 

plant Y also exists, and thus there is a very strong relation- 

ship between X and Y, and*just because plant X is rarer than 

Y, this should not be disregarded. Some measures show this 

strong relationship, e. g. in this example Q=1.0 and 

S17 = 1.0. 

As each coefficient which is suited for this special 

purpose should attain its maximum value on this example, we 

may eliminate some of the similarity measures from present 

consideration. In fact, four measures reach their most 

similar value in this case,. Q, C81 Sys and Preston's measure, 

Which is insoluble for b or c equal to zero, but as 

b or c -. 0, then Z -- O which is complete association, since 

Z is a dissimilarity measure. The graphs of 1-Z and are 

shovmn in Figures 4 and 5 for the case a+b+c = 10. _Since 
Q 

and C8 are dependent on d, two graphs are shown for the case 

a+b+c = 10 with d=4 and d=8, these are. in Figures 6 to 

9. 

As can be seen the graphs for and 1-Z are-very 

similar with the main differences occuring when a and b are 

low. 



1"0 

O'l 

o"Z 

o "7 

o5 

0, ýL 

0-3 

02 

0I 

0 

1,0 

"9 

o-s 

e7 

o"(o 

0-5 

c- (, t 

o", 

o 

o. t 

0 

h=0 

LAE 

a 

CL 
D Lt 5 c, 7g9 10 



t"o 

"fo"2 

- a"2 

"-O't, 

"-o "$ 

1. O 

O. 3 

0.6 

o"2 

e"a 

-o2. 

-o "g 

-Iý0 

a 

A 

123 4- 5U7 'ä `º lu 

123 14.5 6? $q to 



I"c 

O .Z 

o"6 

0.4 

0.2 

00 

-02 

-C t'. 

-o' 

- (j. % 

ö 

t0 

o( 

0 "I{. 

oz 

o-c. 

-0-7- 

-O"Ef 

-0.6 

-0.2 

0 

ýw 

-, 41 ? (A 7q Cl 10 



94. 

However the calculation of Z is difficult, and best 

performed graphically (although a partial table is given in 

Preston's paper) - this is 'a disadvantage. From the graphs 

of C8 the main point of note is the discontinuity at zero 

similarity - this appears to be due to the disadvantage of 
9 

as a measure of association, but illustrates the use of 

the measure for-testing independence, since extreme values 

are only assumed for extreme values of a. Thus in choosing 

between the four measures, S`I and Q seem. the, most useful in. 

practice for this type of application. 

Figures 10 to 22 shore the other coefficients for our 

specified examples. It can be seen that SC is very similar 

to SFO, which-is not surprising as their equations are 

similar, and both of these coefficients resemble the 

behaviour of Q, but scaled according to the value of n. 

SK2 is very similar to 0 and SDA is also of the same type, 

but with straight lines for fixed values of b. SFA hardly 

varies at all with b for fixed a. 

Sly is very similar to ý, but decreases slightly for high 

values of a, in fact in the two cases below: 

a 0 

0 

the second case gives a higher similarity than the. first for 

all cases rohere a< a2 - d2. This is contrary to the 

intuitive notion of similarity. 
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Consider the two cases: 

a x 

0 d 

A B 

the similarity measures can be split into two groups, 

depending on which of these examples they give the higher 

similarity. Only two measures give table B the higher 

similarity, these are SB and STH' 

Conclusions 

The choice of similarity measure. depends on the 

application. Important questions of the relative importance 

of a and d, for example, are a useful approach. We 

tabulate below the methods under such questions. 

ý. Can you reverse variables? 
YES -. SSý; T ST 

2. Has d the same importance as a? 
YES -- SSW ST' 'Q SDA' ST�' C8 

3. Can you move 1 element from b to c without affecting 
similarity? 

YES - 3SI SRR, S J, SD, ST 

4. Can you use the measure in our ecology case? 
YES - 

0, C8, si( 
Y 

'u 

a x-y 

yd 

5. Is the method based on 2? 

,ý YE, 3 _0, C8 
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6. Is the similarity affected by a new variable on which 
both objects score 0? 

NO -SJ, SD' SC' STH' StiJ' SB' SFA, Z 

7. Does the similarity always decrease if a- is decreased 
by 1 and b increased by 1? 

NO - S1,1 

These type of questions should limit the choice of 

measure to a few, which will probably from the graphs shown 

turn out to behave similarly, so that the final choice is 

less important. Another consideration in the choice of 

measure is the range in which the values of a, b, c and d 

lie - for example if b and c are roughly the sane in a study 

than questions such as those which occurred in our, ecology 

example are of less importance. 

In the discussion we have suggested that measures based 

on may not be. useful measures of association. We have 

also given examples where the behaviour of STS,, SB, and ST, 

appears not to be in agreement with what is intuitively 

acceptable. 

It should be noted that while we have dismissed measures 

which are functions of others from our discussion, it may be 

that for cluster analysis or ordination a simple function of 

a measure may perform better than the original measure 

itself 
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2. Unorderable LIulti-State Measures 

We have discussed data types in Section B. 2 and the 

problems of this particular type have already been 

considered. If we are unable to 'improve' the data by 

measuring similar attributes which are orderable, or by 

forcing an ordering on the data, then we may proceed in 

several ways. 

We could score objects on two attributes by 1 for a 

match and 0 for a mismatch. For example Rogers and Tanimoto 

use this type of approach and use the expression -, 

zxityit 
lxit +Z yit - Zjxjtyjt 

(where xi t=1 if object x possesses state t of attribute i). 

However matches are rarer than in the binary case, and 

it may thus seem logical to weight matches accordingly, also 

a match on a six-state variable would be in general rarer 

than a match on a- three-state variable.. Thus. we could 

weight a match-on a particular variable by the number Of 

possible states. Vie would then have the similarity 

measure - 

i si t=l Xi t flt 

Si 
i 

(where Si is the number of states in the i. th 
attribute). 

One of the earliest measures due to Smirnov is even more 

complex, weighting states by their varity. The logic 'behind 

the method is discussed by Sokal and Sneath (1963), and 
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Smirnov (1968); the formula may be expressed by - 

n xityit 
-ZZ 

(xit-1)(yit-1) 
-1 

2si it Zit it (Zit-1) 
CA 7- 

(vihere Zit -1 if object Z possesses attribute i in state t, 

otherwise Zit = 0). 

As we do not have one particular state which may dominate 

a in presence/absence data, we may use any of the binary 

measures previously mentioned which include a and d, by 

scoring a match as 1. As in the above two examples-of 

possible measures, the weighting of attributes and states is 

one of the chief difficulties. 

3. Ordered P-fulti-State I. ieasures 

With ordered multi-state data one could simply ignore 

the ordering and analyse as if it were unordered, this would 

of course reduce the information content of the data. 

Another approach would be to estimate the interval between 

states und analyse as if the data were continuous, or one 

could repeat the analysis with different between state 

intervals. However this introduces assumptions which may 

not be valid. 

A more rigorous approach would be to use non-metric 

scaling methods to produce a'scaling of'the data which 'best' 

approximates to continuous data. Since ordered data is 

largely found in psychology, the methods of psychological 

scaling are those which are most used in practice. 
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4. Continuous Data 

The two measures of similarity which are most commonly 

used are the correlation coefficient - 
z(x 

- xi). (y yi) 
c. xy Z (x _ xi) - (7-yi) 2. 

and Euclidean distance, which in n dimensions is given by an 

extension of Pythagoras' theorem - 

I 
dx = (7-(xij - Xik)2)I 

There has been much discussion on the relative merits of 

these measures in numerical taxonomy. Eades (1965) has 

stated: 

"the correlation coefficient is inappropriate as a 
measure of taxonomic resemblance", 

whereas Boyce (1969) in a study involving five measures of 

resemblance including the two above, states: 

"Of the five coefficients, the correlation 
coefficient reacts to the components of size and 
shape in a way most similar to that which the 
taxonomist usually adopts". 

The usual argument against correlation is that it ignores the 

magnitude of variables, and the argument against Euclidean 

distance is that it ignores the 'slope' of the vector of 

variables for each object. 

Euclidean distance has difficulties where correlations 

occur between variables. In the example given by Boyce 

(1969) measurements were taken of a number of primates and 
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with Euclidean distance since females tend to be much smaller 

than males, they were often misclassified. This is caused 

by all variables being dependent on the overall size of the 

animal, thus. in using correlation good results were found. 

Alternatively one could reduce this size factor to only one 

variable by either principal components analysis or by simply 

dividing all lengths by the animals overall height, or by 

normalizing the variables vector for each animal, and then 

Euclidean distance cazld be used (i1 is is in fact an an ular distance measu). 

One. difficulty with Euclidean distance is that as shown 

above it depends a great deal on the scaling of " the data. 

Also a large difference on one variable can cause the 

distance to be large. 

Both measures have their uses and the choice dep3nds 

almost entirely on the application. 

Other distance measures have been proposed for 

continuous data, for example the average Euclidean distance - 

nZtxij_xik( 

There is also the set of measures called the Hinkornski 

metrics 
lxij 

xik 

where X=i gives the so-called City-block metric, axed) =2 

gives Euclidean distance. 
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An often used alternative to simple euclidean distance is 

the square of this. The squaring emphasizes the large 

distances, but the space then becomes non-metric. 

Penrose (1954) has suggested the splitting of Euclidean 

distance squared-into two components, one which measures 

'size' and the other 'shape'. -Thus we have 

1 fdi 2_ (n, Tdi. ) 2+ (l Zdi 2-( Zd1, ) 2) 

SIZE SHAPE 

The first term is the square of the average distance and the 

second term i: proportional to a coefficient used by 

Zarapkin (1934). However as pointed out by Rohlf, and Soka3. ' 

(1965) the shape coefficient ignores additive size difference 

but not proportional size difference. 

Pearson's coefficient of racial likeness (1926) is of 

similar form to Euclidean distance. It is, 

xi i- Xik 

Si 2 Sik2 -2 nn 
nj nk 

which is a measure of the difference between two groups. 

This measure has come in for criticism from several authors. 

Seltzer (1937) has discounted the measure since it ignores 

intercorrelations, and varies with the number of characters 

and the size of the sample, he describes the measure as: ' 

"nothing more than a test of significance"'. 

Crenbach and Gleser (1953) state that the coefficient of 
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racial likeness 

"proved unsatisfactory in the anthropological 

research for which it- was developed". 

One of the problems with distance measures such as these 

is that if the original -variables have intercorrelations then 

overweighting can occur. This can be mathematically 

'extracted' by using the Tiahalarnobis D2 statistic, or bya 

preliminary principal components analysis, but a large amount 

of the correlation may come from clusters present in the data 

(see Gower 1969). 

Other correlation measures have been little used, such 

as tetrachoric or rank correlation. The main difficulty 

with rank correlation, although it has useful distribution- 

free properties and has been recommended for use I in 

discriminant analysis by Kendall (1966), is that it can 

reduce the distance between clusters and thus make them less 

distinguishable. 

The cosine measure (sometimes referred to as angular 

separation) has been used. It is independent of 

proportional differences in size, but not additional 

difference . It is 

2: XikXjk 

(ZXiv2 Z xjv2ý 2 

1.2 measures can be used directly with continuous data. 

Measures such as A., 2 
with Yates correction, x and the 

n 2 
Coefficient of Contingency C have all been used. 

1+ xýn 
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Also based on 'e is the pattern similarity coefficient 

of Cattell, Coulter and Tsujioka (see Cattell 1949) - 

_ 
Ei - Z: d 

2 

rp r Ei}d2 

where Ei = twice the median 'X. 2'for i d. f. 

A heuristic similarity nicasure proposed by Bray and 

Curtis (1957) and used in several American papers (see Hole 

and Hirona ka 1960) is 

2 min (xjk, Xjk) 
k 

ij T- 
k 

Xik +k Xjk 

this has been used as a distance measure by the transformation 

did = 1-Sid, this gives 

1 Z: 'xi -Z 7j k' 
7-Xik + Zxjl. 

This is of similar form to the Canberra metric 

[Xik 

Xi k} XJ 
1s. 

which is based on T, 'Culczynski's 
2a 

2s. +b+c 

LTixed Data Types 

The problems when data is of mixed types (e. g. some 

binary and some continuous) has been briefly considered in 

Section. B. 2. 

The problem can be solved by either moving data up a 

category and assuming a property which it may not possess, or 

by moving down a category and losing inf ormation. 
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Another possibility is to evaluate several 

similarities, using one data category for each and to employ 

a weighted average to determine overall similarity. 

If unorderable multi-state and binary data are mixed 

then ' one. can proceed by using. the measures of the former, 

since binary data is a special case of this. Similarly, 

binary data is a special case of ordered multi-state 'data. 

Also suitably scaled binary data can be considered along with 

continuous data. 

Inforaiation Measures 

The use of information theory in classification is new, 

only having been introduced in the last ten years, but it is 

now to some extent fashionable. Perhaps the first 

suggestion of the use of information measures comes in 

Rescigno and i; accacaro (1961), but these were not used until 

much later by Williams and Lambert (19056), Lance and Williams 

(1957). 

In information theory we are concerned with the receipt, 

of particular messages fror 
.a source. We call p, the 

probability of a particular message i being received. . 'rho 

probability is lover, the more unexpected the message and this 

more information received. Based on this and other 

considerations we can define (Coombs et al 1970) infor- 

mation as Ij _ -Klog pi and for convenience one t akes 

K=1. 
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The expected information conveyed by a set X of several 

possible messages is called the uncertainty or entropy* of the 

message set. 

U(X) = -7_pi log pi fron the definition of expectation. - 

This can be used as a measurement in numerical taxonomy. 

If we consider a set of binary measures on n individuals, 

then the two states have probabilities pi and 1-pi and so - 

tý UCH) - log pi + (1-pz )logt 1-Pig/ 

If ai individuals possess the ith attribute then the 

best estimate of pi is s 
,ý. Thus we define the information 

content of the set X 

I n. U(X) =n low n- 
(ai log ai + (n-ai)1og(n-ai )) 

This expression becomes zero if all objects are identical, 

and increases as points become more dispersed. 

I ,. for, mation content is additive so we can obtain. the 

gain in information content if two sets are combined by 

simply adding the information. content of each set. 

However entropy is a measure of disorder and both a 

clustered distribution and a regularly spaced distribution 

have low values of uncertainty (Sneath 1969). Also the use 

of the method with centroid sorting (the information-analysis 

method of , 7illiams and Lambert 1966) has a tendency for equal 

sized clusters to be found. 
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The theory of information is covered in Theil (1967) and 

Coombs et al (1970). The relation to classification is 

discussed in Boulton and Wallace (1970) and Wallace and 

Boulton (196)8), and it is shown how continuous variables may 

be incorporated. 

I. tulti-Level Data 

The classification of objects sometimes occurs where for 

each variable we have a string of values, and thus we have a 

two-dimensional matrix for each object. For example we 

might have a set of companies and measures on these such as 

turnover, profit, liquidity, etc., each of Which is measured, 

on . several. years. The difficulty can be partially resolved 

by considering the n by m matrix as a n*m vector and 

proceeding as in the normal case. 

A related problem occurs -in soil classification, where 

for particular geographical points soil. samples are taken at 

various depths. The soil sample is analysed for chemical 

composition and thus for each point there exists a'ra tri; y. of 

depth against composition. The problem is that the depths 

at ons point may not correspond to. the depths at. another 

because of land-slipping, faults, etc., extra strata may, 

exist at one point, or be entirely missing., Rayner (1960) 

has suggested forming a similarity matrix for each pair of 

points and taking the levels with highest similarity thus 

forming a set of data which can be analysed in the normal 

way. As Lance and Williams (1967) have pointed out, if this 

were used in our companies example then one firm whose 
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profits etc. were declining, and one with increasing 

variables would be measured as very similar. 

The problem of not being able to match soil samples at 

the same level is a very similar problem to that of homology, 

in biology where two species of animal which derive from a 

common ancester have several characteristics the same although 

the size, relative position of organs, etc., may be quite 

different. These animals are said to be homologous. 

Jardine (1967) has discussed homology and its' relation to 

taxonomy. 

Comparisons of Measures 

Comparison studies of measures on data are as yet very 

few. One major difficulty is that the results of an 

analysis are heavily dependent on the method used. 

Boyce (1964,1969) has compared five similarity measures 

on one set of data - correlation coefficient, cosine, 

Euclidean squared distance, the shape coefficient of Penrose 

and the mean character difference. The data was normalized 

for each variable. He ranked the five measures in order of 

success in depicting the true relationship between the 

objects; they were correlation coefficient (best), cosine, 

shape coefficient, mean character difference and squared 

Euclidean distance. The cluster method used was group 

average. 

Rohlf and Sokal (1965) have compared the correlation 

coefficient and Euclidean distance coefficients giving a 

bivariate frequency chart of the values of r and the 
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corresponding Euclidean distance. This study confirmed the 

size and shape effects and stated that if objects varied 

greatly in size then the correlation coefficient should be 

used and only if this size effect could be extracted can 

Euclidean distance be employed. They conclude that both 

measures should be used and results compared. 

Green and Rao (1969) compared eight measures on one set 

of data, by comparing the results at an. eight-cluster level 

in the solution. The results were portrayed by using multi- 

dimensional scaling, the similarity between results being 

measured by the fraction of points classified in the same 

groups. The eight measures were Euclidean distance squared, 

T; Tahanobis D2, Gower's log distance measure, Kendall's rank- 

distance, City block distance squared, cosine, correlation 

and covariance. The results showed most measures giving 

similar results (covarianc'e, Gower's and City block being 

identical) except for the correlation coefficient and 

KLendall's measure which had very different results. 
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C. 1 GENERAL DISCUSSION 

Cluster methods can be divided into two types - 

monothetic and polythetic. ]onothetic models are not 

strictly multivariäte methods, they are divisive in operation, 

dividing into groups successively on single variables, 

deciding at each stage which variable is 'best' to split on. 

Basically they divide into two groups on the basis of that 

variable which has the most discriminating power. They have 

been designed mainly for binary data - with continuous or 

multi-state data we would have the problem of where the best 

cut-off point on that variable was, and also a particular 

variable may give a good division into more than two groups. 

Polythetic methods are the most common type, and are those 

with which we are primarily concerned. Polythetic methods 

do not single out particular variables but use them all 

simultaneously. 

An advantage of inonothetic methods is that the groups 

they produce have unique characteristics, and hence division 

of new items into 'the appropriate groups is simple. 

Cluster methods sometimes have the property that an 

object can belong to two or more groups at the same time. 

These overlapping cluster methods are fairly uncommon, but 

the property of multi-group membership is useful. in some 

cases. I, Ionothetic methods cannot produce overlapping groups. 

Vie can thus divide methods into three distinct groups: 

1. Polythetic, disjoint 

2. Polythetic, overlapping 

3. Monothetic 



117. 

Further classification of methods into types is 

difficult because of the wide differences in approach to the 

problem by various authors in different fields. ', Sometimes 

methods are classified according to the type of data input - 

e. g. we might talk of binary methods - but many can be used 

or adapted for all types of data. The. class of polythetic, 
disjoint clustering is by far the largest (and often only 
these are called cluster methods), and we can perhaps 

distinguish two special sub-types, so we divide into three 

classes: 

(a) hierarchic methods 

(b) relocation methods 

(c) other types 

Hierarchic methods are those which form a dendrogram. 

They have the advantage that the-structure of the data can be 

displayed easily. They can also show sub-clusters and 

outliers more easily than most other methods, and in fact the 

tree diagram may be a requirement in itself. Hierarchic 

methods are normally performed by agglomerative or divisive 

algorithms, beginning with each object in a single cluster 

and gradually-merging until all objects are in one cluster, 

or vice versa. These algorithms although optimal in some 

sense at each fusion or. division stage,. do not generally 

produce overall optima, in the sense of obeying Axiom 2' a1 page 17. 

Relocation methods are those in which the membership of 

clusters varies by attempted improvements of the clusters. 

Objects are allowed to join other groups if this gives a 
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better value of the objective function being used. These 

cannot produce hierarchies, and are generally slower than the 

hierarchical methods. They produce an optimum at each stage, 

but these can be local optima. 

These two categories do not overlap, but methods exist 

which it is difficult to determine if they come into these 

categories or not - for example, methods*rmay produce partial 

hierarchies, or tree forms similar to dendrogranns. 

Of the methods which are not of the hierarchic or 

relocation type, some are heuristic approaches Which were 

originally designed for hand computation, others involve 

partial enumeration of possible groupings and mathematical 

programming has been used - the approaches are numerous. 

Of the five types of method we have outlined each has 

evolved in its own way. Monothetic methods were founded and 

are still mainly used in ecology studies where the concept of 

'indicator species' (i. e. that some species of plant are much 

more important in determining vegetation types), which has 

been in existence for many years, lead to this type of 

approach. The majority of the work on overlapping groups 

has been carried out in information retrieval- where the 

information required by two people will often overlap. 

Hierarchic m3thods are used by biologists, botanists, etc., 

where division into hierarchies of genus, species and sub- 

species is a requirement. Relocation methods are a more 

recent introduction and cannot be identified with a 

particular science (except perhaps mathematics). Sciences 
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such as pattern recognition and sociology have lead to 

special types of method which are used at present exclusively 

in those fields. 

In the following section we shall examine examples of 

five-types of method, concentrating on those methods which 
have been widely used, or. have historical significance. ý New 

and promising methods are also included. Terminology has 

been introduced and explained progressively and some original 

examples are included for illustration. 
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C. 2 EXPLANATION AND DISCUSSION OF METHODS 

EARLY L THODS 

1. FACTOR ANALYSIS 
2. B-COEFFICIENT SEARCH 
3. TRYON'S METHOD 
4. MATRIX SHADING 

5. RAMIFYING LINKAGE 

6. CATTELL' S METHOD 

1(a) HIERARCHICAL 
7. NEAREST NEIGHBOUR 
8. FURTHEST NEIGHBOUR 
9. WEIGHTED AVERAGE 

10. GROUP AVERAGE 
11. CENTROID 

12. B DIAN 

13. FLEXIBLE 

13A. 'EXTENSION OF FLEXIBLE 
14. WARD'S METHOD 

15. SINGLE LINK ON K-LINK CRITERIA 
16. NUCLEUS METHOD 

17. DISSIMILARITY ANALYSIS 
18. PROFILE CLUSTERING 
OTHE R HIERARCHICAL METHODS 

1(b) ITERATIVE RELOCATION 

19. BEALE' S 1,12-THOD 
20. GROUP AVERAGE RELOCATION 
21. NEIGHBOURHOOD METHOD 
OTHE R ITERATIVE RELOCATION METHODS 

1(c) MISCELLANNQUS 
22. MODE AUALYSIS 
23. CONDENSATION MODEL 
OTHER MISCELLANEOUS METHODS 

2. OVERLAPPING t'ETHODS 

3. r NOTHETIC LLLTHODS 
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EARLY ltIETHODS OF CLUSTER ANALYSIS: 

1" Factor Analysis 

Cluster analysis began as a result of the upsurge in the 

use of factor analysis in the-'1930's. Llany authors who 

experimented with the then new technique of factor analysis 

were using it as a method for clustering variables into 

'like' sets, by dividing the variables into groups according 

to their factor loadings -and not using the loadings simply as 

a method of determining underlying dimensions. 

The method has however many difficulties; unless 

oblique axes are used, the method relies on there existing 

groups of orthogonal factors; there is the problem of 

where to make the cut on each of 'the new factors; the fact 

that different rotations of the data will give different 

results; and that there is no measure of. the 'goodness of 

clustering'. 

Another difficulty is the possibility of having high 

positive and negative loadings on the same factor - the 

method normally proceeds simply to ignore the high negative 

loadings, (although this could be improved by taking 

absolute values, or if more appropriate by considering all 

high negative values as a separate cluster). -A further 

problem is the fact that the number of factors which are 

obtainable from a data set of n observations and m variables 

depends on the number of variables - the number of factors 

cannot exceed m-1. 
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The method may often produce overlapping clusters, as an 

object may have high loadings on more than one factor; this 

may or may not 
, 
be a disadvantage. The method is described 

in Sokal and Sneath (1963), and is apparently, despite. its 

problems, still in use today. Recent users include 

Harman (1966) and Ford (1970). 

Other workers have used variations of this approach. 
Fleming (1935) divides the space into eight regions formed by 

the first three factor axes, and hence obtains - 'clusters' . 
Hopkins (1967) has used a similar method of dividing the 

first four principal axes into half at the average point, 

and reallocates points near the origin to their nearest 

neighbour. - Noy-heir (1973) successively divides on the 

principal components beginning with the largest. Aaker 

(1971) suggests visual clustering from a low-dimensioned 

factor representation - however this may well distort true 

interpoint distances. 

2. B-Coefficient Search 

This method used-first by 'Holtzinger and Harman (1941) 

(although Kahl and Davis 1955 attribute it to Tryon 1939) is 

a heuristic search method for finding clusters, -wwhich can be 

performed fairly simply by manual methods. It centres.. 

around a 'goodness of cluster' coefficient B. - This 

coefficient which we shall call the B-coefficient is defined 

as the ratio between the average within-group correlation and 

the average correlation of the group members with all points 

outside the group. 
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h (n' 1ý G Cri 1J - º'1 ý) 

where n is the number of objects in the cluster G and N is 

the population size. - Note that the coefficient is not 

defined for groups of 1. 

We can represent the ratio on the correlation matrix by 

considering the matrix elements to be rearranged so that the 

n group members occur first: 

'( 

`. 

-----------ý 
ý1» Qt »21)61 

CT. rý+' 

The B-coefficient is then the ratio of the average element in 

the dotted triangle to the average number in the boxed-in 

rectangle.. 

If the B-coefficient had a high value then this. would 

indicate that there was a higher cohesion between members in 

the group than with those outside the group under 

consideration.. If the B-coefficient was unity then this, 
. 

would indicate that,. the group were not particularly cohesive 

or non-cohesive. If one. could calculate the B-coefficient 
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for every possible cluster then one could simply select those 

with the highest coefficients. However this is 

computationally infeasible even on a computer for more than 

10-12 objects, and thus a search method is used. 

The method is described in Harman (1966) and in Clements 

(1954). Clusters are built up until the B-coefficient drops 

below the arbitrary level of '1.3. From the correlation 

matrix the pair with the highest correlation are selected and 

their B-coefficient calculated (this will normally give a 

coefficient well in excess of 1.3). Then the object most 

highly correlated with the previous pair is considered for a 

member of the group, and the B-coefficient of the 3 objects 

is calculated, and if it is larger than 1.3 the object joins 

the group. This process is continued until an object is 

considered which causes the coefficient to fall below 1.3, in 

which case this object is rejected from the group and'of the 

remaining non-clustered objects the pair with the highest 

correlation are selected and the process continued as below. 

The procedure is continued until all points have been placed 

in groups, or have been-found not to fit in any group. 

One of the difficulties of the method is that-the 

procedure is not well defined, Harman excludes members from 

groups if a drop in the B-coefficient "seems to be too great", 

and uses pre-judgment of the grouping expected - "Test-11 is 

retained, although it causes a drop of 47 points in By 

. because it is of the same general nature as Tests 10 and 12". 

Clements has used pre-judgment as shown later. 
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Another major difficulty is in the B-coefficient itself - 

the difficulty occurs when negative correlations exist, 

Clements has stated that "some individuals have expressed 

doubt whether the B-coefficient method can handle situations 

involving negative coefficients of correlation. Such doubt 

is groundless", and employs the absolute magnitude of the 

coefficient in cases where it becomesnegative. Consider 

the following correlation matrix: 

xyz 

x. 1 -0.5 0.1 

Y -0.5 1 0.3 

Z 0.1 0.3 1 

We obtain - 

B(X'Y) 
0.2 = -2.5 

B(Y, Z) = 
0.3 

= -1.0 
-0.3 

B(x, z) = 
0.1 

= -1.0 

Thus X and Y give the highest absolute value in B and thus 

would be selected as a group, despite the negative 

correlation between then. 

The difficulty occurs when either the average 

correlation within the group or the average between group 

correlation'is negative. 

This may be rectified by the addition of 1 to each 

element of the correlation matrix, and division of each 

element by 2, to convert all the matrix elements to be in the 

range 0-1, 
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i. e. we substitute 
1 

__ 
ý'+ 1 

2 

Even with this improvement the method is not too accurate, 

with an arbitrary-cut-off point at B-1.3, and a not too 

well defined procedure for cluster searching, and the method, 

although still apparently in use today, is not recommended. 

Fortier and Solomon (1966) have used random sampling of 

groups, and calculating the B-coefficients of these groups to 

try and find an approximate resolution of objects into 

clusters. However they state that their results were 

disappointing and that quicker more direct-methods gave 

better solutions. Their conclusion was that the 

distribution of the B-coefficient is very skewed with the 

best B values in the tail. 

3. Tryon' s Method 

This method was first published in 1939 in a monograph 

by Tryon. Unfortunately this book, probably the first on 

cluster analysis, is now almost impossible to obtain due to 

the limited number originally printed, however according to 

Bailey (personal communication) all the material of the 

original book is covered by Tryon and Bailey (1966) and 

Tryon's method is also discussed by Cattell (1944). 

The method is a second-order process, based on the 

belief that similar objects will have similar similarities 

with other objects. The method begins by selecting a first 

element as a nucleus for a cluster, this is chosen as the 

element i with the highest variance of the squared 

correlations in each column of the similarity matrix. The 
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second element is chosen according to the size of an 'index 

of proportionality, - Pij2 given by: 

2 
rikrjk 

Pl 
r2ik rj k2 

kk 

The element with the largest Pij2 joins the first element if 

Pij2 > . 81. Other elements j are selected to join the first 

cluster on conditions -. 

1. The mean within group Pkj 2> 
. 
81 

2. No within group Pkj 2< 
. 40 

When no elements are able to join this cluster a new cluster 

is begun. 

The method is similar to obtaining-the second-order 

correlation matrix from the columns (or rows) of the original 

matrix and performing a simple clustering of the objects 

using this matrix. 

The method is somewhat archaic and relies on 2 

arbitrary levels . 81 and . 40 (which may be changed by the 

user), but the method, revitalized by Tryon and Bailey's 

recent böok, and built into a computer package BG-TRY, ' is, - 

still used today. Articles using the method have appeared 

largely in marketing, for example Myers and Nicosia (1968). 

4. Matrix Shadin 

This simple method of clustering can be traced as far 

back as Burt's famous book 'The Factors of the Mind' which 

appeared in 1940. The method is based entirely'on the 
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similarity matrix between objects, the range of the values of 

wýwhiich is dissected into about 4 or 5 bands so that the 

elements are divided into timt number or roughly equal groups. 

Thus for example the elements of a correlation matrix may be 

divided into four groups such as 1.0 to 0.6,0.6 to 0.4, 

0.4 to 0.2,0.2 to -1.0. Each element is then replaced in 

the matrix by a shaded square according to the group it 

belongs to, the shading being of a certain type for each 

group, and the intensity of the shading increasing with the 

similarity. Thus we may replace the elements of a 

correlation matrix as follows: 

Correlation 1.0 to 0.6 i illed 

0.6 to 0.4 squared 

0.4 to 0.2 lined 

0.2 to -1.0 
[1 blank 

The order of the objects in the matrix i3 then rearr an:; ed by 

inspection 3o as to try and place the darkest shaded squares 

as near as aossibi-e to the diagonal of the matrix - this 

br Ines similar objects near to one another in the order they 

wpve.: r in t'; ýe matrix. The objects ir_ the matrix are 

rearranged until -there appear to be no more rearrangements 

which ý,,, -j_7_l improve the position. The improvements involve a 

certain 'trade-off f between multiple objective - it may be 

ette to mo'v'e ca vary high similarity awa,,. y from the diagonal, 

so that two or three moder-. tely high similarities will be 

nearer tie diagonal. Once the matrix has been finally 

r earra ; =Ted, it is inspected - if marked clusters are present, 
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they will s)ow as squares of dark shading on the diagonal of 

surrounded by Lighter s: Lading. 

Consider the hypothetical similarity matrix: 

12345678 

1 100 10 64 -12 81 04 09 19 

2 10 100 -24 54 25 14 46 95 

3 64 -13 103 -12 74 01 08 15 

4 -12 54 -12 100 35 16 26 25 

5 81 25 74 34 100 -03 00 29 

6 04 14 01 16 -03 100 41 16 

7 0 46 08 26 00 41 100 -01 

8 19 95 15 25 29 16 -01 100 

7e divide one similarities into 4 groups: 

100 to 60 

60 to 40 

40 to 20 

20 to -2) 

By r placin the values in the matrix by their associate 

s kied we o^ U, -un: 
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Several improvements can be seen by visual inspection, simply 

by transposing adjacent elements. For exa . ple, exchanging 

6 and 7 brings t io shaded squares nearer the diagonal and 

moves only blank squares further from the diagonal. The 

matrix becomes, after several exchanges, the following: 

From this rearrangement a definite group of elements 1,3 and 

5 can be seen, a pair group of 8 and 2 with an associate 

e Lenient 4 and another weaker pair group 6 and ;. 
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There are, two main disadvantages with this method; the 

method is cumbersome with large matrices, and local optima 

are often found. The problem of matrix size can be partly 

overcome with a large computer, but the local optima problem 

is more troublesome. The main use of the method today is in 

an illustrative role. 

This rearrangement of elements is connected to 

seriation. Robinson (1952) showed that if a similarities 

matrix of artefacts could be ordered such that all 

similarities increase as one approaches the diagonal of the 

matrix i. e. such that for all i, 

S (i, j) S(i, j-1) 

S(i, j) ?ý Stir j+1) ji 

then the order of the objects in the matrix should correspond 

to their order in tine. Seriation methods are considered 

more fully earlier in this work. 

Ling (1971) gives a. computer program which prints 

appropriately shaded matrices. Rayner (1966) and Clarke 

(1962) both use matrix shading to advantage. 

5. Ramifying Linkage 

This early Method has been discussed by Qattell (1944) 

and can be traced back as early as a paper in 1942 by 

Sandford. Cattell suggests that the method was at that time 

used in most cluster studies.. The method. begins with a 

threshold level in the similarity matrix, above which pairs 

of elements are said to be linked.. By a systematic method, 
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the groups of objects which are all linked to the other 

members of the group, are found. These form the resultant 

clusters. I 

The method is a forerunner-of the more modern complete- 

link method. The speed of the method depends on the number 

of similarities above the threshold, but Cattell estimates 

that with 200 variables and a threshold level such that a 

tenth of the similarities form links, as many as 60,000 

linkages must be inspected. 

The method has the problem of deciding a best threshold 

and thus has no advantages over the complete linkage method 

performed by computer. 

6. Cattell's Method 

This has been proposed in. Cattell's 1944 paper as a 

faster method (and as such, more suitable for hand 

calculation) than the ramifying linkage method. The method 

begins by setting a threshold, above which similarities are 

considered significant. Objects-which have similarities 

above this threshold are said to be linked. Pairs of 

objects which are-themselves-linked.. and both have-linkages 

with the same two or more other objects become members of, the 

same group. As ramifying linkage was a simpler version of 

the complete link method, Cattell's method is a version of 

the Klink method (with K= 3) explained later, -and has no 

advantages over this method.. 
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1(a) HIERARCHICAL METHODS 

7. Nearest Neighbour 

The method of nearest neighbour clustering, sometimes 

called the single link method, was one of the first 

clustering methods to be used, because it was easily suited 

to hand calculation. The method found its use mainly in the 

field of numerical taxonomy and is normally attributed to 

Sneath (1957), although the technique was independently 

introduced by r1cQuitty (1957) in the same year as Elementary 

Linkage Analysis, and was in-use even earlier (Florek et al 

1951). The method is the same as the Minimum method of 

Johnson (. 1967), and the method of Jizba (1964), and very 

similar to one of the methods of Cattell and Coulter (1966). 

Examples of the use of the method are in Holloway and Jardine 

(1968),, Lessel and Holt (1970) and Muir et al (1970). 

The method is perhaps best understood by describing the 

way in which it is performed by an agglomerative algorithm. 

Initially each observation is considered to be in a cluster' 

on its own and then the two 'nearest' observations (i. e. that 

pair with the highest similarity) are clustered (linked) into 

one group. The algorithm proceeds by successively linking 

the pair with the next highest similarity (if one of the pair 

is already a member of a group, then the Other observation 

joins that group; if both observations are already in 

groups, then the groups join), until all the points are in 

one'group. Fron this a dendrogram can be constructed. The 

method may be used with a 'cut-off point' - groups only being 

formed up to a certain similarity level. The method can 
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also be performed by gradually completing one group at a 

time - this is the sequential approach, as opposed to the 

global approach. 

As the method is suitable for hand computation we can 

explain further by a simple example. 

The following correlation matrix (decimal points 

omitted) is taken from Kahl and Davis (1955) who were ' 

attempting to investigate the relationship between various 

measures of socio-economic status. 

1 

2 80 - 
3 77 81 
4 93 70 70 
5 81 70 65 50 
6 57 63 52 59 49 
7 75 69 53 74 63 34 
8 73 69 75 71 63 59 60 
9 48 57 60 39 55 65 " 41 53 

10 78 59 65 86 54 62 62 60 39 
11 53 36 41 47 46 64 50 43 38 41 
12 54 48 45 43 51 48, 50 32 30 34 76 
13 54 60 53 53 48 65 44 41 57 30 33 28 
14 49 46 43 39 36 50 38 30 35 45 62 92 49 
15 37 48 54 36 46 48 47 40 86 23 45 37 61 40 
16 43 39 45 40 44 68 43 47 49 35 43 62 54 46 29 
17 49 82 59 50 43 45 40 40 39 47 39 20 25 37 29 16 
18 51 34 36 41 52 34 56- 34 39 34 63 35 30 22 21 35 23 
19 . 

29 45 41 22 29 48 35 32 48 20 36 27 52 14 52 44 20 13 

1234567 .89 10 11 12,13 14 15 16.17 18 19 
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As correlation is a similarity measure, our first step 

is to pick out the largest element in the matrix - this is 

0.93 between the indices 1 and 4. The next highest element 

is found - 0.92 between indices 14 and 12. At 0.86, 

15 joins 9 and also 10 joins 4 (which is already clustered 

with 1). This procedure continues, selecting next highest 

elements in the matrix, until äll points are joined. At 

some stages, elements may be selected Which join observations 

which are already in the same group -. these are ignored. In 

the above example the resultant dendrogram is as follows: 

IG 
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A vertical cut through any point on the dendrogram 

sections the observations into clusters. From the 

dendrograri one normally chooses to cut the dendrogram. in an 

area where few or no fusions of observations take place - 

this concept is related to that of within-group similarity '� 

and between-group dissimilarity - thus in the above dendro- 

gram we have chosen to cut at the 0.70 level. This gives 

the following clusters: 

ý. 

IOC q5 tia ýý io '7ti 70 65 40 55 So 
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A 

B 

1 OCCUPATIONAL CATEGORY (WARNER DEFINITION) 
2 OCCUPATION OF FRIENDS 
3 SUBJECTS EDUCATION 
4 OCCUPATIONAL CATEGORY (CENSUS) 

5 OCCUPATIONAL CATEGORY (NORTH-HATT DEFINITION) 
7 INTERVIEWERS RATING OF CLASS 
8 SELF-IDENTIFICATION OF CLASS 

10 SOURCE OF INCOME 

17 SUBJECTS WIFE'S OCCUPATION 

9 SUBJECTS MOTHER'S EDUCATION 

15 SUBJECTS FATHER'S EDUCATION 

C 11- CENSUS TRACT AVERAGE RENT 
12 INTERVIEWERS AREA RATING 
14 INTERVIEWERS " HOUSE RATING 

and five outliers 6, . 13, -16,18,19 

This grouping seems meaningful - group C is related to 

the type of houses in the district and the two items in 

group B seers quite well related together and not with the 

other measures. Group A seems to be a mixture of class and 

occupation measures which clearly are related. 

This particular data set was used because it has been 

subjected to other analyses by various authors. Kahl and 

Davis used the method of search using the B-coefficient of 

Holtyinger to try to find clusters. Fortier and Solomon 

(1966) have used their own search method on the data, and 

more recently Solomon (1971) has subjected the data to factor 

analysis. King (1967) has. also used the data as an 

illustration of his stepwise clustering method (another name 
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for the weighted average method,. - see later). The results 

of the cluster analyses can be shown as follows: 

l barest N ei. bazr 12 14 11 18 10 4 1.7 583 17 29 15 13 19 16 6 

Kahl & Davis 12 14 11 18 10 417583 17 29 15 13 19 16 6 

Färtier & Solomon 12 1 11 18 10 47583 17 9 15 13 19 16 6 

King 12 1 11 18 1041 
7583 

172 915 13 19166 

King's method is similar to nearest neighbour in that a 

subjective decision must be made to decide at what level to 

'cut' the dendrogram into clusters, and in his dendrogram 

there is no clear indication of where to cut. At a later 

level, the clusters are identical with those found by nearest 

neighbour. The 2-factor analysis performed by Solomon of 

the data gives the following representation: 
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Solomon concluded that of the 3 methods (the'above, 

except for nearest neighbour) King's method gave, the best 

solution. By inspection of the 2-factor solution it can be 

seen that nearest neighbour gives an even better solution by 

joining 2 and 17 to the main cluster. '' Thus single link has 

produced a solution as good, if not better, than the other 

more complex and more time-consuming methods. 

The nearest neighbour method is connected to the minimal 

spanning tree in graph theory. The minimal spanning tree 

problem can be stated as to find the branches in the network 

that have the shortest total length whilst a routs exists 

between each pair of nodes. This' is in effect the nearest 

neighbour sorting method - the nodes are the observations and 

the length of the branches are the dissimilarities between. 

pairs of observations. Thus the single link method may be 

executed by a minimal' spanning tree algorithm. See Betturan. 

(1971), Wirth et al (1966), Gower and Ross (1969), Prim 

(1957), Roger (1971), Rohlf (1973). ýý 

The disadvantage of the nearest neighbour met-hod is its 

'chaining' effect as explained by several authors, Wishart 

(19, a9), Jardine and Sibson (1968). The chaining effect is 

that if data is subjected to error (or noise) an abberant 

point Which exists between clusters will cause the clusters 

to fuse together too soon as the agglomerative algorithm 

proceeds, e. g. 
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Jardine and Sibson have defended the method by' 

suggesting that the-defects of nearest neighbour are the 

defects of hierarchic classification itself and that the 

solution to, the problem is not to use hierarchic methods to 

classify. 

Useful algorithms are given in Van Ri jsbergen . 
(1970), 

Jardine (1970), and Gower and Ross (1969). The method of 

Wirth et al (1966) (see also Estabrook 1966), is identical to 

nearest neighbour, but uses the number of 'links' in each 

cluster as a measure of connectedness. Gyllenberg (1963) 

and Carmichael et al (1968)`-also produce methods which are 

essentially nearest neighbour with-a cut-off value. The 

method of Kamen (1970) joins each point to its nearest 

neighbour - this is not-the same as the nearest neighbour 

method, and often produces very'poor groupings. For example 

the solution to the clustering of these seven points is as 

follows: 
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8. Furthest Neighbour 

The furthest neighbour method (sometimes called the 

complete link method) is similar to that of nearest 

neighbour, and is also one of the early methods. The method 

can be traced back as far as 1948 in a'paper by Sorenson, and 

has been formally proposed by ldcQuitty. (1960) as Hierarchical 

Syndrome Analysis, Johnson (1967) discusses it as the Maximum 

method, it is also identical to Constantinescu's (1965,1967) 

method, and Bonners' (1964) program II, and is related to 

Cattell's (1944) Ramifying Linkage method. Gengerelli 

(1963) has a similar method which employs a cut-off value. 

In order to explain the method and to show its 

relationship to the nearest neighbour method, the agglom- 

erative algorithm is perhaps the best for descriptive 

purposes. As before, the observations are first considered 

to be separate clusters, and the first fusing is of the pair 

of objects with the highest similarity. The method proceeds 

to join points successively, but points may only join groups 

if the point has a similarity of above a certain level with 

all the members. of the group. Similarly groups may only 

merge if all members of one group have a similarity above the 

threshold level with all the members of the other group. 

Thus in furthest neighbour the fusions depend on all the 

between-cluster similarities, whilst in nearest neighbour the 

fusions depend on only the largest between cluster 

similarity.. 

/ 
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In order to explain a way in which the method can be 

executed simply by computer, we introduce the following-data 

matrix from Clements (1954) which he obtained from Kroeber 

(1939). The sinilarity'measure is Yule's coefficient of 

association Q= aad 
+ 

d+ 
bebc.. The objects in the study are a 

various American Indian tribes from the north west of 

California. 
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The furthest neighbour method proceeds as follows: 

first we select the highest element in the matrix, Which is 

. 99 between tribes 6 and 7. From-these a new single variable 

16 is constructed with the values - 

similarity. (16, I) = Mlinimum (similarity (6,1), 

similarity (7,1)) 

(Note that if-the maximum function is used instead of the 

minimum function then this would produce the single link 

method. ) 

Then the new matrix is scanned for the highest element 

which is . 93 between tribes 2 and 3 and a new variable is 

constructed as before and the procedure continues, 5 and 4 

merging next at level . 92. When the new variable replacing 

5 and 4 is formed the matrix is as follows: 
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Again the largest element is selected,. it is . 88 between 

variables 16 and 17. The procedure continues until all the 

objects are in one cluster. In our current example the 

resultant dendrogran is: - 

7 
z 
3 
5 
4. 

13 
11 
IC 
12 
14. 
157 

icc ýo EO yc 2ý 0 -? v ^4O 

As with the other hierarchical methods the dendrogram 

must be 'cut' to produce clusters, and in the single link 

example we have mentioned that this cut should be taken in a 

region where no fusions take place to produce within cluster 

similarity and between cluster dissimilarity, and here we may- 

explain another criterion. With a similarity function such 

as correlation a cut taken at a negative - value may. allow 

sub-clusters to merge into a single cluster which have a very 

low similarity,. thus the cut-off point must always be above 

zero and preferably auch above this level, indeed some 

authors state a fixed level always to be used. Thus in the 

above dendrogram we choose not to out the tribes into 

2 clusters at about the .1 level, but into. 3 clusters at 

about the .5 level. This gives the groups 1-9,10-13, 

14 & 15. In Clements, paper he states that these were the 

three groups found by Kroeber ('1939) in his appendix to 
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Driver's paper by the method of matrix shading. Clements 

then proceeds to show the -coefficient method arriving at 

the same solution. However at the point before the last 

tribe was included (tribe 10), the groups were 1-9,11-13, 

14 & 15, and Clements places tribe 10 with the 11-13 group 

giving "so slight a drop that it may be ignored" in the 

-coefficient, without trying it with the two other groups. 

If he were to place tribe 10 with the 1-9 group the 

-coefficient rise from 3.287 to 3. 647. Also it can be 

shown that the best solution using this method is the two 

group solution 1-13,14 & 15 which gives the -coefficients 

-43.1 and -60.4, compared to 3.2,1.5 and -60 for the three 

group solution. 

The algorithm used in this example can be easily 

implemented on a computer and is suitable for both single and 

complete link methods. The flowchart is as shown in 

Figure 23. 
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The advantage of the complete link method is that it 

successfully overcomes the undesirable chaining effects of 

single link. However the method has been criticized by 

Jardine and Sibson (1968) on two counts, that it is 

ill-defined and not continuous. They explain the term ill- 

defined as meaning that a unique result should be obtained 

from given data and that this is not always true with 

furthest neighbour. The problem is caused when there are 

ties in the similarity matrix. 

E. g. suppose we have the dissimilarity matrix: 

A10 

BI10 

CI210 

ABC 

Then if A and B are fused 

first we obtain the 

dendrogram: 

0----- 
ABc 

whilst if B and C are 
fused first we obtain: 

-- 2 

'__a-_o 
c 

These are clearly very different dendrograms, - but it is 

expected in practical situations that ties will rarely occur, 

(see Williams et al 1971), and even so the computer program 

6 

Aß 
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can be modified so that when ties occur all the mergers 

concerned take place at the same time. 

The second of the criticisms of Jardine and Sibson is 

that of non-continuity. They define continuity as that 

small changes in the data create small changes in the 

dendrogram. 

E. g. consider the dissimilarity matrix 

A0 

B1+e0 

C2T0 

ABC. 

If e0 we obtain: whilst if e0 

i-- -i 

- 1+e 

o--J II1 t- 0 
ALAC 

Again this seems to be a major change, but consider when 

this effect is likely to occur, and when the distortion is 

likely to be greatest. This is when -. 
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D(A, B) » D(A, C) 
D(A, B) ?> D(C, B), 

and D(A, C) D(C, B) 

i. e. when points (or groups) are fairly well strung out and 

nearly equally spaced. Thus the prima effect of the lack of' 

continuity is simply to reduce any chaining effects that may 

occur. 

9. Weighted Average 

The weighted average method is a natural extension-of the 

single and complete link methods. As with other simple 

cluster methods, the fields of use-are so numerous and wide- 

spread that the mathod has been independently introduced by 

several 
, 
authors including Sokal and LIichener ('1958)v workers 

in numerical taxonomy Who called the method weighted average 

link, LcQuitty (1966) in psychology who called the method 

Similarity Analysis by Reciprocal Pairs and King (1966,1967) 

in investment analysis who gave the nahe Stepwise Clustering 

to the method, it is also sitiilar. to Fisher's (1969) method. 

The method has proved to be quite popular and has been used' 

in Fry (1964), Grigal and Arneman (1969), Mello and Buzas 

(1968), Boyce (1964) and Valentine and Peddicord (1967). 

The method can be executed in' a very similar manner to 

that described for complete linkage except that when. new 

variables are formed from the fusion of old variables, the 

new variable is created . by calculating the arithmetic average 

of the previous-two. ' Thus clusters fuse at a lower-level of 

similarity than in single linl; r.; but at a 'higher level than 

that of complete link. 



150. 

Using the Californian tribes data, the' weighted average 

method produces the following dendrogram: 

icc Sc ga -70 (r1o Sa 4c 30 20 

Comparing this with the furthest neighbour result it 

can be seen that with one or two exceptions the tribes 

conglomerate in the same order but at slightly higher 

similarity levels. 

The main difference between the dendrograms is that in, 

the complete link case the cluster of tribes 10-13 join 

tribes 14 and 15 before the, group 1-9, and with weighted 

average the larger two groups join first. Also with 

weighted average it is difficult to pick out the 3 group 

solution in preference to the 2 group-solution. By 

consideration of the similarity matrix it can be seen howl the 

2 interpretations of the matrix have been produced - the very 

low, mainly negative correlations between tribes 1-9 and 14 

and 15 show that these 2 groups are well separated, and the 

correlations between groups 1-9 and 10-13 range from . 09 to 

. 76 and between 10-13 and 14 and 15 range from . 21 to . 45. 
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Thus the tribes can be considered as being in 3 groups - the 

groups 1-9 and 14 and 15 being either side of the 10-13 group. 

This illustrates the difficulty in picking out clusters 

fron dendrogrons, and the usefulness of using more than one 

zathod to analyse data. 

The weighted average method is difficult to calculate 

quickly manually, and is well suited for the computer, where 

it can be executed rapidly. Mather (1969) and Bonham-Carter 

(1957) have published programs for the method, but the method 

can easily be incorporated in the given algorithm by a 

simple change. The instruction 

D(P, J) = iX{(D(PJ), D(Q, J)) 

becomes 

D(P, J) = j(D(P, J) + D(Q, J)) 

The criticisms of Jardine and Sibson to complete 

linkage also apply to this . ethod and may be countered by the 

saga ardent as previously given. Careful use of the 

sihilarity coefficient to be used with the weighted average 

nathod is required as a meaningful average is required. 

Lorr et al (1963) introduce a similar method but 

incorporating a cut-off point (see also Lorr and Radhakrishnan 

1957, Lorry Bishop and Mcrlair 19055 and Stone 1960). 
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10. Group Average 

This =ethod was originally referred to as the unwaighted 

average rsthod because of its relation to the previous 

nathod. Consider the dendrogram below: 

In the weighted average method, at the stage when A 

joins the group BC, because a simple arithmetic average is 

made between A and the average of B and C, B and C are 

effectively weighted by a factor of a half of that of A. 

Further, when the group ABC merges with D, then D has four 

times the weight of B. 

With the group average method the new variable 

aaeociated with the group ABCD when D joins ABC is calculated 

by averaging the dissimilarities of each of the original four 

variables, hence the term unweighted average method. This 

means effectively that when the group ABC is fused with D, 

the vector corresponding to the new object ABC is given a 

weight of three timas that of D. This apparently para- 

doxical situation of using weighting with the unweighted 

average method has lead to the new term of group average. 

The method can largely be attributed to Sokal and 

?! ichener (1958) 
# although Lance and Williams (1967) have 

D AQC. 
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found that they only used the method for element/group and 

not group/group fusion. The merits of using the weighted 

against unwaighted methods are discussed in Sokal and 

Michonsr and also in Sokal and Sneath (1963). The method 

has also been proposed by Berry (1961), McQuitty (1966) and 

Rao (1952) after Tacker. Overall's method (1963) is a 

heuristic simulation of group average, the method of Hope 

(1969a, a, 1970) and that of Kendall (1966) are also very 

similar. Elton and Gruber (1969) give a sequential 

variation and Lorr's (1966) method is also sequential (as 

used by Bartko at al 1971 and Bass at al 1969), but leaves a 

large number of items unclassified. 

The basic problem is that with the weighted method, too 

much weight may be given to the ätypicalness of late 

arrivals, whilst with the unwsighted method the effect of a 

smaller group may be swamped when merged with a larger group. 

The question is partly dependent on the nature of the data 

and the experiment. This may be illustrated by a hypothetic 

example. Consider the points below as some of the objects 

in a cluster analysis: 

IB 
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At the stage when the group B on the right has been fused to 

one cluster, the next fusion must be with A (all the points 

not sho. are further away from the group than a). The 

group B consists of various specimens of chimpanzees. Now 

if A is a gorilla then before fusions with other non-ape 

objects are to be considered then it seems that equal weight 

. ist be given to A as to the whole of By the new centre point 
thus lying halfway between A and the centre of B. Thus the 

weighted average method should be used. However ifA is 

air-ply a mutant chirp then he deserves less weighting in the 

analysis und the group average method should be used. 

The group average method has been quite popular in 

taxonomy Studies, and is often used in parallel with the 

weighted method. Exanples are Hall (1965), Kaesler and 

McElroy (1966) and Boyce (1969). The program given by 

Bonh=-Carter (1967) contains an option for either of the 

average methods. 

Our flowchart can be adapted for the group average 

method by an extension of the use of the array N. which 

previously was 0 for a redundant object and 1 otherwise. N 

is now added at each fusion and thus contains the number of 

objects in the group and so the statement N(P) = N(Q) + N(P) 

in included immediately before the statement N(Q) = 0. Also 

in the previous stage the group average fusions are given by 

D(P, J) 
u(P)*D(P, J) + N(Q). D(Q, J) 

N(P) + N(Q) 
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11. Centroid 

The centroid is another hierarchical method ofa similar 

typa to the group and weighted w 

attributed to Sokal and iiichener 

proceeds in a like manner to the 

that as successive objects merge 

with newly for: ad group is taken 

objects in the group. 

irerage methods and is 

(1958). The algorithm 

previous methods, except 

the new object associated 

as the centroid of all the 

This can be explained by a simple geometric analogue in 

tiro-dimensional Euclidean space. Consider the 3 points A. 

B, C. 

A 
C. 

B 

lien A and B merge their centroid is at the point X midway 

between A and B, and when C joins the group the group is 

repro3ented by the point Ya third of the way along XC, the 

centroid of the triangle ABC. This is different fror the 

group average method since when A and B merge, their 

similarity is the average of the similarities with other 

points, wrhich is not equivalent to replacing A and B by. a 

point X. With the waighted average method the 3 points are 

represented by the point Z at the midpoint of XC. 

In order to for= the new vector when A and B have merged 

to X wa gust consider the length CX; it can be shown that if 
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sie use Euclidean distance squared as our dissimilarity 

measure, by use of the cosine rule in triangles ACX and ACB, 

that: 

D(C, X) D(A, C) + D(B, C) 
- D(ApB) 

24 

and furthor that 

nkD(C, ä) + neD(C, L) nkneD(K, L) 

Ilk + n. (nk+ne)2 

And the method may be used with other dissimilarity or 

similarity aeasurea. 

The above expression can be incorporated into our 

hierarchical algorithm as an alternative to the previous 

methods. 

The geometrical properties of the method are shown in 

Proctor (1966) and Gower (1967). The method has been. used 

in Boyce (19öß), Campbell et al (1970), Watson et a1 (1966) 

and Willia=s et al (1969). The sorting strategy is used 

with an information statistic, forming the Information 

Analysis of +7i11iais at al (1966) which has been used by 

several authors, especially in ecology. 

12.2, a di an 

This method was developed by Gower (1967) as an 

unweighted version of the centroid method. If we set 

ni = nj in tho centroid expression we obtain: 

D(P', J) D(P, J) + D(Q, J) 
- 

D(P, Q) 
24 
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The fact that this and the previous methods could be 

performed by very similar algorithms was discovered by Lance 

and Willi= (1966,1967) (they omitted weighted average, but 

it in clearly able to be performed by the method). ' The 

simple flowchart for the method is given in Wishart (1969). 

Lance and Williams gave the following linear 

relationship, vhich, by different choice of parameters could 

be used for the hierarchical methods explained so far: 

D(P', J) = o$D(P, J) + oýD(Q, J) +gD(P, Q) + ? fD(P, J)-D(Q, J) 

Tho valuos of c< pp oc, /s and which give the methods are as 
follows: 

PY all 
1 Nearest neighbour 0 

2 Furthest neighbour 0 

3 Weighted average 0 0 

4 Group average np/nk nq/nk 0 0 

5 Centroid np/nk nq/nk - 0 

6 Median I -il -14 0 

The msdian method is the most recent of the six methods, 

and has not boon widely used. It has, however, been used in 

a recent pedology paper - Campbell, Mulcahy and McArthur 

(1970). 

13. Ple ible 

The linear function show i above lead Lance and Willian3 

to consider the effect of using other values for the 

paraisters, and their possible use as cluster methods. They 
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constrained the possibilities by including the constraint 

that the measures used should be monotonic (this means that 

as the fusions take place the value of the dissimilarity 

function should increase continually,. or if similarities are 

used, decrease continually). This can be stated, with the 

notation previously used, as the requirement that - 

D(P", J) D(P, Q) for all J (where P' is the group 
formed by the junction 
of P and Q) 

This lead then to the sufficient monotonicity requirements - 

f °tq + 1' iý 0 

(This can be shown to be true quite simply - 

D(PI, J) a v4pD(P, J) + cgD(Q, J) +aD(P, Q) 

or 
D(P 

0DP 
J) 

+ oe 
D(Q, J) 

D(p, Q) PD(P, Q) qD(P, Q) 

But D(P, J) . D(P, Q) and D(Q, J) >, - D(P, Q) because otherwise 

P and J or Q and J would have fused before P and Q. 

Hence D(P, J) :> otp + o"Q + iý 
D(P, Q) 

But the r. h. a. is 1, hence D is monotonic. ) 

The fact that the single link and complete link methods 

are monotonic and have bi 0 shows that these are not 

necessary constraints. 

I. 

Tho controid and nsdian methods are not always monotonic,, 

this can bo shown by a simple example. Consider the three 

pointo: 
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ft 

D 

G 

AC = 10 
AB = 11 
BC = 11 
BD = 9.8 

Of the three points A and C are the nearest (10 apart) and 

link first, and in the centroid and median methods are 

replaced by a point at D, halfway along the line AC. The 

next link to occur is between B and D Which are only 9.8 

units apart. 

Non-monotonicity is however not as serious a problem as 

it is regarded by Lance and Williams who restrict their 

flexible strategy only to monotonic cases. The non- 

monotonicity of the centroid and median methods is useful in 

that it helps pick out clusters, for example in the above 

diagram the drop in the objective function (tailed a 

'reversal' by Lance and Williams) can be interpreted as 

meaning that a split of the three points into two groups is 

not meaningful. In contrast to Williams, Lambert and Lance 

(19066), who state that "the presence of reversals may confuse 

the, stratification at certain points" the present author. 

believes that they aid the cluster analyst in selecting 

clusters. 

Having derived the constraint ccp ++' Lance 

and Williams malte this an . equality condition and further to 

the constraint 1j= 0 they include the constraint P =. aq 
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which is a-. requirement for a weighted method and also the 

constraint (', L1 (which constrains p and oCq to be strictly 

positive -a reasonable requirement) and so the flexible 

method considers cases under the quadruple constraints. 

cp+ oýq +6=1, CZ, = 0(9 7b, <12 '7' =0 

Thus by varying ( subject to these conditions, a whole range 

of strategies can be used. 

For a positive ( as groups fora, the original. space in 

which the objects lie will be distorted in such a way that a 

newly formed group will appear to move 'nearer' some or all 

of the remaining elements (this is termed space-contraction), 

which causes chaining to occur. As f becomes smaller the 

method becomes more 'space-dilating' and as groups form they 

move away from other elements. Thus Lance and Williams "do 

not expect any requirement for the flexible strategy %Yith 

positive " and have suggested that the point at which space- 

contraction and space-dilation are matched (space-conservatLtxi) 

is at 6= 
. -0. 25. (Note 'that the flexible strategy with 

6= 0 is the weighted average method. ) 

The effect of changes in ( on a set of data can be 

illustrated by the following dendrograms, 'of the clustering 

of 15 random points unformly distributed in a unit circle.. 
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It can be seen that with jA = 0.9 and jS = 0.99 that 

chaining is present to a high degree and in fact the data can 

be made ' to chain completely by taking J2 sufficiently close to 

1* This is caused by the fact that ' the method is extremely 

space conserving with high (S; once the first two' elements 

merge they 'move' so much closer to all other points, and 

thus the next fusion is almost certain to involve the first 

pair. 

With a low valus ' of G (-1. Q or less) the method becomes 

space contracting to such an extent that once groups join 

they 'move' so far away from the other objects that the next 

fusion excludes them, this is the opposite effect to chaining, 

which we shall call pairing. Small groups (which have hence 

had less fusions) are more likely to fuse than larger 

groups - in the extreme case elements will first join in 

pairs and then pairs of these pairs will combine -and so on - 

hence the term pairing. Pairing causes resultant clusters 

to be of similar sizes. 

However, in the above dendrograms it can be seen that 

for a wide range of S around zero the dendrograms are very 

similar apart from a stretching of the similarity axis. 

13A. Extension of-Flexible 

With Lance and Williams' linear relationship, 

D(P', J) = cA-D(P, J) + oýD(Q, J) +pD, (P, Q) + zr ý(P, Q).. - D(QP. T)) 
Pq 

we could consider any values of the four parameters. 

However we have concentrated on the case where group weights 



163. 

are not used and hence rip =q Also since ? 'weights 

members of a group differently we have set 'a' = 0. Thus we 

have two parameters to vary with one another, atp and ß. 

Lance and Williams constrain these by the relationship 

2 GGp +4=1 which eliminates reversal. However the only 

valid criticism of. reversals is that they make the dendrogram 

difficult to draw and analyse. Reversals can however be of 

use, because they can emphasize that points are in the same 

group - for example in the illustration on page 191 we could 

not consider A and C as a single group apart from point B. 

Thus the extended flexible can be used as a cluster method, 

which does not necessarily produce a dendrogram. 

14. Ward's Method 

This hierarchical method was proposed by Ward (1953) 

(also see Ward and Hook 1963) in the field of personnel 

research, and possibly because of this has not had the more 

widespread use as the methods previously described which 

originated in numerical taxonomy. *' The method has also been 

independently put forward by Orloci (1967). The method. 

proceeds agglomeratively by uniting elements or groups so as 

to minimize the overall within-cluster variance at each. 

fusion stage. Another reason why the method has not had 

wide use is that for some time it remained a more time- 

consuming method than the other hierarchic methods. However 

it has recently been shown by Anderson (1906,1971a), Wishart 

(1969e) and Burr (1970) that the method can be incorporated 

into the framework of Lance and Williams' linear 

relationship, by use of the values 
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nl+nk 
p nl+nj+nk' 

n j+nk 
p q: q= ni+nj+nk' () = l-0 ~d =0 

Note that these values give monotonicity, and that a weighted 

version of the method would give c/-p-P = V-q = 2/3, which is 

the flexible method with f, = -1/3. 

The method has a tendency for small groups to link 

rather than large, because they cause less increase in the 

total within cluster variance. ' This can be shown as 

follows - 

ni+2nk+nj 
ni+nj+nk 

which replacing ni+nj by ne, 

group, becomes - 

the size of the newly formed 

-nk 

ne+nl, 

n 
and as nk 0 (S -p 0 

e 

and as ýi ob 
n 
nQ 

Thus a new group becomes further from larger groups and 

nearer smaller groups. 

The method has been used by Goddard (1970) in land use. 

studies, by King (1969) in geography, and discussed by Ling 

(1971c). The eight methods examined so far are included in 

a published computer program by iii spart (1969b). Our 

program is given in Appendix 1. 
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15. Single Link on K-link Criteria. 

Some cluster methods are designed to search for groups 

which have the property that all points in a group are more 

similar to their cluster centre than to any other cluster 

centre (these methods have been termed by Wishart 1909d 

minimum variance methods). However, reasonable as this 

requirement may seem, consider the following groups: 

40 

" 
" " " 

0 
" "" 

e 
4 

" "" e " " 0 

" i 

Here, two definite clusterß are present, but the 

requirement clearly does not hold. These types of group 

have been called 'natural' groupings, which are simply dense 

swarms of points which may be of any shape. The two types 

of groups, round and natural have been considered by Cattell 

and Coulter (1966) and termed 'round' and 'straggly'.. 

However the distinction is not always so definite as methods 

may allow varying degrees of 'straggliness'. The method of 

single linkage would be able to pick out the two groups in 

the configuration above without difficulty, but a single 

freak point between the two groups would be enough to make 

the method fail. The single link method is an example of 

the danger of allowing a large degree of straggliness - there 

is a tendency to produce the chaining effect. 
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In a particular study, if the variables are not weighted 

correctly or irrelevant variables are included, then any 

groups which were expected to be hyperspheres will becoma 

hyper-ellipsoids, and may not be found by minimum variance 

methods. 

The fact that the single link method is able to find 

straggly groups so well, leads. us to the possibility of 

adapting the method to constrain the chaining effects. 

This proposed method, the single-link on K-link criteria 

method (Klink) is an attempt to do this. The method 

proceeds by an agglomerative algorithm in which a point is 

joined to its nearest neighbour if the average distance to 

its first K nearest neighbours is less than a particular 

threshold. ' This threshold is increased until all objects 

are in the same set. For K=I the method reduces to the 

single-link method. 

The program for the method can be explained in more 

detail, as follows: the program stores for each point I, the 

average distance to the points first K nearest neighbours, 

DK(I), and the point number of its nearest neighbour N(I). 

The point J with the least average distance to its neighbours 

DK(J) is found and is joined to its nearest neighbour 

N(J) =K say. For the point J, DK(J) and. N(J) are 

recalculated, excluding. the point K. Similarly for the. 

point K, DK(K) and N(K) are recalculated excluding point J. 

The vector DK is then re-examined and the elegant with the 

smallest value is found, this point is joined to its nearest 



167. 
I 

neighbour and DK and N are recalculated for each particular 

point excluding points which belong to the same group as that 

point. This procedure continues until all points are in 

one cluster. 

A slight difficulty is encountered when a group is 

formed which has less than K other points exterior to that 

group. An approximation may be made in these situations, to 

adjust for this, based on a randomly distributed population. 

This adjustment is based on the finding of Thompson (1956) 

that the distribution of distances to neighbours of all 

orders are related to the distribution. 

The flowchart for the Klink method. is given in 

Figure 24. 

All of the previous methods, with the exception of 

nearest and furthest neighbour, can be said to be based on 

distances between group centres, but this method is of the 

density type -a point is linked to others if it lies in the 

densest region. 

16. Nucleus Method 

This method is designed to find either overlapping or 

non-overlapping groups of any shape without excessive 

chaining. Objects can either belong to the nucleus of a 

single group or be associated with any number of groups. 

The method is hierarchical and similar to the Klink method in 

that it is based on density. The nucleus is formed by 

accumulating points Which are near neighbours and which have 

the same K other points as near neighbours. 
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The program begins by searching the dissimilarity matrix 

for the smallest element, say D(J1, J2). The pair Ji and J2 

are now said to be 'linked'. A matrix LINK(I, J), (I_1), ... N; 

J=1, ... N-1) stores the linked points (- LINK begins with all. 

entries zero and When JI and J2 are linked, the first zero 

entry in row J1 is made equal to J2 and the first zero, entry 

in row J2 is made - equal to J 1) . Then the matrix LINK is 

searched to. see if any pair, which are themselves linked, 

have K or more linked points in common, in which case they 

are clustered together and form a nucleus. Since in any one 

cycle there are only two new entries to LINK there are only' 

2(N 2) +1= 2N-3 pairs which can cluster together in a 

cycle, and thus the number of searches can be reduced. The 

procedure continues by linking the pair with the next highest 

similarity, the linkages are entered into LINK, which is then 

searched. again to see if any points amalgamate. When all 

the points form one group the program terminates. The 

points which are clustered together form the nucleii at any 

stage, and the associate elements to the nucleii are found 

from the matrix LINK Which may be printed out at any stage if 

desired. 

The flowchart for the method is shown in Figure 25. 

When non-overlapping groups, as points are clustered to 

form nucleii they are output and this produces a-dendrogran. 

For overlapping groups, or simply for more information, the 

matrix LINK is printed each time points join nucleii. From 
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this the nucleus can be obtained together with points-outside 

which are linked to nuclear members, and thus overlapping 

groups are formed. 

Exile 

Consider the points: 

0 

"0 

" " e " 
" 

' " " 
s 

0 

" " " 
" 

3 M3 
S 

0 

0 

0 

There is clear evidence of two groups being present but the 

exact membership of. the groups is uncertain. The nucleus 

method gives the following result: 

The two groups are clearly depicted with two points in the 

centre which may belong to (n)either group and a single 

outlier. 

/' ý. l 
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Other overlapping methods are discussed later in this 

Section. 

17. Dissimilarity Analysis 

AU of the techniques discussed so far are hierarchical 

techniques which have been traditionally regarded as being 

performed by agglomerative algorithms, but as Jardine and 

Sibson (1971) have pointed out, the agglomerative nature of 

the algorithm is not a property of the method. . However, 

some techniques exist vhich by their very nature require., 

divisive algorithms. 

Dissimilarity analysis is one such technique, suggested 

by McNaughton-S . th (1964,1965)p indeed Cormack (1972) has 

stated that it is "the only feasible suggestion for a 

polythetic (i. e. dependent on several attributes) divisive 

technique". The method has been little used in published 

studies. 

Although the method is termed dissimilarity anaalysis, it 

can easily be adapted for use with similarities. The 

procedure is based on a measure of dissimilarity between 

groups. First the object is found which is most dissimilar 

to the group formed by the remaining objects. I. e. if we 

let the set of objects be X then for all IEX we find 

PIAX(D(I, X-I)) say this is A. Then for each JE(X-A) we find 

10. X(D(J, X-A-J)-D(J, A)), and if this is positive then this 

object joins the set A, thus we have found a second point 

which is more similar to the first point than. the remainder 

of the group. This procedure of finding 

ItIAX(D(J, X-A-J)-D(J, A)) is then repeated until it drops below 
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zero. Thus two groups have been formed. The, axnalysis can 

thus be repeated for all sub-groups, until only one element 

exists in each group. 

In the original method the dissimilarity measure used 

was 'objectively weighted squared Euclidean distance' 

Z ((xaj-xb )2 Zxjk 2) 
. The. paper also suggests. a 'practical 

modification'-- that of simply finding PIIN(D(J, A)) provided 

that ? AX(D(J, X-A-J)-D(J, A)) is positive. 

In the present study the method has been used with the 

measure of Euclidean distance squared, and the group centre 

at any stage is taken to be the group average. A measure is 

also required of the cohesiveness of any group which may be 

formed in order to detect clusters, since the method will 

divide random data. The measure used in this study was the 

average value of the 1 (D(J, X-A-J)-D(J, A)) for all the 

points which are in the group. 

18. Profile Clustering 

Another method which is, by nature, divisive is profile 

clustering. This little known method has been described by 

IncQui. tty (1957b) under the name of Intercolumnar 

Correlational Analysis, and is related to the 2nd order 

method of Tryon. (It has been used by Seymour et al 1973. ) 

The original method is based entirely upon the correlation 

measure. Once an initial correlation matrix is produced the 

{ method proceeds by forming the correlation matrix between 

columns of the initial correlation matrix, and then using 

this as a new correlation matrix proceeds to find the 
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correlation matrix between columns of this matrix. , This 

process is continued until a limit is reached. Although 

unproven, the limit in all cases is a matrix, all of whose 

elements are either ±1, or 0. In all but. extreme cases the 

limit is reached where all elements are ±1 and the matrix can 

be rearranged to the form: 

...... t -! -I 

ý_....... t -tý....... -t 
.. t ..... -1 ...... 

fit.. 
.. ýt 

1.. 
. .. 

' 

Thus the original observations have been split into t, voý 

groups. The conclusion that this has split the population 

into two homogenous clusters is based on the idea that if 2 

items are similar they will have similar relationships with 

other items (a notion similar to Tryon's - see page I2L). 

The 2 subjects can further be divided by the same method. 

In practice-the number of iterations taken for the matrix to 

have all elements <-. 99 or >. 99 is nearly always less `than 

ten, but weaker conditions such as calculating until the 

signs of the elements of the matrix stabilize would cause- 

less computation (but an increase in program complexity). 

(The method as programmed uses the limit of all-elements 

"9 or? "9")- 
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The method may be extended to any set of similarity 

measures by forming the matrix of correlations between rows 

of the similarity matrix. In fact more than one - similarity , 

matrices or vectors may be used at the same time. For 

example the following matrix may be used: 

HATZ 

L 
Mý-Sý ME 3S ý/ýC. TOft 

SD (73) STANDgr bb N1ATtný1 

and weightings could be employed on the sub-matrices or any 

row or set of rows in the matrix. Also once a split has 

taken place the new, -initial matrix could be obtained by 

simply selecting the required columns of the original matrix, 

or by selecting certain rows of the required columns. 

A further necessary " iz provement to the method is in 

order to facilitate determining the nunber of clusters 

present - the number of iterations required to reach a limit 

is an indication of how 'easy' a split is, but this does not 

vary over a very wide range (although it is useful for 

additional information). 'The index of group cohesion we 

propose is a variation of the Holtzinger B-coefficient ((see 

page 122. ) - the C-coefficient described on page 12h) which is 

specifically designed for correlation matrices. 
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Flowchart 
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The previous twelve methods which have been described in 

detail are all (with the exception of the extended flexible 

method) designed to produce a dendrogram and are hence called 

hierarchical methods. The centroid and median methods can 

produce reversals weich complicate the dend; ogram, and in 

fact do not produce an ultra. metric approximation to the 

original data. However these reversals are not common and 

do not involve large drops in the objective function. The 

extended flexible method can also produce reversals with 

certain parameters, and can give large drops in the value of. 

the objective function. In these cases the methods cannot be 

considered as methods which produce a dendrogram, but are 

still cluster methods. The methods of dissimilarity analysis 
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and profile clustering do form hierarchies, but there is no 

simple measure by which one can scale the dendrogram. 

The process of forming a hierarchy from a dissimilarity 

matrix can be considered as that of producing a 'best' 

approximation to the matrix in an ultranetric space. This 

has been shoým by Jardine, Jardine and Sibson (1967) (also 

S. Johnson 1967 and Hartigan 1967). 

A procedure based on gradually transforming the matrix 

into one obeying the ultrametric properties has been put 

forward by Roux (1969). The method proceeds to find the 

largest ultrametric matrix with all elements less than those 

of the distance matrix, by iterative reduction of the 

greatest side of the triangle formed by each set of three 

points. However he has stated (Roux 1972, personal 

communication) that the method "is now abandoned because its 

results are rather less accurate than those given by the 

classical average linkage method of Sokal and Sneath as an 

example". This method has also been suggested by Hartigan 

(1967) Who uses a combination of heuristics for reassignment, 

etc. This is however very slow - taking 16 minutes to 

analyse 50 objects. 

Perhaps the most certain method. of finding clusters 

would be to consider all possible groups;,., however this 

becomes computationally infeasible for more than about 12 

objects. The method of Edwards and Cavalli-Sforza (1955) 

proceeds by considering all possible divisions into 2 subsets 

and finding that division which maximizes the between set sum 
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of squares, then all possible divisions of these sets into 

two more each and so on. This method is very labourous 

Gower (1967) gives computer times of 100 hours with 21 

objects and 54,000 years with 41 objects. Scott and Symons 

(1971) show that not all combinations need be attempted if 

convex clusters only are required. Calinski (1969) has also 

tried to improve on Edwards and Cavalli-Sforza's method. 

Fisher (1958) uses enumeration in the 1 dimensional 

case and because of the additive properties of within-group 

sum of squares shows that by a system of record keeping a lot 

of calculations need only be done once, and hence the 

computer time is short. This case is also simplified since 

groups must be contiguous. 

Sheperd (1966) mentions that the most important part of 

a cluster is the densest part, and that this might not be 

central in the cluster. He suggests the use of single link 

to find dense centres and then group average to allocate 

_ 
other points.. 

However, as most agglomerative methods proceed initially 

very similarly to single link this seems unnecessary. Also 

there is danger of chaining if the single. link part is not, 

terminated early enough. It seems that differences from the 

results with group average alone would not be large. 

Neely's method as used and described by Lankford (1969) 

is a type of single-link method which does not require 

complete storage of the distance matrix. Only simplicial 
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neighbours to-each point are evaluated - these are formed by 

linking points sequentially by lines until no more can be 

linked without lines crossing each other - linked points are 

then called simplicial neighbours, (these are not unique and 

depend on the order of linkage, also the definition extended 

to more than two dimensions would seem to include all links): 

The method proceeds by the single-link method but only 

siraplicial neighbours can be linked. The only advantage of 

this method over single link trhich is stated is that the 

storage requirements are. smaller, however single link can be 

programmed with even less storage than Neely's method. 

Burr (1970) gives a suggested agglomerative method which 

could be incorporated into Lance and Williams' algorithm 

without much difficulty. Burr's method minimizes the 

within-cluster variance at each fusion stage. This means w8 

use the transformation 

DJk = (PikDik+PjkDjk+pijDij-nisi-njSj-nkSk)/PJk 

rohere Pik - 
(11i+nk)(ni+nk 1) 

and si = sum of squares within cluster i. 

The Heterogeneity Analysis of Hall (1967a, b, 1969) 

groups objects hierarchically according to the lowest value 

of his hetsrogeneity measure which is the ratio of the 

dispersion within the group to the dispersion of a dummy 

group having maxim bimodality within the boundary of the 

present group. 
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Taniaoto's method (Rogers and Tanimoto 1960, Tanimoto 

1960, Rogers and Fleming 1964) groups sequentially attempting 

to optimize entropy. This is reviewed by Ornstein (1965) 

who suggests improvements. 

TiIcQuitty has introduced several methods, some of which 

are very similar to the methods we have already discussed. 

His methods are best reviewed in R. Johnston (1968). 
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1(b) ITERATIVE RELOCATION 

19. Beale's Method 

One of the disadvantages of hierarchical methods as 

cluster methods is that once points are joined together in 

the same cluster then they cannot be disunited. A class of 

methods vaich allow points to change their 'parent' cluster 

at various stages in the algorithm is called iterative 

relocation. Perhaps the most well-known method of this type 

is Beale's method (Beale 1969, Scicon 1971), sometimes called 

iterative r-location or Euclidean cluster analysis. 

In the original paper the algorithm to perform the 

method did not calculate the full distance matrix but 

calculated distances as required. This reduces the computer 

storage required (although principal components analysis is 

sometimes necessary to reduce the effective number of 

variables). However this is not essential to the ruethod, 

which can proceed from a full distance matrix. 

The method is based on hyper-spherical clusters, and it 

is very similar to Ward's method of clustering. It uses the 

sum of squares-of deviations (Euclidean distance squared) as 

a distance measure. The method proceeds agglomeratively by 

combining the nearest two clusters, then reallocating points 

to the cluster centres, and if any reallocations occur then 

new centres are found and the procedure continues until 

stabilization occurs (or until a fixed number, say ten, 

reallocations have been performed, since the method is not 

guaranteed to stabilize), and then the nearest two remaining 
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clusters are joined and so on. Provision can be made 
(Beale 1971) for block moves, moving several points between 

clusters at once, to reduce the possibility of local optima. 

As the method increases calculation . time by reallocating, 

recalculating centres, etc., Beale recommends using the 

method over the range of clusters in which one is interested, 

beginning with a random allocation. to at least three more 

centres than the maximum one is interested in, in order to 

let the clusters 'settle down'. 

An obvious extension of the method. would be to use 

Ward's method to produce an initial configuration' of clusters 

(see Lance and Williams 1967, Wishart 1971). Note: as 

Beale's method is simply-Ward's method with provision for 

reallocating points, this involves simply 'switching off' the 

reallocating proceed for some iterations. However Wishart 

(1971) suggests from clustering two sets of data that the 

'worst possible' solution of allocating every pth object to 

the pth cluster as an initial clustering produces a faster 

convergence to an optimum p-group solution than p carefully 

selected 'good' points. This conclusion is based on some- 

what conflicting results, of the two sets of data used by 

Wishart, ' only with one set is a faster convergence produced, 

and this seems a rather small sample to take evidence on. 

Beale (1971) points out that this type of investigation is 

against the original advice of beginning with at least three 

more groups than required, and so is somewhat irrelevant. 
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With iterative location three factors virtually 

determine the method. Firstly the way in which two clusters 

are selected to be united, secondly the way it is determined 

if points are reallocated or not, and thirdly the way in 

vv! ich the cluster centre is defined. 

With Beale "s method the three factors are: 

C(1) That pair which rohen combined produce the least increase 
in the within group surf of squares i. e. the minimum of 

nknldkl2 
nk+nl 

tigere nk, nl are the number of points in clusters k and 
1 respectively and dkl is the distance between the 

centres of clusters k and 1. 

C(2) A point in cluster k is reallocated to cluster 1 if 

nl 2 nk 2 
RT dl 

nk 
1 dk 

where d1 is the distance of the point to the. centre *of 

cluster 1 which has n1 members (similarly dk, nk). 

c(3) The arithmetic mean of the cluster members i. e. 

pik +k 
iek 

The method has been used to group British towns by 

Andrews (1971) and*in gap analysis by Morgan and Purnell 

(1969). ' An * example of the method used with Fisher's Iris 

data is given in Scicon (1971) and Hitchin (1970). 
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An important part of Beale's method is that it includes 

a test to choose the number of clusters. This is based on 

an F-test to decide if-a division into C2 clusters is 

significantly better than a division into C1 clusters. 

resulting statistic 

R(C )-R(C 
2) 

Ti-C (c2\ 
ýIn 

1 
R(C2) N C2 C1 -1 

is treated as an F-ratio with WC 
2-Cl 

), n(N-C 2) 
d. f . 

The 

where R(C1) is the residual sum of squares in the C1 cluster 

formulation (similarly R(C2), N is the number of objects, 

n is the dimensionality of the space in which the points lie. 

The calculation of n would seem to require the original 

variables to be reduced by factor analysis, otherwise if 

n= min(N-1, m-1) were used this would give an inflated value 

of n. 

A flowchart for the method is given in Figure 26. 

20. Group Average Relocation 

As Beale's method is an extension of Ward's method, so 

via can incorporate iterative relocation into many 

hierarchical methods. Thus group average can be used as an 

iterative relocation method. This method has not been 

formally proposed but has been used by Wishart (1971b). 

Group centres are defined as in Beale's method. The 

criterion which is to be optimized is the within groups 

average distance. We have: 
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C(1) Those two groups which cause the least increase in total 

within groups average distance. 

'C(2) A point is reallocated to another group if its average 
distance to the other cluster's members is less than the 

average distance to its present cluster co-members, i. e. 
the point i is transferred. from cluster k to cluster 1 if 

Zdik dil 

nk-I 

In practice C(2) virtually determines the groups found, so 

this and Beale's method may be simply performed as options in 

the same program, which can be simplified by using the same 

C(1) criterion. 

It would seem that any iterative relocation method based 

on a hierarchical method would be assured to perform no worse 

than the plain hierarchical method on any set of data, but 

this is not always the case since relocations Which occur at 

the k cluster stage change the input for the k-1 cluster 

stage. Thus the iterative relocation methods can sometimes 
(rarely) move into a position from which they cannot escape. 

This risk is reduced by using block moves, but since all 

possible block moves cannot be considered, this can still 

occur. 

21. Neighbourhood Method 

In our discussion of hierarchical methods we have 

identified two types of cluster - round and straggly, and 

with these, two types of method according to which type of 

cluster they are designed to find. The previous two methods 
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and those to be discussed in the next sub-section are all to 

find round groups. The following proposed method is an 

iterative relocation method which attempts to discover 

underlying groups of any shape. 

The method is based largely on C(2) - the way in which 

relocations occur. Here a point is relocated if its average 

distance to the nearest k points of another cluster is less 

than the average distance to the nearest k points in the 

cluster-to which the point is currently allocated. ' - If a'. 

cluster has less than k points then the average distance to 

all the members of that cluster is used, thus if k is set to 

a very high value then this procedure acts in the same manner 

as the group average relocation method. If k is set equal 

to unity then the method is reduced to single link. Thus k 

is a strictness'f actor which allows clusters to increase in 

'stragglines3' as k is increased. 

The 0(1) and C(3) criteria currently used with this 

program are as in Beale's method, but it is anticipated that 

criteria more consistent with C(2) would produce better 

results, but would increase computation time, and as the 

major factor in deciding group membership is C(2) we use the 

simpler criteria. As in other methods-one may begin with a 

few more groups than one is interested in and use a random 

allocation to initiate the procedure. 

A program to perform the method is given in. Appendix 1. 
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Other Iterative Relocation Methods 

Iterative relocation methods can be divided into two 

general types - those which proceed' hierarchically allowing 

for relocation at each stage, and the second type which 

produce a single solution, often by a process viere clusters' 

centres can be created and other centres disappear, a sort of 

, birth/death process. The three methods outlined so far are 

of the former type. 

Probably the earliest use of this second type of methodis in 

Thorndike (1953) Wrho proposed a method similar to that of 

group average relocation. He proceeds by doing a 2-group 

solution, then 3-group, 4-group and so on. The initial 

group centres are set up separately for each run, the centres 

for the 2-group run are the two points which are furthest 

apart, for the 3-group run a third point is added to these 

which is least near to either of the first two;. similarly 

other starting points are produced. The method might be 

simply improved by adding a third point which was furthest 

from the two final clusters in the 2-group solution, 

for input to the 3-group run, and so on. The method seems 

sub-optimal to those already discussed. 

Perhaps the next method to be proposed was that of 

Jancey (1966) which is apparently (see Lance and Williams 

1967) very similar to that of Forgy (1965). With this 

method points are reallocated to their nearest centre. This 

is done separately for 2,3,4, etc., centres, with, 

apparently a new random start each time. Whereas Porgy uses 
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a random split of the population, Jancey uses a random split 

in space. Jancey points out that the technique is sensitive 

to the number of individuals in a group and the initial 

clusters. The method incorporates an unusual attempt. to 

reduce the problem of local optima when the cluster centre is 

to be moved, it is not moved to the centre of gravity but as 

far again in the same direction. However this can introduce 

such instability-in the system that one can move away from 

the global optimum to a local optimum. 

the following simple example. 

Suppose we have the five points: 

XS 
3 

ci 

This can be shown in 

with the current groupings and the centres shove. Point 4 

must be relocated and if the centres are moved as in the 

method vors arrive at the situation which produces the simplest 

XI ' 

i 3x W4, 
s`, 

c 

xi 

clustering of the five point$, but here we , must reallocate 

point 3 and our final solution becomes 

tx 

' ZX 

3 ýý s 
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This might be considered to be sub-optimal to the grouping 

1-2-3,4-56 The method has been used by Wishart and Leach (1970). 

A method vrrhich uses the birth/death type of process 

mentioned earlier is that. of blacQueen (1967), called the 

k-means method. The method employs two parameters: C for 

'coarsening' and R for 'refinement'. The procedure begins 

with the first k points being centres, then each point is 

assigned to the nearest centre and the centre are recomputed. 

If two centres are within C of each other the groups are 

merged, having a new common centre. If any point is found 

to be further than R from the nearest centre then it becomes 

a new centre. 

A similar method has been proposed by Ball and Hall (see 

Ball 1965, Ball and Hall 1966,1967,1968), their method 

being called ISODATA. This initiates groups by selecting a 

'typical' set of points as centres, splits groups if their 

within-group variance exceeds a threshold eE, and combines 

groups whose centres are closer than a value Q0. , 

Both methods require the setting of two parameters, and 

thus investigation is required of the output for different 

values, in order to determine the best solution. Both 

methods are internally inconsistent -- the 'k-means method 

splitting groups on the basis of points and merging on the 

basis of centres, and the ISODATA procedure splitting on 

variance and merging on distance. 

Nagy (1959) has extended the above method to allow 

overlapping clusters, although how this is done is not 
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explained. A possible way of facilitating this would be to 

allow a point to be a member 

distances to two or more cen 

method, by inspection of his 

a third variable parameter - 

would seem to complicate the 

degree. 

of more than one cluster if the 

tres were similar. Nagy's 

schematic flow-chart, incorporates 

an overlap threshold. This 

use of the method to a high 

Rubine hill-climbing method (Rubin 1967) reallocates a 

point i from cluster k to cluster 1 if 

1. S1 
nk-1 j ak-i . 

111 
jE1 

The method attempts to maximize the summed 'stability' over 

all objects. Stability for a, point i belonging to cluster k 

is defined by 

t 
nk-1 

Sij 
jck-i 

14k 
1 

nj 
2--s 

ip 

'there t is a parameter %hich is a measure of the fineness of 

the clustering. Each object is given a similarity t with a 

group with no members, and in this way new clusters can form. 

Friedman and Rubin (1967,1968) attempt to minimize the 

within-cluster scatter 

varies with. the number 

various numbers of gros 

Symon (1971) to have a 

Improvements have been 

overcome this. 

by iterative relocation. As this 

of groups a solution rust be found for 

Aps. This has been shown by Scott and 

tendency to give equal sized groups. 

suggested by Marriott (1971) to 
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Both of the above methods reallocate points by 

considering moving each point in turn to all groups and 

seeing if an improvement in the objective function can be 

found. They also employ a set of heuristic strategies to try 

and avoid local optima. These include: 

(a) Forcing passes - which gradually eliminate a group by 

reallocating. the member points one at a time to their 

next best group. The objective function. is calculated 

after each point move, and if any improvement is found 

this grouping is retained. This procedure is repeated 
for each group until no further improvement can be 
found. . 

(b) Reassignment passes - which assign each object to the. 

group with nearest centre of gravity and then calculates 
the objective function to see if there is any 
improvement. 

The Friedman and Rubin method has been used by Boggis 

and Held (1971) in grouping electricity consumers according 

to their pattern of daily usage. Hodson (1970,1971) has 

discussed.. the. ISODATA method and used it on 'a set of British 

handaxes with some success. 

The main disadvantage of iterative relocation methods of 

a hierarchic nature is the additional computational time 

necessary to consider the relocation of each point several 

tires. The difficulty of the birth/death methods, although 

they are fairly fast, is the presetting of various parameters 

to appropriate values. 

The BCTRY'computer package of Tryon and Bailey (Tryon 

and Bailey 1970, Bailey undated) contains various types of 
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factor analysis often called cluster methods by the authors. 
They do however include a method which falls into the more 

accepted form of cluster analysis. This is their OTYPE 

program which uses iterative relocation to try and minimize 

the distance between points and their cluster centres. If 

two clusters are closer than a user-. set parameter they merge, 

and the process is repeated. (The method has been used by 

Crovello 1968,1969, Harman 1970, Myers 1968, Sethi 1971. ) 

This is very similar to Bonner's Method III (1964,1966) 

which begins with an arbitrary element and finds all' those 

within a preset distance d of this point. The centroid is 

calculated and further points may join if they are within d 

of this point, also points-can be discarded. Relocation 

takes place until stability is reached, then the process is 

repeated for another point, excluding those already 

clustered. 

Boulton and Wallace (1970) give a birth/death type 

method which is basically a set of tactics in order to 

optimize their information measure (Wallace and Boulton 1970). 

They include reallocating, splitting, merging and adding part 

of one cluster to another cluster. Boulton and Wallace 

(1973) propose a hierarchic version, where the two items are 

merged which lead to the least decrease in 'information'. 
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1(C) MISCELLANEOUS I, THODS 

22. DT-ode Analysis 

This method proposed by Wishart (1909a, d) is a density 

method' Which, seeks 'natural' classes of any shape. - The. 

algorithm for the method proceeds agglomeratively but as 

proposed initially did not produce a dendrogram.. The method 

attempts to identify regions of high density by the following 

procedure. 

For each point i, an associate density measure ki is 

calculated - the original proposal for this measure was the 

distance to the. ktb-nearest neighbour. As the method 

proceeds each point becomes 'dense' in descending order of 

the associate, value ki. Thus the point in the densest 

region becomes 'dense' first and. forms amode. The point 

with the next highest ki becomes dense next and if it lies 

within ki of the first dense point then it becomes a member 

of that mode, otherwise it forms a. new mode. As points 

gradually become dense then either it lies within the current 

density threshold of one dense point in which case it joins 

that point, or it lies within this-distance of more than one 

existing dense points, in which case all these modes merge, 

or it initiates a new mode. Other modes can also merge if 

the distance between any pair of dense points 'from different 

modes becomes less-than the density threshold. - 

If k=1 then the method reduces to the nearest neighbour 

method. The density measure has recently been improved 

(Wishart 1971a) by using the average distance to the nearest 
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2k neighbours instead of the distance to kth nearest 

neighbour. (Note: in 'Nishart (1972b) 2k-1 is used. ) From. 

Wishart's publications it seems that he restricts. to k being 

integral, but in fact any multiple of a half could be used, 
but the results are apparently insensitive to k over the 

re c orende d range of 3-6. 

The output froze the method is at two levels -- a list of 

dense points which belong to each mode, which form the 

nucleii of the clusters, and then a list of associate non- 

dense points for each model vAlich. have been. allocated by the 

nearest neighbour method. " Wishart (1969d) advocates 

restricting the output to the clusters found just before 

modes are to merge. 

A major difficulty of this method is that dense modes 

which are close together will merge bafore other less dense 

and more isolated modes form. In one dimension this can be 

illustrated: 

Fizr. c, L; C-tic 

At density level Q two modes have joined, and mode A has not 

yet been initiated. In order to eliminate this defect 

hierarchical mode analysis has been proposed (1Vishart 1971a) 
which does not actually merge clusters as they join, but 
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outputs the level at which they would have amalgamated: 

Once all points have become dense,, the dendrogram may be 

drawn. 

Another drawback with the method is that it does not 

always find small clusters of size less than 2k because they 

tend to be masked by the density measure. The allocation of 

the non-dense points to modes can also introduce 

misclassification, and outliers are forced into groups. 

A flowchart for the method is given in Figure 27. 

23. Condensation Model 

This method is based on the analogy of considering the 

objects under study as points in space, which exert 

attracting forces on each other as if they had mass and were 

subjected to the gravitational pulls of the other points. 

Taus the points gradually condense to one. A similar method 

has apparently been proposed by Forgy (1963), in an 

unfortunately unpublished work, but according to Lyerly 

(1968) and Vlishart (1969) the method was found to be not 

entirely satisfactory. - Sneath (1905) also has considered a 

gravitational method to determine curves from noisy data. A 

method given by Butler (1969) is similar but is less 

sophisticated. 

The method, can be. described by its analogy of points in 

Euclidean space attracting each other. by a modified inverse 

square law, but the method can be used with any dissimilarity 

measure, or easily modified for use with similarities. 
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The first step is to calculate the distance matrix 

Did (i=1,... n; j=1,... n) from the raw data matrix 

Aik (i=1,... n; k=1,... m) where n is the number of 

observations in the study and m the number of variables they 

are measured-on. The next step is to scan the distance 

matrix to see if any pairs of points are so close to one 

another that they can be considered as a single point (i. e. 

test to see if any elements of Did are less than d). If any 

such pairs exist each pair is considered as a single point 

(possibly with a change in weighting) at 'the centre of mass 

of the two original points, although as the points are very 

close, for computational, simplicity one could uss the 

co-ordinates for one of the original points. 

Next the force acting upon each point i (i; 1, ... n) for 

which the mass W1 ý0, is calculated in each direction j 

(j. 7,... ). This is given by the formula:. 

ßn (Aii) 
ýlý _ 'týk k_1Yk (D1k+C)3 

k 

The parameter C in the denominator is a positive constant to 

'slow down' objects as they become very close to one another, 

by diminishing the force in this direction,, and avoids the 

problem of very large rid, and points 'overshooting' their 

target, a kind of relaxation device. 

Each point is moved in each direction in proportion to 

this force thus the movement Tel j of ob ject'i in the direction 

j is given by: 

ij=S *Fi j 
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All movements take place at the same time, at the end of 

each iteration. Once a movement has taken place the 

distance matrix is recomputed and again if any two points are 

within a small distance d then they are amalgamated. 

The procedure continues until all the objects have been 

amalgamated to one point. From the output, which lists at 

which iteration fusions occur, a dendrogram can be 

constructed. 

Figure 28 gives the flowchart for the method, and the 

program is given in Appendix 1. 

Three parameters are used in the method, the small 

distance d between objects to be amalgamated, the step length 

S which determines the extent of movements, and the slowing 

parameter C in the force expression. The- parameters should 

be independent of the scaling and number of objects in the 

data used and so the data is scaled to have unit average 

interpoiut distances. 

If d is chosen too large points may be amalgamated which 

were not moving together, 

nuibsr of iterations will 

ations have taken place. 

synthetic data have sugge 

insensitive to the choice 

d . 06 ± . 02. 

and if d is too small, a very large 

be necessary before all amalgam- 

Our initial investigations with 

sted than 'the method is fairly 

of d and that a suitable value is 
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The choice of the step length S is slightly more 

sensitive, if S is too large points may overshoot their 

target, and if S is too small points will only move slowly 

and hence a large number of iterations will be necessary. 

We suggest from our investigations that an appropriate value 

of 'S is around . 005 depending on the level, of accuracy 

required in the, dendrogram. 

The effect of C is to damp motion in cases vrhere the 

force would have been very large. Thus if C is chosen too 

large motion will be-very slow as points merge, and if it is 

chosen too small, points may 'overshoot' the point to which 

they are attracted. Our investigations with C= .3f .1 

have shown good results. 

The choice of masses depends on the users particular 

needs. The question of reweighting when points have 

amalgamated is similar to the choice between the unweighted 

and weighted average linkage (see Sokal and Sneath 1963). 

If the masses are added Men points amalgamate, then groups 

are attracted more to large groups than small groups. 

Another. possibility is to give amalgamated point's the-mass of 

a single point, and it is this strategy that i. s recommended. 

Other Miscellaneous Methods 

Many forris, of clustering have been suggested which-are 

difficult to analyse by type. For completeness, in this- 

section we will discuss briefly the known references giving 

methods not previously mentioned. 
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The method given by Rohlf and Sokal ` (Rohlf and Sokal 

1967-, Sokal and Rohlf 1966) for use in biological 

classification is to cover a scaled drawing of an animal with 

a computer punch card, and punch-holes in the card to show 

the shape. These cards (one for each animal) are clustered 

by using the number of corresponding holes which are punched 

in each pair of cards as a similarity measure. This is only 

a crude approximation to the normal taxonomic procedure of 

taking various measurements on the animals, and poses 

difficult scaling problems. However one can visualize a 

more complex procedure that would entail a measurement of the 

distortion necessary to change the drawing of-one animal into 

another. 

Sawrey, Keller and Conger (1960) propose forming groups 

sequentially by the similarity with chosen points. The 

first point chosen is that which has the highest summad 

similarity with all other points. Any points with a 

similarity with this point above a certain level are joined 

to this group. Other groups are formed similarly after 

eliminating members of the-first group from the 

investigation. The distances between group centres are 

calculated to see if any are close enough to merge, after 

which any unclassified members may be allocated to their 

nearest group centre . The method given by Hyvarinen (1962) 

is very similar. Also related is the method due to Pocock 

and Wishart (1967) y1hich constructs spheres of set radius on 

each point, then the densest of these spheres are kept as . 
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groups, and intersecting clusters are merged. The problem 

with such methods is the setting of the appropriate 

parameters. 

Shepherd and 4Yillmott (1968) propose a k-link procedure 

in vvhich groups merge on the basis of, the similarity between. 

the first k neighbours. The method is an extension of- 

Shepherd's (1966) ediere cluster centres are formed by single- 

link, but is not hierarchic - producing a clustering at a set 

level. 

Fortier and Solomon (1966) try a partial enumeration 

method using random sampling to find a good solution to the 

maximization of the sum of squared within cluster 

correlations. Clusters are only formed if r2 exceeds . 5. 

K. J. Jones' (1968) 'method of modality' rotates the data 

matrix to principal components and examines each one for 

evidence of clustering. This is measured by Kurtosis (the 

ratio of the 4th moment to the square of the 2nd moment - 
111(x-3E)4 ý.. 

( x-x)2)2 

If this is less than 1.8 (the Kurtosis of a rectangular 

distribution), then Fisher's one-dimensional method is used 

to split into two groups. The method only works well with 

bimodal distributions along axes - this can be illustrated by 

a simple example, suppose we have 6 points at (0,0) and 3 at 

each of (-1,0) and (1,0), this gives Kurtosis of 2.0. 
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Rose (1964) gives a method for use with similarities of 

0 or 1 (or by use of cut-off point in the similarity matrix) 

which form a graph linking points with similarity 1. The 

method eliminates- links from this network by considering the 

shortest path between each pair of points through the network. 

Those which are used most times by these paths are eliminated 

as being probably bridges between clusters. The 

disadvantage of this method is the large amount of 

calculation involved in finding all the shortest paths. 

Vinod (1959) gives an integer programming solution based 

on binary variables-. This is formalized as: 

Minimize Z xiIciI 

(Beere xi, if ieI and xiI =0 otherwise, and ci is the 

loss of information by putting i in the Ith group) 

s. t. zxis 
=1 

57-Yj .=m 

(for all i) (each item is in one 
and only one group) 

(there-are in groups) 

Yj xij (i_1,... n, all j) 

An extension to Euclidean space is given by Vinod which 

attempts to minimize the sun of squares. This includes the 

constraint that if I and J are in the same group then all 

points nearer to I, than J is to I, should also be in that 

group. This can easily be shown to be false (see Rao 1971), 

but is a constraint which has been considered necessary and 

for Waich the criterion of error sum of squares has been 

criticized (see Ling 1971b). Rao (1971) gives integer 
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progran. formalizations-for several criteria such as 

minimizing the total with group distance. 

Jensen (1909) gives a dynamic programing, approach veich 

is basically enumeration after having eliminated unnecessary 

recalculation. As in Fisher's paper, by using the additive 

property of Euclidean distance squared, and keeping. adequate 

records, one can build groups agglomeratively. The 

difficulty with integer and dynamic programming-formulations 

is the high computation time. 

McCormick et a]. (1972) give the 'bond energy algorithm. ' 

in rhich seriation is used to pick out groups as squares on 

the diagonal of the matrix. The procedure is also suggested 

for use on the raw matrix. Hartigan (1972) also'uses the 

raw matrix to find groups of similar values to examine 

relations between sets of objects and sets of variables. 

The matrix is split into two halves either by row or column 

on the basis of the minimum sum* of squares. This-splitting 

continues on the two halves,. producing a division of the raw 

matrix into varying sized rectangles. This can obviously 

only be applied Where variables are in some sense comparable, 

and also the computation involved with large matrices becomes 

infeasible. 

Other methods are given by Rohlf (1970) why gives a 

procedure for any shape groups, but the class of shapes must 

be specified beforehand, and Bromley (1966) uses inspection 

on-the second order correlation matrix. Methods used. in 

signal detection and pattern recognition are given by 
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Ball (1965). 
. 'Hand sorting has been advocated by M. Kendall 

(1971) for less than 50 objects, and also suggested by 

Hollingsworth (1972)p vfao uses a kind of manual iterative 

relocation. 

Another useful approach to clustering is to examine 

interpoint distances to look for evidence of multiple modes. 

Inglis and D. Johnson (1970) give histograms of interpoint 

distances and show how clustered data gives rise to skewed or 

multi=modal distributions. The same approach is taken by 

R. Johnson and Wall (1909), but use the plot only as evidence 

of and not a method for clustering, since the clusters found 

by using the distance plot tend to overlap. Hills (1969) 

uses--the z transf orn on correlations r: 

z= . log(=) these are then plotted in rank-order 

of magnitude. This yields a curve which is compared with 

the line given by a random sample. from a normal distribution. 

Kruskal (1972) also gives transformations to make clustering 

more apparent, but his results are disappointing. 

An interesting method for cluster emphasis is to fit 

smooth surfaces to points, this. has been attempted using the 

spline transforms of Boneva et al (1971) and also by trend 

sux acs analysis (see Merriam and Sneath 1906, Chorley and 

Haggett 1968). 
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2. OVERLAPPING METHODS 

Th-e importance of overlapping groups is twofold. 

Firstly, there are instances r1here these axe specified from 

the type of analysis required, for-example in sociology a 

certain person may belong to more than one social group, and 

in information retrieval a particular item of information may 

be of interest to several different people. Secondly, 

overlapping groups can be used to identify items rose 

cluster membership is uncertain. 

We have already introduced our own nucleus method which 

can produce overlapping groups. Factor analysis also 

normally produces overlapping groups. 

Most of the early work on overlapping groups was in 

information retrieval, at the Cambridge Language Research 

Unit (see Jones and Jackson 1967) where clusters have been 

classified into three types - chains, where n points are 

joined by n-1 links; cliques, vthere n points have n(n-1) 

links; and of more interest clumps which are well connected 

groups but with few connections with other groups. In 

fact, a lot of the work is called clump theory. The method 

vtich has gained prominence is due to Needham (1961,1965, 

1967) (see also Dale and Dale 1965 and Harrison 1968). - The 

method isolates small groups (clumps) by iterative relocation 

attempting to maximize the bias of the group, defined by 

bias - .2 sib - ý,., si 
j F-I j4. I 

which zaust be positive to form. a clump. Various strategies 

are employed to ensure the groups are non-empty. Once a 
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clump has been found its members are not removed from the 

investigation, the procedure begins again from a different 

starting point, and hence groups may overlap. 

Bonner (1964,1966) gives a method which 

groups by iterative relocation. The method begins with a 

randomly chosen object and all objects with a certain 

similarity-to this object form a group. From this group the 

procedure 'hill-climbs' to a better group and when no further 

improvement can be found a group has been defined. None of 

these objects may be chosen as centres of further clusters, 

but they are still able to be members of other clusters, and 

hence groups overlap. The approach of Harrison (1968) 

considers the density of the points around each object, to 

see if the density is greater than that due to chance (using 

a significance test) to define a cluster exists. 

The method of Jardine and Sibson (1968a, b, 1971b) (see 

also Hodson 1970) called the 6k method allows clusters to 

overlap by k members. It is based on the single link 

riathod, but nin(ni_1, k) links (Where ni = the total number of 

points in both groups) are necessary before 
. 
groups may join. 

The main di3advantage of the original algorithm was time, but 

Cole and eishart (1970) give a faster method-of computation. 

Jardine and Sibson (1971) also mention the methods Cu which 

allows overlap of certain distance. 
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3. J1ONOTHETIC TO THODS 

A special type of clustoring method is the class of 

monothetic methods, which have been mainly developed in the 

ecological field. These methods produce a hierarchical 

arrangement of objects by dividing groups into two parts at 

each stage of the process. : The methods begin by selecting a 

variable, and dividing the objects into two groups depending 

on their score on this variable (these methods are normally 

based-on binary data). The procedure continues by 

con3idering each of- the sub-: groups and dividing into two, on 

the basis of a further variable, which need not be the sane 

variable for . each. -sub-group. This process continues until 

groups can no longer be meaningfully sub-divided further. 

Provision is made in. some methods for groups to join up "if 

they are not significantly different. The variable chosen 

at any one stage is that which divides the sample into the 

most meaningful sub-groups, and it is in the exact meaning of 

this definition that methods vary. 

The terns nonothetic was first used by Sneath (1962) to 

replace the previous use by Beckner (1959) of the word 

monotypic, since it had other meanings. The more usual, 

non-nonothetic, methods are termed polythetic. Monothetic 
rl.. r 

methods do not strictly come under the term of multivariate 

analysis since they do not conform to the requirement that 

all the variables tust be considered together. 

The pioneer work on nnonothetic methods was mainly 

carried out in ecology. An early work by Goodall (1953) was 

perhaps the first method proposed, and this has since been 
. 
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updated and improved by Williams, Lance and Lambert (see 

Williams and Lance 1958, Williams and Lambert 1959), being 

now called association analysis. The computerized method 

for association analysis appeared in Williams and Lambert 

(1960). This method replaced Goodall's method and was one 

of the only monothetic methods in use in the early 1960's. 

The method was introduced into allied fields (see Lockhart 

and Hartman 1963, MMacNaughton-Smith 1965) but the main area 

of application was still ecology, where the idea of 

'indicator species' had long been prevalent. - As monothetic, 

methods became known in other fields, criticism. mounted, 

especially from non ecologists. 
. 

The main disadvantage of 

monothetic methods was that they did not obtain natural 

groups and that two objects which were identical in all ways 

except one could be forced into separate groups (see Sneath 

1965, Bailey 1967). Williams and Dale (1965) have defended 

monothetic methods against criticism of misclassification on 

the grounds that such criticism automatically assumes that a 

polythetic system is desired. The methods seem, however, to 

work quite well in ecological examples, and the resultant 

clusters have the advantage that they have unique 

characteristics. In recent years Crawford and V7ishart 

(1967,1968) have introduced a fast and possibly more exact 

method. Also monotheti. c methods. have become increasingly 

used in marketing, with a method knov'i as the Automatic 

Interaction Detector (AID) developed by Sonquist and 14orgaxx 

(1963) (see Assael 1970, Newman and Staelin 1971). 

The method of Goodall (1953) was to pick at 'each stage 

the most abundant species (species being the variables, . being 
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either present (1) or absent (0) in particular areas) as the 

variable to, split the group, providing it had 'significant 

positive correlations' with other species. The measure of 

'correlation' used was x. 2. The divisions continued until 

none of the variables defining each group were significantly 

negatively correlated and were thus said to be homogenous, 

Provision was made for the rejoining of classes, provided 

this would not create negative associations between group 

members. 

The method of association analysis (Williams and Lambert 

1959) is similar to Goodall's, but division is made on that 

species with -the largest sum of associations (measured by %2 ) 

with other species. Inverse association analysis was 

suggested by the same group of ecologists (Williams and 

Lambert 1961) 'which was simply using association analysis on 

quadrats instead of on species, a further step came with 

nodal analysis (Lambert and Williams 1962) which applied both 

association analysis and its inverse to the same set of data, 

to examine connections between species and quadrats. 

Association analysis, however, gives rise to misclassifications 

according to Field (1969). 

The method of lockhart and Hartman (1963) was similar to 

the more usual methods of numerical taxonoiny. The procedure 

was to select the two most similar objects, and then, 

ignoring variables on which these differed, selected the item 

most similar to these two, and soon until all objects had 

joined the groups, or until no property remained common to 

all. By beginning with different nucleus pairs, and 

consideration of graphs of number of members in group-against 
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number of properties co=on to the group, a dendrograii may be 

built up. The method was tested against a polythetic 

grouping and was seen to have similar results. 

The AID method of Sonquist and Morgan (1963) put 

monothetic methods on a more mathematical footing. Their 

method chooses the variable Which reduces the unexplained sum 

of squares by the greatest amount as that which to divide on. 

Divisions end when no further sub-division reduces the error 

sum of squares by more than two per cent. This article 

suggests the main use of the method as in investigation of 

the importance of the' variables. A problem related to this 

and other monothetic methods, pointed out by Assael (1970) is 

that if two variables are very close in their discriminating 

power, the choice of one over the other can give rise to 

totally different results. The method has been used and 

discussed by Staelin (1971). 

The researches of Crawford and Wishart (1967) were to 

develop a method which could handle large data blocks 

efficiently. The method is based on the assumption that 

species which are frequent and occur in densely populated 

areas are the best for determining ecological groups. The 

method calculates a set element potential (SEP), 

si -x -Txi j (. Yj j (-xik) ) 
i1k 

for each quadrat i which is a; measure of the significance of 

the quadrat. From this, after suitable sealing of Si so it 

lies between 0 and 1, we label the new SEP as Si and compute 
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(i x1j Si - Xlý s) )2 uý2 = 
ýZý 

for each species j. This expression is a measure of the 

interaction between species and, group. The. division is made 

on that species, with maximum interaction u2. Crawford and 

"tishart compared the method with association analysis and 

found it much quicker on large data sets and no less 

accurate. In their later paper (1968) they describe an 

agglomerative method to check for possible misclassifications 

in their method. 
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C. 3 COMPARISONS OF OTHER RESEARCHERS 

Considering the large number of methods which have been 

suggested there have been surprisingly few comparative 

studies. Such studies as there have been, fall into three 

types: 

1. The application of methods on real data where success is 

measured either by the expected or most meaningful 
result. 

2. Applying methods to synthetic data with known properties. 

3. Theoretical properties which methods should possess. 

We will proceed to consider the work that has been done 

in each type, a critique of the methods of comparison will be 

mainly left to the next section. 

Real data comparisons 

Watson et, al (1966) in a botany example used Nearest. 

Neighbour and Centroid and could find no real difference in 

results and in fact suggested that "taxonomic groups..... are 

not 'particularly sensitive to variations in the analytical 

approach". 

Moore and Russell (1967) in a pedology study used 

Nearest Neighbour, Furthest Neighbour, Centroid and Flexible 

(f, = -0.25) and could not make definite conclusions because, 

of the lack of a sati$factory means of fit. Their 

dendrogra s differed to a large extent at the higher 

hierarchical levels, and they suggested the use of one or 

more sorting methods at a low level, and extreme caution at 
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higher levels. IT Mannetje (1967) analysed a set of 

botanical data by the same . four methods and was only able to 

conclude that nearest neighbour was not as good as the others, 

and also suggested the use of several methods. 

Lange, Stenhouse and Offler (1965) compared Association 

Analysis and Nearest Neighbour on the saune set of fossil data 

and found remarkable agreement. They suggest that both 

methods can lead to valid but different classifications. 

Gower (1967) compared Centroid, Median, Association 

Analysis and the Edwards and Cavalli-Sforza method verbally, 

pointing out the impracticality of the latter. 

Solomon (1971) compares Weighted Average with factor 

analysis, the f'-coefficient method, and that of Fortier and 

Solomon. 
, 

He concludes that "there is a remarkable overlap 

in the product of all four procedures", something vtrhich is 

not at all clear from the results, no cluster of the 19 

objects being found by all four methods. He concludes by 

suggesting use of the simplest or most economical method. 

Crawford et al (1970) use several methods in an ecology 

example but only as aids to interpret the data and not to 

compare methods. 

47ishart (1971) uses Mode analysis and Beale's method to 

demonstrate their 'different approaches, the latter being 

designed only for round groups. 

Lambert and Williams (1966) compare Association Analysis 

with Centroid (used with an information statistic) on five 
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sets of ecology data and conclude the second method is 

"currently both more rigorous and more flexible". Boyce 

(1968) compared Centroid, Group Average and Weighted Average 

on zoological data and found Group Average the best, although 

there was "relatively little difference". Colman (1908) 

compared the Ta imoto method, Harrison' o- method and Nearest 

Neighbour and found lanimoto's method the least satisfactory. 

Bartko et al (1971) compare Rubin's hill-climbing 

method, Lorr's method, Friedman and Rubin's and Furthest 

Neighbour on a. medical example and found furthest neighbour 

to be the only method to work satisfactorily. Day and 

Heeler (1971) also compared Rubin's method with furthest 

neighbour and were surprised to find the latter method worked 

better. 

Campbell (1970) analysed-soil data with principal 

co-ordinate analysis, Flexible (f = -0.25), Centroid and 

Median methods and suggested the use of an ordination method 

with a cluster method for analyses. Flexible was concluded 

the best method. Flexible (ß -0.25) was also found to 

give the best results in a study by El-Gazzar et al (1968) 

when it was compared with Centroid (with information-measure)., 

although one conclusion was that "the similarity between the 

alternative hierarchies is remarkable". 

Hall (1967) compared Centroid (with information measure) 

and Group Averags against his Heterogeneity Analysis, which 

fared best. 
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Sneath (1969) ranks several methods according to his 

experience and judgment in the following order: 

1. Group Average 

2. Weighted Average 
3. Furthest. Neighbour 
4. Centroid (with information measure) 
5. Nearest Neighbour, Association Analysis 

Wishart (1959) gives the following order of success in a 

geology study: - 

1. Flexible (j = -0.25) 
2. IdardWard's Method 

3. Mode (k 3) 
4; Furthest Neighbour 
5. Nearest Neighbour, Median, Group Average, Centroid 

Pritchard and Anderson (1971) used six methods to 

analyse three ecology data sets, with the order of efficiency: 

1 Ward's Method 

2. Furthest Neighbour 

3. Group Average 

4. Centroid 
5. Nearest Neighbour 

Association Analysis is discussed as 'a special type of method 

to be used to help interpret the results from other methods 

and is "not reconmendad to be used on its ovin". They aloo 

state that "perhaps tie. most striking-conclusion-concerns the 

magnitude and variety of the artef acts produced by small 

changes in the method". 
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2. Synthetic data comparison 

Lankford (1969) uses Centroid, Ward's and Neely's' 

methods on a constructed two-dimensional data set with very 

straggly groups. Neely's method (a version of nearest 

neighbour) not surprisingly did best. 

Burr (1970) tried Nearest Neighbour, Furthest Neighbour, 

Centroid,. Group Average, Ward's Method and his own. method 

which minimizes variance at each fusion, on a simplex, which 

all methods managed to give a symmetrical dendrogram except 

Centroid which gave chained reversals. This is regarded as 

failure by Burr but from the argument on page 159, can be 

considered as no less a success. 

Sneath (1906) illu3trates'the use of Nearest Neighbour, 

Furthest Neighbour and Group Average on a random set of 20 

points in two dimensions. No real'°conclusions are given' 

except "the clusters produced by the three methods were 

remarkably constant". The similarity of the results of 

group average and furthest neighbour were shove to be very 

similar by use of the cophenetic correlation between their 

results. The cophenetic correlation (due to Sokal and Rohlf 

1962) is the correlation between the elements in the original 

similarity matrix and the elements of the similarity ' matrix 

reconstructed from a dendrogram. Sokal and Rohlf use the 

measure on real data and find Group Average performs better 

than Weighted Average. Farris (1969) however shows that the 

cophenstic correlation (CPCC) measure will always give the 

highest results with the Group Average Method and concludes 
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"if it is desired to term 'optimal' those classifications in 

vLich most 'similar' OTU's are clustered together, the CPCC 

should not be employed as an optimality criterion". (Lessig 

1972 also uses the CPCC, and Farris 1973 suggests a better 

measure for dendrogram comparison. ) 

Rand (1971) has analysed two methods -- a method which 

produces a hierarchy minimizing the sum of all within group 

distances at each step and one which minimizes the average of 

the average within group distances. The methods. are 

compared on their results from a synthetic set of data, then 

with sets including random perturbation and missing data. 

Cunningham and Ogilvie (1972) analysed seven methods or. 

6 sets of synthetic' data, and randomly permitted 2 sets Fihich 

had a large number of ties, three times, and also perturbed 

3 sets with an error term. To compare the methods they used 

two measures of fit between the original and derived distance 

matrices - Kendall's tau (for-the rank correlation of the 

original dissimilarities did and recovered dissimilarities 

did and a stress measure Z(dij - dij*)2 . 

The results were: 

1. Group Average 
2. Weighted Average 

3. Furthest Neieabour 
4. Tiledi. au, Nearest Neighbour, Centroid, Ward's 

Another extensive study is due to Strauss (1971) who 

analysed several methods on 7 sets of binary and 7 sets of 

continuous synthetic data, and-later 4 of the methods were 
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used on another data set. The method of comparison was a 

measure of fit related to the number of elements that had 

been correctly assigned. The results ware: 

ý. Beale's method 
2. Flexible (4'= -0.25 ) 

3. A divisive information statistic method of Strauss 
4. Ward's metho d 
5. Group average 
6. Centroid 

7. Median 
8. Nearest Neighbour 
9. Association Analysis 

The results discussed so far can be ranked into a very 

rough order. This is shovm below 
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Nearest Neighbour 6 4 4 4 5 " 
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3. Theoretical comparisons 

Some of the simplest examples are that of a particular 

method failing in a situation where the grouping is obvious. 

Switzer (1968) shows Friedman and Rubin's method failing with 

two-dimensional groups. Ling (1971) gives examples r ere 

the Edwards and Cavalli-Sforza method fails and also Ward's. 

Proctor (1966) gives theoretic grounds why the group 

average method should be replaced by centroid. 

There have been two major works on theoretical criteria, 

by Fisher and Van Ness (1971) (also Van Ness 1973) and 

Jardine and Sibson (1968b, 1971b) (also Sibson 1970). 

Fisher, and Van Ness (1971) give the following properties 

which 'admissible' clustering methods should possess: 

(a} Order independent - if the order in which objects are 
numbered is changed then the results should be 

unaltered. This criterion can be violated bfr methods 

which include random starting points, and also in some 
methods when ties exist. 

(b) Convex admissibility - the convex hulls of clusters 
should not intersect. This seems reasonable for the 

case of-round clusters, but there can be instances Where 
clusters curve round others which could not be found by 

methods obeying this criterion - in fact the opposite of 
this criterion would. be a necessary one. 

(c} Connected admissibility -- the minimum spanning trees of 
separate clusters should not intersect. This only has 

meaning. in two dimensions, in which clusters can be, 

visualized better than found mechanically. 

I 
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(d) Well structured (k-group) '- if there exists a clustering 
so that all within cluster distances are smaller than 

all between cluster distances then it should 
eýzn . 

be found. This is violated4by some iterative 

relocation methods ti eich can find local optima. 

(e) Well structured (exact-tree) - ultrametric data-should 

be preserved. his is only applicable to hierarchical 

methods. 

(f) Well structured (perfect) - if all within group 
similarities are si and between group similarities are. 
s2 (s2 sO then. this grouping should be found. 

(g) Point proportion - if we duplicate a point-any number of 
times the clusters should not change. This may be 

reasonable under certain circumstances, but there may 
often be reasons why this point should be weighted 
more - in the centre of a cluster the same set of values 

can easily be repeated by chance, especially with binary 

data. 

(h) Cluster proportion - if we duplicate a cluster any 

number of times then the clustering is unaltered. 
Again this is a matter of user decision and not a 
reasonable property in all instances. 

{i } Llono tone - if a monotone transformation is applied to the 

similarity matrix then the clustering should not be 

changed. Such criteria are of importance in view of 
the large number of different similarity measures v, ich 

exist, but if the measure that one uses has strict 
properties itself then this criterion need not be upheld.. 

(j) Cluster omission - if we remove a cluster then the 

remaining clusters are unchanged. This is the same 
sort. of criterion as (h, ). 
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Van Ness (1973) adds two more conditions 

(k) Equal admissibility -a method should always do 'better' 
than that expected from a random division into clusters. 

(1) Repeatable admissibility - some methods have 

corresponding discriminant analysis algorithms (see 

Fisher and Van Ness 1973). This condition states that 
if a method is clustered in a. certain way and the 

corresponding discriminant analysis used then no 
misclassifications should occur. This requirement, 
however, introduces the properties of another technique, 

and any method without this property could fail because 

of the corresponding discriminant analysis and not the 

cluster analysis. 

Jardine and Sibson (1968b) follow a similar ' development. 

They suggest criteria (a), (d) and (e) of Fisher and Van Ness 

and introduce three more; related particularly to hierarchic 

methods: 

{m} Continuity - 'small' changes in the data should produce 
'small' changes in the dendrogram. This would be a 
reasonable property for a cluster method, but if the 
data is considered exact, then this is an unnecessary 
criterion. Williams et al (1971) argue that this 

property is artificial and "do not see how the situation 
could arise" - but surely robustness under error would 
be an advantage. (See page i .i of ere this-property is 

seen to lead tQ chaining. ) 

(n) Scale freedom - the dendrogram should be invariant under 
scalar multiplication of the similarity measure. (This 

is a weaker form of criterion (i). ) 
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(o) Minimum distortion - the transformation to a hierarchy 

should be in some sense optimum - this is a weak 
property which nearly all methods conform to.. 

Jardine and Sibson examine the. hierarchic methods that 

can be performed with the algorithm of 
, 
Lance and Willi aiis and 

conclude that single link is the only one which satisfies all 

the criteria - we have shown (page 1t %} that the continuity 

property leads to chaining, and so this is not surprising. 

Williams et al (1971) in a reply to Jardine and Sibson 

give three new criteria: 

(p) Intense grouping - grouping should be more intense than 

that implied by the original similarity matrix. ' Thin 

appears to be an attempt to force structure on the data- 

surely the whole point of this type of analysis is to 

represent the data in the best way. 

(q) Insensitivity to outliers - the grouping should be 

relatively insensitive to outlying values. They stete 
that sinöle-? ink fails to uphold this property, but 

since it is the method which identifies outliers most 
easily, we fail to see this is true. 

(r)' Ultrazaetric data should not always be preserved - this 
is the opposite of criterion (e) and Williams et al give 
an example viere this would appear reasonable. 

The difficulty that arises in producing criteria is that 

one tends to think of the type of clustering which one is 

used to, and consider the properties necessary in particular 

types of study to be necessary for the whole field of 

clustering. The formulation of criteria should be a 
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preliminary stage of a particular study in order to-determine 

the type of method to be used, but the generalization of 

these to other studies is often incorrect. One of the 

advantages of cluster analysis is its broad and varied 

approaches, and it should-be used more as a technique to fit 

a problem (like dynamic programming) than a. technique to fit 

, problems to (like linear programming). 
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C. 4 CHOICE OF. METHODS FOR STUDY 

In our investigations we restrict ourselves to the 

polythetic methods which do not produce overlapping groups. 

This is for several reasons - these form a distinct class of 

methods for finding a certain: type of cluster, this class. is 

the most used, and it is here %, here the majority of methods 

exist. 

Of all the hierarchical methods which exist, those which 

have had the most use are the ones vihich can be used with the 

algorithm of Lance and Williams. Some of these are also 

ones which have been used by other researchers in comparisons. 

We include all eight methods in our study. Nearest 

neighbour is included, despite its poor showing in other, 

studies, because of its special properties (on the criteria 

of Jardine and Sibson, and Fisher and Van Ness nearest 

neighbour obeys all criteria except convex admissibility). 

We also include our own extension of flexible method. These- 

methods are normally performed by agglomerative algorithms, 

and so we wish to include some which are normally divisive in 

nature - the dissimilarity analysis of MacNaughtor]. -Smith is 

the only one to have been used to any extent, to this we add 
the profile clustering method of T cQuitty, as one of the-few 

methods of this type. Of all these, only single link has 

properties which make it suitable for finding clusters of any 

shape. We know of no other present accepted method with 

this property - thus we include our Klink and Nucleus 

methods. Other methods which we have discussed are very 

similar to some of the ones we have chosen for inclusion. 
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Of the remaining types, we have. discussed them on pages 

and have pointed out some of their disadvantages - mainly in 

computation time. The method of reduction to an ultra- 

metric space as proposed by Roux (1972. ) and Hartigan (1967) 

is an interesting approach but neither of their methods to 

perform this operation are satisfactory (Roux states his o= 

method to be inferior to weighted average and the time of 

Hartigan's analysis is excessive). The only other approach 

of note is that of Burr (1970) who minimizes the within- 

cluster variance agglomeratively. This method was 

discovered too. late for inclusion in our tests,. and also we 

know of no published application. 

Iterative relocation methods are less abundant 

Beale's method, especially when used from a starting position 

given by each object in its own group, or that given by 

Ward's method, seems to have advantages over most other 

proposed methods. It is also the method which, in this 

country at least, has been most widely . applied. The 

disadvantage of the Kr --ens method of MacQueen. or the similar 

ISODATA of Ball and Hall is that they need parameters which 

vary with the application. To Beale's method we add the 

group average relocation method attributed to Wishart. 

Neither of these methods are suitable for finding straggly 

clusters, and neither are any of the methods outlined on 

pages t`bb-1ct Hence we introduce our own Neighbourhood 

Method explained on page iJ 

Of the miscellaneous methods we can eliminate several of 

the heuristic hand-type methods as having more exact 
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counterparts in the hierarchical methods which are to be 

included, also the mathematical programming and partial 

enumeration types vib. ich have high computation time. Mode 

analysis is one method which has been used successfully in a 

number of studies, and is one of the few methods in existence 

for finding straggly groups - this method is included. The 

disadvantagesof other methods have been discussed on 

pages 2. ol-Zog. The use of data examination to look for 

evidence of clusters is interesting, but seems to be of 

particular use in conjunction-with other methods,, and not as 

methods themselves. We include our condensation model as an 

example of a completely different approach. 

Some of the eighteen methods we have chosen for 

inclusion need parameters to be set. for their use. All of 

these are methods of our own except Mode analysis, for this 

we use 'eishart's recommended range of K=3,... 6 and add to 

it the values K=1 and 2, so that the results can be 

compared more easily with single-link. We have a similar 

decision with the Klink and Nucleus methods where we need a 

parameter that measures overlap. In both these cases the 

parameter will normally be a function of the number of objects 

under study. We use K=2, 3,4 for the Klink method, and 

K=1 , --. 5 for the nucleus. me thod. In both these cases *if 

we reduced . 
the smallest parameter value we would obtain the 

single link method. The neighbourhood method also reduces 

to nearest neighbour and our parameter is again an integer 

measure which is related to the 'straggliness' of clusters 

obtained. Vf use K=1,... 4. 
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This leaves us with the condensation and extension of 

flexible methods, each of which has more than one parat eter. 

The range of appropriate values has been covered in the 

description of the method. We chose d=0.04,0.06,0.08; 

s=0.004,0.006; c=0.2,0.3,0.4. Less values are 

chosen for s since it has less impact on the results than 

other parameters, being more of a parameter affecting the time 

taken by the method. The extension of flexible method has 

two parameters oo and - we wish to include weighted average 

( a= 0.5,0) , median (c* = 0.5, ßý 
-0.25 ), and those 

values given by the flexible method (2at. +%4 = 1, with 

dt= 0.5 to 0.9). We began our'investigations using 

f= 0.4,0.5,... 0.9 and (2= -1.2, -1.1,... 0.5 with a few 

extra points - the median method values, and more points 

along the line of Lance and Williams' flexible method. 

After several trial runs the value of c4= 0.4 was seen to be 

far inferior to G40.5, and so of = 0.45 was used instead. 

At this stage tL = 0.55 was also included and also more 

isolated points around the flexible line. This gave 

142 pairs of values. 

All methods were evaluated on eight data sets which 

exhibited very-marked grouping - all of the methods had 

reasonable results. - The profile clustering method however 

had high running time and had a tendency to force the data 

into two sets artificially, especially when groups of 

differing size-were used. This method was therefore dropped 

from investigation. 
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Thus seventeen methods were selected for detailed 

investigation. These are listed in Table 3. The 

parameters used in the extended flexible method are shown in 

Table 4. If we include the use of a method with different 

parameters as different investigations - then we have 186 

methods or variations of methods to be evaluated. 

t 
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1. NEAREST NEIGHBOUR 

2. FURTHEST NEIGHBOUR 

3.1,11EIGHTED AVERAGE 

4. GROUP AVERAGE 
t 

5. CENTROID 

6. MEDIAN 

7. FLEXIBLE 

8. EXTENDED FLEXIBLE (for parameters see Table 2) 

9. VIARD' S METHOD 

10. KL2 1'K L Tr10D' (K = 2,3,4 ) 

11. NUCLEUS MBTHOD (K = 1,2, It 4) 

12. DISSII+TILARIVZ METHOD 

13. BEALE'S METHOD 

14. GROUP AVERAGE RELOCATION 

15. TEICHBOUBH100D TETHOD (K 
-= 11 2,3,4,5) 

16. MODE ANALYSIS (K = 1,2,3,4,5,6) 

17. CONDEn SATION M0I T (d = 0.04,0.06,0.08; 

s=0.004,0.005; c=0.2,0.3,0.4) 

TABLE 3 
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C. 5 COiýTFARISON OF METHODS 

As discussed in Section C. 3 several papers have examined 

cluster methods on their ability to produce meaningful groups 

in real data sets. However with real data there is no 

certainty that 'meaningful' groups exist. A typical example 

is the most analysed set of data in multivariate analysis - 
Fisher's (1936) iris data. This data set consists of four 

measurements on fifty plants of each of three sub-species of 

iris, and has been used as a cluster analysis example by 

several authors (Friedman and Rubin 1967, Scicon 1971', and 

Solomon 1971). One set of plants (iris setosa) is clearly 

separable on two of the variables, but the other two sets 

seem to have no natural division (see Kendall 1966). Note 

that- in this. example any method which has a tendency to find 

equal sized groups will give a good solution - both Friedman 

and Rubins, and Beale's (Scicon) methods are of this type and 

show good divisions into two groups whereas Solomon uses 

weighted average and finds no such clear grouping. 

A similar problem can occur with random data frort known 

distributions - for example a fairly- common approach (Wisha. rt 

1969, Strauss 1971) is to use two-dimensional sets of random 

points from normal distributions with different means. Here 

the groups may overlap and it may be impossible for methods 

to separate them exactly. 

For our tests we hence discard these approaches and use 

synthetic data which can be easily interpreted visually as 

falling into a particular number of clusters. Thus we are 
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immediately restricted to a maximum of three dimensions, and 

for ease of analysis we use two-dimensional data. We are 

thus assuming that if a method works well with 2D data then 

it will perform well with data of other dimensionality. 

Another possible criticism of this approach is that synthetic 

data is different from real data, this is in some respects, 'a 

valid criticism, since in some instances the error in a 

particular set of real data can give rise' to limitations on 

the choice of method. -However 
the groups we have chosen for 

study are such that it would be reasonable to expect any method, 

that was of practical use, to find them. 

The clustering of a set of, data may vary in six general 

ways 

1. Number of clusters 

2. Number of objects in each cluster 

3. The separation of clusters 

4. The 'shape' of each cluster 

5. Relative cluster areas 

6. Relative cluster densities 

In each of these variables we could have an infinite range, 

but we can impose certain practical limits on some of them 

for the purposes of our investigations. 

1. Number of clusters -- in real examples the number of 
clusters found (and looked for) is normally fairly low, 

so it seems reasonable to concentrate on cases where few 

clusters exist. 
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2. In our comparisons we restrict ourselves to 30 points 
throughout - as a number large enough to form clusters, 
but low enough for fast computation. The use of a 
single number of points throughout facilitates easy' 
comparison. Given a particular number of clusters, we 
vary. cluster' sizes to include equal sized, large with 
small, and outliers, as a cross-section of typical 

cases. 

3. We normally attempted to make the separation between 

some clusters small, in order to make successful 
clustering more difficult. Clusters were included 

which 'touched', and thus certain points could be 

members of different groups in different analyses, but 
the grouping in each case was evaluated as correct. 

4. We made an important distinction between ! round' clusters 
and other shapes. This was due to the different aims 
of cluster methods. With 'straggly' groups we 
concentrated on roughly elliptical shapes. 

5. The area covered by each cluster was varied by. using 
mixtures of clusters covering several different sized areas. 

6. The overall density of each cluster is defined by the 

size, shape and number of elements. The density within 
the cluster was normally either uniform or with. fairly 

central modes. 

The number of tests was set at 64'round group tests and 

. 
32 lbtraggly'tests. The concentration on round groups was 

due to the large number of methods which only find groups of 

this type. With our 186 methods or variations of method 

outlined in Sections C. 2 and C. 4 this amounts to 

17,856 cluster analyses. 
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Having outlined our battery of tests, the next important 

decision is the measurement of similarity, to use in our 

methods. Since we are concerned with attempting to find 

groups which we can see by inspection, we must consider the 

way in Which the eye groups points. It seems reasonable to 

assume that one'uses some form of distance strictly monotonic 

with Euclidean distance. We thus use either Euclidean 

distance or its square, in all our methods. The use of 

these measures is further supported by their wide use and 

growing acceptance. Note that some methods are invariant 

under monotonic transformations of Euclidean distance, such 

as nearest and furthest neighbours, ' and simply represent 

distortions of scale in the resultant dendrograms. The 

validity of using groups Which have been-assessed visually 

can be judged by the reader, from the tests (which are'in 

general the most difficult ones) shown later in this section. 

Scaling problems do not arise, as our axes are' weighted 

correctly visually. Also correlated variables do not occur 

to any extent and so in these cases Mahalanobist distance is 

the same as Euclidean distance. 

The most difficult area of our experimental design is 

deciding vwhether a method has succeeded in finding a 

particular grouping or not. 

If the data falls into t groups, then we inspect the 

groupings produced by each method at the t-group stage. If 

this grouping is the same as the visual one then the method 

has to some extent at least been successful. The 
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t+2, t+1 and t-1, t-2,... 2 group stages are also investigated 

to see if their interpretation of the data seems as good as 

or better than the initial visual groupings, if so then this 

grouping is also accepted. In cases where the t-group 

solution was not the same as that anticipated, the range of 

solutions giving t+2, t+1,... 2 groups are considered to see 

if any are as good as the original visual grouping. If none 

of the solutions fit the data -then the method has failed. 

This is the first method of evaluation -a simple yes or no 

to whether a good grouping has been found. 

Although the method may have at one stage of its 

grouping, found a good interpretation of the data, it" nary be 

difficult to select this number of groups as the best number 

of groups. . 
In order to test this, we need to develop a null 

hypothesis for each method. Thus we must test each method 

on random data in order to determine significant differences 

fron random results. This gives rise to the problem of what 

type of random data to use - i. e. from what distribution. 

For our investigations we used six types of random data, in 

two dimensions: 

1. Uniform distribution over a unit square. 

2. Uniform distribution over a unit circle. 

3. Uniform distribution over an ellipse, with major axis 
twice the length of the minor. 

4. Normal distribution with unit standard deviation 

along both axes. 

v 
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5. Normal distribution with standard deviation 
1 along x axis and 2.5 along y axis. 

6. Normal distribution with standard deviation 
1 along x axis and 1.5 along y axis. 

We took ten sets of each, thus giving us 60 more data sets to 

be analysed by our methods, which combined with our,, 96 tests 

gives 29,000 clusterings to be performed.. 

The following construction of a null hypothesis in that 

Which was followed for most of the cluster methods. From 

the random data results for each method we form the graph of 

the objective function for each of the 60 data sets. This 

is done for each set of 10 in turn and the boundary of the 

points for each set is drawn. This gives a graph similar-to 

that shown in Table 5, which- is part of that produced by the 

group average relocation method. (Note: that all the lines 

go through a co=on point is a property of this particular 

method and in general does not occur. ) The lines form 

fairly smooth curves indicating that ten random sets for each 

type of data is probably sufficient. As shown in Table 5 we 

also experimented with first differences in the objective 

functions but these gave very wide boundaries and were little 

use as significance tests. From the complete set of lines 

we produce, by hand, smoothed boundaries. The boundaries 

cannot be produced statistically fror the sixty points since 

they are from different distributions. The two boundaries 

are drawn so as to include all the sixty points. f or each 

level, and also to be as' 'smooth' as possible. Points may 

come outside the boundaries in cases where they appear to be 

separate from the other points - this is subject to the 
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condition that a maximum of one of the random sets of data has 

points outside the boundaries. 

These boundaries form a null hypothesis - if the graph of 

the objective function for one particular test lies entirely 

between these lines then the method has, failed to distinguish 

the test data from random data.. (Some null hypothesis 

diagrams are given in Section C. 6. ) 

This forms a fairly strict null hypothesis equivalent to 

about a if,, level of significance or less. It may be that we can 

presume that our data varies equally over all dimensions (for 

example if we normalize) and thus we could. eliminate our random 

data sets 3,5 and 6. This gives a third evaluation of a method, 

that is not as exacting as our full null hypothesis. ' These 

alternatives are termed the "full null hypothesis" and the 

"round null hypothesis" in the following text. 

: Iethods produce graphs of objective functions which, have 

some points below the null hypothesis boundary, this indicates 

clustering. If some points fall above the boundaries then 

this indicates that the points are more equally spaced than 

random points. It is possible to have some points above and 

some points belog' the boundary -- this indicates either 

clusters of equally spaced points, or equally spaced clusters. 

For the comparisons all results (including the random data 

results) were scaled to unit variance. The random data config- 

urations were all inspected visually to see if any 'obvious 

clusters' were present. Although there was a surprising amount 

of apparent structure, none of the configurations were as 

'clustered' as the 96 tests. 
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ale now have a technique which tells us if a method has 

found clusters in the data. ººe need now to determine how many 

clusters have. been found. If only one point is beneath the 

null hypothesis' boundary then we can obviously pick this out 

as the number of clusters, so our problem is when several 

points lie beneath the boundary. If we had two or three 

markedly separate groups then we expect to obtain objective 

functions as shown below. 

i 
t 

.t 
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This leads us to the conclusion'that the level at Which 

the objective function curve begins to converge with, the 

boundary is the level of clusters given (i. e. where the objec- 
tive function is parallel. ' to the edge of the 'random' region). 

-'Ie are thus ready to proceed. life now have three types 

of buccess' for a method: 

1. Were meaningful groups found at any level in the 

grouping procedure? This method of measuring success 
has the advantage that it can be determined exactly. 
Also if one had opportunity for data checking such as 
splitting. data, repeating experiments or had prior 
knowledge or expectation, then this level of comparison 
might be sufficient. Also a change in objective 
function could improve apparent failures on the other 
tests of success. 

e' 
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2. Assuming that variables have the same dispersion, 'are 
the results significantly different from those on 
random data? Are the correct number of groups found? 
In our study most of the configurations had roughly 
equal variance in each dimension, so this may be 

considered a valid test. 
Note that methods, which. find straggly 

groups should be more invariant under axes scaling and 
hence these null hypotheses should hardly be different 
from those of the full set of random data. 

3. Are the results significantly different from random 
data? This is the test which involves fewest 

assumptions, and is hence a very strict test. 

With the' first method of comparison, methods either fail 

or succeed. With the null hypothesis methods we can have 

success, but failure may be of several types: 

1" The wrong clusters may be found, but no results be 
found significant. 

2. The wrong clusters may be found, but significant 
results found on the null hypothesis test. 

3. The right clusters may be found, but no results be 

found significant. 

4. The right clusters may be found, but the wrong number 

of clusters be found significant. 

Of -these types of failure type 2 is the most dangerous 

since it gives a misleading result, type 4 also gives wrong 

results but these may not be quite so dangerous. Types 1 and' 

3, and the least misleading types of failure because they give 
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no result rather than wrong results - of these type 3 may be 

least disastrous since it has been nearest to the correct 

results. 

The procedure outlined above for forming null hypotheses 

was not applicable to all of the methods under discussion, the 

procedure in cases such as Mode analysis will be outlined 

later. 

Results 

We will consider first the seven methods given by the 

mathematical expression of Lance and Williams. 7The table 

below shows the successes of each method. 

64 ROUND TESTS 
Level of success 

32 STRAGGLY TESTS 
Level of success 

1 2 3 1 2 3 

NEAREST NEIGHBOUR 53 23 15 27 16 13 
FURTHEST NEIGHBOUR 50 36 19 5 0 0 
riEDIAN 58 38 30 10 1 1 
GROUP AVERAGE 57 47 25 12 1 0 

C. ENTROID 6. 55 32 14 2 1 
WEIGHTED AVERAGE 58 45 29 11 1 0 
', BARD'S 61 42 33 12 1 0 

The most striking feature of the results is the failure 

of all the methods, except nearest neighbour, on the straggly. 

tests (with furthest neighbour being particularly 

unsuccessful). However nearest neighbour performs less well 

on the round tests, and together With furthest neighbour 

gives the worst results. The results of the other five, 
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methods are fairly similar, although centroid, on the above 

figures, dominates all but nearest neighbour and Ward's. 

With the exception of nearest neighbour, ', hich performs 

differently from the other methods we can suggest the 

following partial-order of success: 

1. Centroid, , lard's 

3. Median, Weighted Average 

5. Group Average 

6. Furthest Neighbour 

It must be pointed out however that the first five methods 

all give good results and our experiments have not 

differentiated them to a great extent. 

It may be, however, that the different methods do not 

fail on the same tests and a method which does badly overall 

may do better than the others with a particular type of 

group. It will also be useful to examine the failures made 

by each method -in order to determine their properties, with a 

view to possible method improvements. Here we concentrate 

on the results of the first success level, and will leave 

consideration of nearest neighbour until later. 

In the round tests all of the six methods succeeded on 

fifty of the tests, thus all the methods dominated furthest 

neighbour. All of the methods failed on two of the tests. 

In the straggly groups all the mbthods succeeded on four 

particular tests and f iled on sixteen. Here, furthest 

neig4bour Evas donrzinated in each test by all but tha median 
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method. The only other dorainances are centroid' which 

dominates group average in both round and straggly groups, 

and Ward's method which dominates weighted average in every 

test. 

We consider now sorge of the failures -of these . six 

methods in order to examine their properties, firstly on the 

round group tests. 

Centroid - this failed on three of the round tests, two 

of which all the methods failed on. All three tests 

involved two dense clusters near to each other and a less 

dense cluster, covering greater area. `For example^the three 

group solution given by the centroid method in test 42 is as 

follows: 

l. /` 
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Tn test 28 the three group solution given by centroid was: 
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It can be seen that the difficulties of the method are 

caused by the calculated distance of peripheral members of 

the dense cluster to its centre being too large. Thus it is 

not surprising that centroid dominates group average since 

group average replaces a group by a single point as the 

grouping proceeds and centroi'd replaces by an area. 

Group Average - this failed the three tests that centroid 

failed and four others. The failure in test 28 was the same 

as that shown for centroid above, and that for test 42 very 

similar to that shown above. All the failures were in cases 

where a less dense group is present. In test 55 we had the 

following three cluster result: 

TOST 55 
G-iZCL P %C- -A (, C- 

ý _, 

As we have mentioned, group average exhibits more difficulty 

than centroid with cases where dense and not so dense groups 

are present. 
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Weighted Average - this failed 6 tests, all of which 

involved small and large groups together. We can illustrate 

this by the results on tests 16 and 40 where the following 

groupings were found. 

'T'EST {G 

LJC-i G-HTEh A-VE-eAG-E; 

0 0' 
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This defect is caused by the lack of weight attached to .a 

cluster when joining a- single point - this causes the centre 

of a small cluster to 'drift' away from its centre of mass. 

This causes clusters to have a tendency to be similar in 

their number of points. 
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Tiedian - the median method also failed six tests, five 

of them in co=on with group average, and in three of these 

giving the same groups as group average. Median however 

succeeded on test 55 and failed test 53 (see median 

solution below). 

TEST 1 53 fA Ca. 1 PIj 

Another interesting comparison is with test 42 where the 

group average and median solutions were as follows: 
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The exact nature of the type of failure of the median method 

is difficult to specify. It appears to have similar 

failings to group average. The defect of median is to join 
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small groups earlier than larger ones, often causing a small 

group to 'take' a single point which is late to link to a 

group, from a nearer larger cluster. 

Ward's Method -. this method also showed a slight 

tendency to fragment large groups. Three failure were 

noted - test 40 was split up in. the same manner as weighted 

average, and the two methods that all these six methods 

failed on, tests 42 and 44. The deficiency of Ward's ., 

method then is the same as that of weighted average but to a 

inuc1. less extent. 

Furthest Neighbour - this was dominated by all the other 

five methods, note that in all these cases we have groups of 

differing areas and peripheral points of large area clusters 

are often clustered with nearby clusters of smaller area. 

This can easily be illustrated - consider test 23, in vrhich 

all the other methods succeeded in finding the, correct three 

groups: 

TEST Z' 

Pe.. ', '-TNEST 

We now consider the perf orz ance of the six methods on 

the straggly groups, but since the methods are not designed 

for, and found few of the, straggly groups, we will consider 
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them for v Thy they succeeded, rather than why they failed.. 

Of the four tests which all succeeded on, all exhibited clear 

gaps between groups, e. g: 
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Furthest neighbour only succeeded on these four tests 

and one other, which only median failed - this is test 67, we 

show the result: 

" 
" 
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This can be seen as a similar fault to that which occurred 

with round groups. Three more tests were analysed correctly 

by the methods, excluding furthest neighbour. One of these 

is given below - test 70, with-the furthest neighbour 

solution. 

" 

" 
a 

'i ST 10 . 
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The success of some of the methods with such groups 

shows how surprisingly good they are at finding groups. The 

furthest neighbour solution can be seen to be due to points 

at the ends of long clusters having- low similarity with their 

own clusters. Furthest neighbour was intended to form 

'compact' clusters, but it fails to do this at higher levels 

in the hierarchy. 

Of the other five methods, only median fails teat 83 

shown below: 
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TEST g, '; 

ME'D I ArJ 

This defect appears to be that median forms 'rounder' groups 

than the other methods. 

Only weighted average of these five methods failed 

test 85: 

TEST Z'S. 

Ll; c i Cri+TC-N 

PrvevG-E 

This was caused by three roughly equal groups being f orrned 
;}- WrcAD 

andp, two of them jointing. Thus this fault is due to weighted 

average's tendency to form equal-sized'groups. 

Both median and weighted average failed in the following 

case (test 66) and gave the same groups: 
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J tG-+TE-tl AV. 

This was caused in both cases from the four cluster solution, 

by the joining of the two left hand clusters. 

This was in the weighted average case caused again by 

the preference of forming equal-sized groups, and the 

preference of median to join smaller groups. However with 

test 75 median and weighted average were the only methods 

which found the correct groupings. The other methods gave 

the grouping: 

TEST -1s 

C- 6-1.0 Tr-a 16 
cur 1W. 

Of the five methods only-Ward's f ü1ed test 94 - one 

,,. ich included outliers: 
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The correct groups seem very obvious and the fault is that 

small groups join before larger ones. However Ward's. method 

was the only one to find the correct groups in test 90 which 

would seem to be , rauch more difficult to group correctly, but 

this has equal-sized groups: 
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In another test with outliers (test 96) centroid was the 

only one to succeed: 
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In order to give more information on the extent to 4iich 

the methods can find straggly groups we give three examples 

on which all these methods f ailed: 
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Nearest Neighbour - we can now examine the behaviour of 

nearest neighbour. In the above three examples the top two 

were successfully completed, but the lowest one was not 

round, since the two denser groups merge before the third 

forms. The method is also notorious for-its inability to 

separate groups rhich 'touch', or have isolated points 

between them. For example the two group solution in test 75 

is as follows: 

TOST 7S 

NEtG-N$0vz- 

The method succeeded on the outlier tests perfectly, and the 

defect in the above groupin. g can be seen as over-enthusiastic 

search for outliers. 

We can summarize our findings so far, as follows: 

1. Nearest neighbour performs better with straggly groups 
than the other methods and worse on round groups. The 

other methods had very similar results (except perhaps 
furthest neighbour). 

2. b7edian, Group Average, Weighted Average, Centroid and 
Vlard'. s methods are in general superior to furthest 

neighbour which is dependent on the maximum width across 

G 
P 
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i 
the cluster, and hence fails with clusters covering 
differentAareas or straggly clusters. 

3. Centroid performed better than group average which 
tended to lose points fron groups rhich cover larger 

areas to nearby groups of smaller area. This is due to 

the replacing of a group by a single point at the 

centre. 

4. Weighted average has the opposite defect in that the 

group was often represented by points outside the 

densest part of the cluster. This has the effect of 
tending to form clusters of equal numbers of points. 

5. The median method had similar results to group average 
in general. 

6. lard's method dominated weighted average with round 

groups, having similar defects, but to a lesser e: tent. 

Ward's method had difficulty identifying outliers. 

7. Centroid had difficulty ithen dense groups and less 
dense groups were present, but together with Ward's 

method had the highest success rate. 

8. The extent of 'straggliress', Which the methods (except 

furthest neighbour) could cope with, was larger than one 
would have expected from the literature. 

9. dearest neighbour was seen to fail Where denser groups 
are close and also Were aberrant points existed between 
clusters. The method was seen to identify outliers 
easily. 

The results of each method* on each test are shown in 

Table 6. 
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Constructed Null Hypotheses Results 

Vie now consider the methods in the light of the findings 

from the random tests, as described previously on pages 240-1. 

Vie will not analyse in detail the results from the null 

hypotheses assuming equal variance along axes, since this may 

bd too sweeping an assumption. We will, however, give- a 

table which shows the number of successes and failures of 

each type. 

ROtflTD TESTS 

SUCCESS 
RIGHT 

CLUSTERS 
NOT 

SIGNIP. 

WRONG 
CLUSTERS 

NOT 
SIGNIF. 

RIGHT 
CLUSTERS 
WRONG NQ 

SIGNIF. 

WRONG 
CLUSTERS 

ATrD 
SIGNIF. 

N. Neighbour 23 15 11 14 1 

F. Neighbour 36 7 6 8 7 
Median 38 8 3 11 4 
Group Average 47 6 2 4 5 

Centroid 55 2 1 4 2 

Weighted Average 41 5 2 8 4 
+WWIard is- 42 9 1 9 3 

Centroid dominates all the other methods on the above 

figures, also weighted average and Ward's method dominate 

median, and Ward's and group average dominate furthest 

neighbour. Centroid had the highest success, and nearest 

neighbour fared badly. 
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STRAGGLY GROUPS 

SUCCESS 
RIGHT 

CLUSTERS 
NOT 

SIGNIF. 

WRONG 
CLUSTERS 

NOT 
SIGNIF. 

RIGHT 
CLUSTERS 
WRONG NO. 
SIGNIP. 

WRONG 
CLUSTERS 

MID 
SIGNIF. 

N. Neighbour 16 8. 4 3 1 
F. Neighbour 0 3 20 

,2 
7 

Median 1 4 18 5- 4 

Group Average 1 6 17 5 3. 
Centroid 2 7 8 

.5 10 
Weighted Average 1 

.4 
8 6 13 

Wand Is 1 8 16 3 4 

Nearest neighbour is easily the best, and weighted average 

and centroid are the ones which can give the most misleading 

results. The results of each method on the round cluster 

hypothesis are shown in Table 7. 

We can examine the results on the full null hypothesis 

in more detail, since it involves less assumptions. We 

first present the two tables. 

ROt D GROUPS 

SUCCESS 
RIGHT 

CLUSTERS 
NOT 

SIGNIF. 

WRONG 
CLUSTERS 

NOT 
SIGNIF. 

RIGHT 
CLUSTERS 
WRONG- NO. 
SIGNIF. 

WRONG 
CLUSTERS 

AND 
SIGýSIF . 

N. Neighbour 15 32 11 5 1 
F. Neighbour. . 19 27 11 

. 
4 3 

Iiie di a. n 30 21 3 6 4 
Group Average 25 29 6 3- 1 
Centroid 32 25 2 4 1 
Weighted Average 29 28 4 2 1 
Ward's 33 23 3 4 1 
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STRAGGLY GROUPS 

SUCCESS 
RIGHT 

CLUSTERS 
IrOT' 

SIGNIF. 

WRONG 
CLUSTERS 

NOT 
SIGNIF. 

RIGHT * 
CLUSTERS 
WRONG NQ 
SIGNIF. 

WRONG 
CLUSTERS 

AND 
SIGNIF. 

N. Neighbour 13 11 5 3 0 
F. Neighbour 0 4 26 1, .1 
Median 1 7 21 2 1 
Group Average 0 9 19 ý 3 1 
Centroid 1 11 17 2 1 
'Weighted Average 0 10 20 1 1 
Wards 0 11 19 1 1 

Again the most striking feature is the failure of all but the 

nearest neighbour on. the straggly groups. Another important 

feature is the low figures in the two right hand columns, 

indicating how 'safe' the methods are - giving misleading 

results in a maximum of 13.5; %% of cases (median), and as few 

as 5.2j'S (weighted average), and most methods give completely 

wrong results in about 1% of the tests. 

The best methods achieve a 50/4 success with round 

group3, and negligible success with. straggly - whereas 

nearest neighbour has 23% success on round and 41, /: o' on 

straggly. The higher percentage on straggly groups is 

caused by these tests being somewhat easier to group by eye, 

and hence easier for a straggly-type method. 

The methods, with the exclusion of nearest neighbour, 

are difficult to differentiate on the basis of these. results, 

but general conclusions can be drawn. Furthest neighbour is 
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probably least successful, being only slightly better than 

nearest neighbour on round groups. Centroid and Ward's 

method are the most successful with almost identical results. 

Centroid dominates median, and weighted average dominates 

group average. The results of each method on the full null 

hypothesis are shown in Table 8. 

We now consider the extension of Lance and Williams' 

flexible method. This accounts for a large number of our 

investigations. Table 9 shows the number of failures on the 

64 round tests. Rough contours have been added to highlight 

the behaviour of cc and r. There was a. wide range of success 

from 60-100%. There was a marked difference fro. -, -i a: = 0.45 

to PC= 0.5. In general, the lower the value of ß, the 

better the results. The results on Lance and Williams' line 

are of interest - the level of success is not sensitive in 

the region V-= 0.5 to 0.7t but the suggested value of 

vc= 0.625 by Lance and Williams appears to be a littl high. 

If a, dendrogram is required then, the best position on, this 

diagram is at o/. = 0-575Y/'5 = -0.150.4lr'ith these parameters 

there were three failures on the round tests, the same three 

as those with Ward's method. 

The results w th straggly groups are shown in. Table 10, 

as with most of the methods discussed previously, there was 

little success. An interesting result is the slight 
improvement as 

A increases, as opposed to the improvement. 

with decreasing ß noted on the round tests. Also-for each 
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value of there is a tendency to reach a minimum on Lance 

and Williams' line, r&ere a value of v between 0.6 and 0.8 

seems best. Values between 
, i. = 0.575 and 0.675 perform bast 

on our full 0,6 tests and do almost as well as the centroid 

and Ward's nathod, and better than the other 
. 
methods 

investigated. 

If dendrograms are not required then optimum values are 

va, lue3 of tL = 0,7 with (> in the range -0.8 to -1.2 and 

possibly beyond. All of these successfully completed all 

64 of the round tests, but were not quite as successful as 

some of the other hierarchical methods with straggly groups. 

Not all the failures with particular parameters are of 

the same type. If we divide the tests into two classes - 
those with equal sized groups and those with unequal groups 

we obtain two charts as shown in Tables 11 and 12. Contours 

have been drawn at levels i%hich show the pattern most 

clearly. Par=ater values in the upper right of the graph 

do least well on unequal groups and VC= 0.45 values do. worst 

on equal groups. 

To examine the reasons for this effect we look at 

particular tests :, here this pattern of failure is most 

clearly illustrated. -Firstly we look at the behaviour of 

the values around OL= 0.91 (3= 0.5. The upper right failure 

pattern erase ibited most by tests 34 and 40. The results 

are s'hmun below: 
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TEST 40 

These failures were exhibited. by' a. large number of 

parameters exclusively in the upper left corner. The reason 

for fai,. lure is fairly evident - that smaller groups have 

greater tendency to join than larger, and thus roughly equal 

sized groups are formed. This also explains the greater 

success of these parameter values on equal cluster tests. 

11 
This can be seen from the way the method works. The 

method is based on the way new distances are calculated when 

points merge. We have the new distance from point J to the 

new cluster 

D(P', J) = X(D(P, J) + D(Q, J)) +ßD(P, Q) 
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If ry. and (> are large, in particular if o(� j' 0.5 and 0, 

then the new calculated distances will tend to be rauch larger 

than D(P, J) or D(Q, J) and hence as clusters form they will be 

'moved away' from the rest of the points. This causes 

objects to cluster into pairs, then into pairs of pairs, etc. 

This is-the opposite effect to chaining where new clusters 

are 'moved' nearer to other objects. We call this effect 

pairing. 

If we consider the case where we have three points: 

c z 

then we would wish the new distance to the cluster to be no 

less than b. 

I. e. b >,, 2b. ß( = aß 

as b -a-o the inequality becomes x 

as b -->a we have 1- 2m + 

und typically if b= 3a/2 we have 3 >, 6vc + 21. 

These lines are shown in Table 13. 

The failure with aC = 0.45 can be investigated by 

examination of tests 22. and 27: 
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TEST 22 

oC =0' 45 

27 

o ý=a(5 

Test 22 failed with j; = -0.9 to -1.2 and test 27. with 

4 -0.5 to -1.2, both with X= 0.45. 

This appears to be the opposite effect with larger 

clusters joining in preference to smaller ones. Fron the 

equation showing the distance calculation it can be seen that 

if 4 is less than 0.5 and also f is negative then the neYW 

distance will tend to be smaller than either D(P, J) or 

D (Q, J) . We may wish this to be true in cases where we have 
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Px 

xY 

(S X 

but certainly not where we have the case 

a. ax 
P CQ = 

Here our new distance 

D= (2x + 1) ca +ßa 

and we wish, our new distance-to be at least ax. So we 

require 

ax >, " (2 x+ 1) o4 a+(a 

as x ->oo the equation becomes tc = 0.5 

as x -> 1 the equation becomes 1= 3oc +r 

Thus we have a family of lines each of which includes 

ccC0.5 and --4.5 as a region in which chaining can occur. 

This gives the situation in Table 13 wvhich gives a good 

correspondence to our results with round groups. 

In order to reduce the volume of computation required 

for the null hypothesis stages, we eliminated some parameters 

from our investigations. This elimination. Vas carried out 

from Table 13 and the tests results (Tables 9 and 10), we 

reduced to a level which would still include the weighted 

average and median methods. The parameters used in the 

second half of* the study are shown in Table 14. 
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As before, the results for the null hypothesis assuming 

equal variance along each dimension, are presented with 
little examination. These are shown in the Tables 15 and 16. 

The contours are similar to those in Tables 9 and 10, but are 

more marked. The best levels of success are as good as 

centroid, and better than the other methods discussed so far. 

We now move on to the full null hypothesis. These 

results are shown in Tables 17 and 18. Little success was 

recorded with the straggly groups, but there is a tendency. 

for values with high (s to do slightly batter. 

The successes with round tests are much better than that 

with the other methods, and reaches 70%%. The contours are 

again similar to those already noted. V7a can tabulate our 

best values of ý and 6. 

Parameters 64 ROUND TESTS 
Level of success 

32 STRAGGLY T3STS 
Level of success 

(') 1 2 3 1 2 3 

0.6 -0.5 62 56 40 9 2 1 
0.6 -0.6 62 56 40 8 2 1 
0.6 -0.7 62 55 45 8 2 1 
0.7 -0.8 64 52 42 10 3 1 
0.7 -0.9 64 55 43 9 1 1 
0.7 -1.0 64, 55 39 10 1 0 
0.7 -1.1 64 57 45 9 2 0 
0.7 -1.2 64 59 43 9 2 0 
0.8 -1.1 63 53 38 

. 
10 1 0 

0.8 -1.2 64 54 38 
.8 1 0 
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From these values it can be seen that the values of 

j.,, 0.0, (a= -0.7; 

appear to fare best. 

ck=0.7, (=-1.1; and OCR 0.7, (=-1.2 

These do better than any of the methods 

discussed so far on the routed tests and only slightly worse 

on the straggly tests. These results show that further 

investigation of other values with lower may be worthwhile. 

So far we have mainly dealt with methods which have had 

limited success with our straggly group tests. We now 

examine our Klink method, which links a point to its nearest 

neighbour if the summed similarity to its nearest K 

neighbours is below a certain level. We also examine the 

Nucleus method which was also designed for all shape groups - 

here nearest neighbour groups are allowed to overlap by up to 

j objects before merging. The single link method is a 

limiting case of both methods and we will include it in our 

table of results. 

I8r"THOD 
64 ROUND TESTS 

Level of success 
32 STRAGGLY TESTS 

Level of success 

1 2 3 1 2 3 

KLINK K=4 
. 

40 16 12 15 3 2 
KLINK K. --3 44 24 11 20 3 2 
KLINK K=2 53 17 16 25 9 7 
NEAREST NBR 53 23 15 27 º6 13 
NUCLEUS ,+1 47 20 7 20 8 5 
NUCLEUS K=2 37 , 13 6 17 6 2 
NUCLEUS F--3 23 17 7 12 5 0 
NUCLEUS Y=4 13 9 5 9 3 0 
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The general impression from the above table is that 

nearest neighbour performs better than the other methods, and 

that the two methods do best with the lower parameter values. 

wink with K=2 performs almost as well as nearest neighbour. 

However the above results mask the fact that the '{link and 

Nucleus methods succeed in some cases where nearest neighbour 

fails, and in fact none of 'the eight methods in the table are 

dominated by any of the others. As the Nucleus method with 

K=3 and 4 performed very badly, even with straggly groups, 

these can be eliminated from detailed discussions. 

Klink 2 has the most correct groupings. alter nearest 

neighbour. It succeeded on two round tests where nearest 

neighbour failed. One of these was test 27, where the 

failure was as follows : 

TEST 277 

KL1t)K- 2.. 

The other case was very similar, and both cases where- 

outliers were found when-groups chained together earlier than 

they should. Thus Klink 2 has less of a tendency to chain. 

Nucleus I also succeeded in two cases where chaining had 

EI 
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caused nearest neighbour to fail, including test 27 above. 

However Klink 2 failed in two cases where nearest neighbour 

succeeded. All the other Klink and Nucleus methods also 

failed-these. Here are the results with the Klink 2 method: 

00 
0 

0 0 
" 

a 
" 

a 

4 

TC-s º (:; 3 

k. Ljn}K 2 

" 

'" TEST (30 

� 11 w, k'ß�1 N4Z,., ' 

0a 

There is clearly difficulty in joining the two point 

groups. This is not surprising since the Klink met. od 

requires the similarity with k other points before nearest 

neighbours join, and the Nucleus method requires overlap of 

1c points. 
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Klink 3 succeeds in two cases where Klink 2 fails. 

They are also both cases where nearest neighbour fails, and 

Klink 4 succeeds. 

test 29: 

" 
" 

e +. 
wý 

-T-ST z11 

KLINK. 3, Lf- 

Here chaining is still present, thus with Klink, k is a 

parameter which allows a degree of chaining which decreases 

as k increases. Klink 3 and 4 failed in other tests where 

outliers or small groups were present -*thus one penalty of 

decreasing chaining is the difficulty of detecting small 

groups. This accounts for all the failures of Klin: c 3 where 

Klink 2 succeeds, apart from test 27 which we have just 

discussed here the I Klink 3 solution is: 

ýs 

wý 
?M 

"*ý 
ýý" 

0 

M' 

ýP 

'v'ie illustrate with one of these two - 

TEST Z'r 

KL1I I' 3 
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'T'his is apparently caused by the different densities of the 

clusters, giving a high linkage value of outliers of the less 

dense group to the dense clusters. The additional failures 

of Klink 4 can be explained by these two difficulties 

outlined above. 0 

have covered the successes of Nucleus 1 over nearest 

neighbour already. The method failed more than Klink 2with 

very small groups, and also two other tests where nearest 

neighbour and all the Klink methods succeeded. 

is shown below - test 18: 

One of these 

TEST i$ 

tiuci-Gus 

The cause of this is similar to that which causes difficulty 

with small groups -outlying point will be emphasized. 

Nucleus 2 failed on more tests, but all for the reasons 

explained above. 
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With the straggly group tests a similar pattern. 

emerged - the Klink method, however, was more sensitive to K, 

with a success rate falling from 78ßa with X--2, to 47 with 

K. 4. On these tests. Klink 3 dominated Klink 4. The 

reasons for failure were as in the round groups case, and the 

flink method again tended to do better than Nucleus. 

We can now consider the methods on the null hypotheses. 

Firstly supposing equal variance: 

ROUND TESTS 

SUCCESS 
RIGHT 

CLUSTERS 
NOT 

SIGNIF. 

WRONG 
CLUSTERS 

NOT - 
SIGNIF. 

RIGHT 
CLUSTERS 
WRONG NO 
SIGNIF. 

WRONG 
CLUSTERS 

AND 
SIGNIF. 

KLINK K=4 16 10 19 14 5 

K--3 24 10 16 10 4 

K2 17 18 6 18 5 
NEAREST NBR 23 15 11 14 1 
NUCLEUS K=1 20 12 10 14 8 

2 13 7 14 17 13 
Ky=3 17 0 21 6 20 

K4 9 0. - 38 4.. 13 

STRAGGLY TESTS 

KLINK K=4 3 8 1i 4 6. 

K3 3 7 7 10 5 
K.:. 2 9 5 4 11 3 

NEAREST rTBR 16 8 4 3 1 
rlucLEUS K-ý 1 8 6 7 6 5 

K=-2 6 2 9 9 6 
K=3 5 2 14 5' 6 

4 3 1 17 5_ 6 
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Nearest neighbour appears to be easily the best, and the 

Klink method does better than the Nucleus method. All of 

the method have a large number of results in the two right 

hand coluzrns, indicating the difficulty of a null hypothesis 

in such cases where only a few values from the similarity 

matrix determine the clustering at each stage. 

We now move on to the full null hypothesis results. 

ROUND TESTS 

SUCCESS 
RIGHT 

CLUSTERS 
NOT 

SIGNIF. 

WRONG 
CLUSTERS 

NOT 
SIGNIF. 

RIGHT 
CLUSTERS 
WRONG NCI 
SIGIIIF. 

WRONG 
CLUSTERS 

AND 
SIGNIF. 

KLINK K=4 12 23 24 5 0 
K=-3 11 31 20 2 0 

2 16 2-9 9 10 0 
NEAR ST NBR 15 32 11 5 1 

NUCLEUS K=l -7 33 13 6 5 
K=2 6 26 24 5 3 

K--3 7 14* 35 2 6 
K-4 5 7 48 1 3 

STRAGGLY TESTS 

KLINK : =4 2 13 15 1 1 
IC=3 2 16 10 2 2 
K= 2 7 12 5 6 2 

NEAREST NBR 13 11 5 3 0 
NUCLEUS K. =1 5 11 11 3 1 

K=2 2 13 1 It 2 1 
K=3 0 11 20 1 0 
Yß=4 0 s 23 1 0 
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Nearest neighbour again appears best, but is matched by 

Klink 2, at least on round groups. T. be Klink methods again 

do better than. the Nucleus, but on. straggly groups only 

Klink 2 and Nucleus 1 performed anywhere near as good as 

nearest neighbour. 

Although wo have discussed the parameters in these cases 

by their numerical values, they are related to the number of 

objects under study. Another point worth mentioning is that 

although the Nucleus method did not perform as well as the 

others, it has also the provision for overlapping groups. 

We can sw--niarize our conclusions with these methods as 

follows: 

1. The methods '(link 2 and 3 and Nucleus 1 all perf orr well 

on straggly groups, but in general. not as well as 
nearest neighbour. 

2. The methods reduce the adverse chaining effects of 

nearest neighbour, at the expense of difficulty in 
finding small groups, and in cases where groups are of 
very different densities.. 

3. In ger. eral the Klink method outperforms Nucleus, and in 

particular Klink 2 was the best method tested, although 
this value may increase slightly with n. 

Dissimilarity analysis was the only divisive method to 

be fully analysed, and is the last hierarchic method for. 

discussion. The method succeeded on 52 of the round tests 

and 7 of the straggly tests, which means it was outperformed 

by most of the methods discussed so far. It did, however? 
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have success where other methods failed. Divisive methods 

also have the advantage that they produce solutions with a 

small number of groups, early in the analysis. These are 

normally those in which one is primarily interested, they can 

thus be terminated at a particular level, and can hence be 

very fast. 

The method correctly processed test 44 which all the 

hierarchic round group methods failed, and was successful on 

several (e. g. tests 3,23,55) which all the straggly group 

methods discussed so far failed. From exairdnation of these 

tests it can be seen that' dissimilarity analysis does not 

have the failings where groups are of different densities. 

The method failed on several tests which had been passed 

by most of the other method's. We illustrate with testa 15 

and 33: 
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The problem occurs with groups of large area, which have 

points at a large distance from their centre, and are 

assessed as more similar to a smaller group. 

No satisfactory null hypothesis could, be created ' for 

dissimilarity analysis. The problem* is not as straight-- 

forward as that of agglomerative methods since operations are 

executed on separate groups of points. Several criteria 

were investigated to see if they were satisfactory rules for 

distinguishing between grouped and random data. 

Suppose a group splits into two parts with objective 

function equal to a and these two groups split at levels 

a1 and a2 then for a case Where two groups are present, the 

following parannaters were investigated: 

ka 
x1ax(al, a2) 

a 
ala 

However even in very obviously clustered cases there was 

little difference from the random tests. 

There were three iterative relocation methods in our 

investigation - Beale's method, group average relocation, and 

the neighbourhood 'method. The results were as follows: 

64 ROUND TESTS 
Level of Success 

32 STRAGGLY TESTS 
Level of success 

1 2 3 1 2 3 

Beale's 59 . 49 34 11 1 1 
Group Av. Reloc. 46 36 '31 12 3 1 
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The neighbourhood method null hypotheses were 

unsatisfactory, only one result was found to be significant. 

The method, however, was very successful at finding the 

groups: 

2 IK_ 3 K_ 4 K_ 5 

64 Round Tests' 
32 Straggly Tests 

63 
13 

63 

14 
64 

14 
63- 

13 

63 

14 

Beale's method was surprisingly dominated by Ward's 

method on the round group tests. There were two-cases Where 

Ward's method succeeded and Beale's failed. These were: 

'T'EST 1t 

(SCI}L. ýS 

ý. ý 
v 

TEST 43 

GG 11-1-C-5 
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In both these cases the objective function is higher than for 

'the expected groupings - this is a defect of the within-group 

error sum of squares as an objective function. This defect 

occurs Men small groups exist. 

The group averaga relocation method performed badly with 

round groups - only achieving about a 70, success rate. The 

fault lies with the group average criterion. A typical 

result is that of test 15: 

ti fp 

" 

I., "A 

O" a 

" 

"" 
i 

TT 15 
GE Ga.. cc'p ti'&Z4" 

(LELOCATºciJ 

Here the -optimum for the particular objective function has 

been found, but it is clearly not the 'best' result. 

The results with the null hypotheses assuming dimenoions 

of equal variances were as follows: 

ROUND TESTS 

RIGHT WRONG RIGHT r*ýRor G 
SUCCESS CLUSTERS CLUSTERS CLUSTERS CLUSTERS 

NOT NOT WRONG Na AlM . SIGNIF. SIGNIF. SIGNIF. SIGNIF. 

Beale °s 49 6 0 4 5 

G. A. R. 36 8 7 3 10 
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STRAGGLY TESTS 

Beale's 1 5 12 5 9 

G. A. R. 3 5 12 4 8 

The results of Beale's method are similar to those With 

the best hierarchical methods. The corresponding results 

with the full null hypotheses are: 

ROUND TESTS 

RIGHT WRONG RIGHT WRONG 

SUCCESS CLUSTERS CLUSTERS CLUSTERS CLUSTERS 
NOT NOT WRONG NO. AND 

SIGNIF. SIGNIF. SIGNIF. SIGNIF. 

Beale's 34 25 4 0 1 
G. A. R. 31 15 12 0 6 

STRAGGLY TESTS 

Beale' s 1 9 20 1 1 
G. A. R. 1 8 18 3 2 

Beale's method, on the above results, dominates all but 

the extended flexible method on round groups, and is less 

liable to give the wrong; result on all 95 tests, than any 

me thud. 

The group average relocation method also did well on 

t . ese results. Thus 4We can suggest that relocation methods 

do tivel1 under such a null hypothesis. This is probably due 

to the fact that a global optic uxa is more often found, and. 

one is comparing optima, and not results fron a series of 

optimum moves which are often non-global optil: ýa, a. 3 in 

hierarchical methods. 
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The neighbourhood method had surprisingly low success 

with straggly groups, although excellent results were 

achieved with round groups. With K=3 there were no 

failures, and with the other parameters one failure each. 

The failure with I=1 was as follows: 

" 
" 

" 

" 
i 

" 

ai" 

And those with K=2,4,5 were: 
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It can be seen that the method has a slight tendency to 

'lose' outlying members of large groups to denser groups 

nearby. On straggly groups the method had success generally 

in the same cases as the hierarchical methods for round 

groups. 
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Unfortunately, as stated earlier the null hypotheses had 

negligible discriminating power. 

Mode analysis is a method designed for groups of any 

shape, and. it achieved good results with these tests. Vie 

give the results, together with nearest neighbour and 

Klink 2- the best two methods for straggly groups analysed 

so far. (Nearest neighbour is a limiting case of anode 

analysis. ) 

64 ROUND TESTS 132 STRAGGLY TESTS 

1aINK 2 53 25 
NEAREST NEIGHBOUR 53 27 
MODE K=1 57 25 

K. =2 51 21 

K=-3 35 16 
Ir, =4 22 11 

-5 10 8 

K=6 5 7 

It can. be seen that there is a shaxp drop in achievement 

-bout of ter Mode 2, and that Mode 1 and 2 do as well a: ý the 

Nearest Neighbour and Klink 2 impthods. On the round group 

tests" the mode results dominate each other in the order. of 

i. e. Mode 1 dominates Mode 2, etc. 71ith the other test set, 

the same order relations were true except for three tests 

one where only Mode 4 succeeded, one where 4 and 5 succeeded, 

and one : hich only 1 and 6 succeeded on. 

All the Mode methods failed on tests 60,63- and 64 Which 

all contained outliers. - However the method had less 

difficulties with small groups than the Klink and Nucleus 
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methods, and with TJode 1 has slightly less trouble with 

groups of different density. There were however a few cases 

that were correctly grouped by most of the Klink and Nucleus 

methods but. on which the Mode methods (2-6) all failed. 

Here are two examples: 

" TEST i2 

S " 
a 

". 
"". 

'" 

". 
I 

In the first example (test 12) lode 4,5 and 6 produced 

no groupings at all, and with Mode 2 and 3 the two groups 

formed, but joined before the outliers members had joined 

their groups, In the second example the two dense groups 

join before the other group is properly formed. Mode -1 

correctly grouped the above tests, and on the straggly t; sts 

succeeded on a test which no other method succeeded- on - 

test 86: 
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The raode method also could not identify outliers with 

straggly groups. 

A difference between Mode analysis and other methods is 

that the method can output the result that the data is 

unimodal. Thus one would like random data to give this 

result, so that. if the method gave groups, this would. 
-me-an 

they were statistically significant. 

With Y, ---6 none of the sixty random tests were significant. 

With K=5, three of the random tests produced groupings - thus 

if any data of 30 objects produced groupings with K=5 we 

could be 95% certain that they were significant. With K=4, 

nine tests produced groups - this , ras thought to be too many 

in which to base a. reasonable test. The groupings that were 

produced were examined and it was found that often the 

grouping came about because a single point became a separate 

group at level a, which very soon (say at level a2) joined 
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the other group. Thus from investigating these groupings, 

the. null hypothesis that no group exists for which 

a2/a1 > 1.1, was. used. Wi th this, only f our of the raxidor 

tests were significant - the equivalent of a 933 ä level 

significance test. 

With K`3,24 of the 60 tests produced groupings, and 22 

were significant under the above rule. By further 

investigation the following null hypothesis was arrived at 

that no grouping exists for which a2/a1 7 1.2, at a stage in 

the analysis where over 80 of the objects belong to modes. 

This produces a fairly weak hypothesis with 8 of the randon, 

tests significant. The same hypothesis with 1=2 gives. 

29 tests significant - no major improvement was found , -uhich 

would give a good hypothesis. 

It could be argued that one should only use random 

unimodal data for such a test', in which case less random 

groups are significant, but this would depend on the exact 

null hypothesis required for' a particular investigation. The 

above figures hardly varied at all between random tests with 

dimensions of equal "variances, and the other tests. 

The results under these tests were as follows: 
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ROUND TESTS 

RIGHT VVRON G RIGHT WRONG 
SUCCESS CLUSTERS CLUSTERS CLUSTERS CLUSTERS 

NOT NOT WRONG NO. AND 

. SIGNIF. SIGNIF. SIGPNIF. SIGNIF. 

MODE 3 34 1 ' 10 0 19 
4 21 1 16 0 26 
5 10 0 26 0 28 ' 

6 5 0 35 0 24 

STRAGGLY TESTS 

LIMITE 3 14 2 6 0 10 
4 11 0 12 0 9 

5 7 1 . 20 0 4 
6 7 0 21 0 4 

The results are not too encouraging, and in some cases 

more incorrect groupings are found significant than correct 

groupings. 

Our condensation model method had 'three parameters, to 

Which we gave two or three set values. 

The method involves gravitating all points together 

slowly, gradually forming clusters. When points are within 

a distance d of each other they are amalgamated. S was a 

measure of the speed with which the points. were allowed to 

move, c was a parameter which damped motion between close 

points to avoid overshooting. 

The results with the method were very encouraging as 

shown below: 



299. 

64 ROUND TESTS 32 STRAGGLY TESTS 

Level of success Level of success 
aSc 123 1' 23 

0.04 0.004 0.2 64 25 23 15 4. 3 

0.3 63 . 12 12 11 1 1 
0.4 56 11 10 10 0 0 

0.006 0.2 64 26 16 15. .5 4 
0.3 63 15 15 11 1 1 
0.4 57 12 12 10 01 0 

0.06 0.004 0.2 64 30 23 13 4 4 
0.3 63 16 16 11 1 1 
0.4 59 7 7 11 1 1 

0.006 0.2 64 19 17 14 -5 3 
0.3 62 20 16 11 2 1 
0.4 59 8 8 11 0 0 

0.08 0.004 0.2 64 32 30 '13 1 1 
0.3 64 22 22 11 1 1 
0.4' 60 9 9 12 1 1 

0.006 0.2 64 32 31 14 4 2 
0.3 63 24 24 11 1 1 

0.4 60 T0 10. 11 1 1 
f 

The parameter c appears to be the most sensitive on the 

above values and c=0.2 dominates nearly all the results with 

c=0.3 or c=0.4, and all the c=0.2 values achieve maximum 

success with the round groups. The results under changes in 

d and S are less sensitive, but more contradictory between 

the round and straggly tests. The round tests are perf ormed 

better by higher values of d and lower values of S, but the 

straggly tests are passed by lower values of d and higher S. 

The results with the null hypotheses are as good as the 

better hierarchical methods, but there is some evidence that 
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the first differences of the objective function may form a 

better hypothesis. with this method. 

With c: ý0.2 the methods succeeded on all the round tests, 

so we look at failures on the straggly tests. The method 

tended to succeed on those tests which the hierarchical 

methods successfully completed. However two tests - 102 and 

106 which most hierarchical methods succeeded on, gave the 

following results: 

'T ST 1o2. 
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The groups are shown for d=O. 04, S=0.004 and c=0.2, but are 

the same as those found by most of the other parameter 

values. Test 66 shows that the method has difficulty with 

long parallel groups, and the same effect is present in 

test 70 Where two long groups have prematurely joined. The 

results are encouraging however, and possibly by the use of a 

more exact en logy to the motion of masses in a viscous 

medium, might yield better results. 

The results of most of the methods on each test are 

shown in Tables 6,7 and 8. The conclusions fron these 

results, consideration, of the computer times for each method, 

and our results in the light of other researohes, will be 

discussed in the next section. 
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C. 6 CONCLUSIONS 

General Conclusions 

Here we shall first list the conclusions drawn from our 

analysis of the results which we have discussed in the 

preceding section. 

ý. Nearest neighbour can find groups of any shape, but has 
difficulty where 'freak' points exist between clusters 
and rohere groups are of different densities. Nearest 

neighbour is-particularly good at identifying outliers. 

2. Furthest neighbour is inferior to median, centroid, 
group average, weighted average and Ward's method, 
having a tendency to form round groups of equal area. 

3. Group average is generally more inaccurate than 

centroid. The cause of this inaccuracy is the 

replacing of a group by a single point at the centre, 

which means that groups covering large areas tend to 

'lose' points to groups of smaller area. The median 
method had very similar results. 

4. Weighted average had the difficulty that groups are 
given the weight of a single point, and so the centre of 
the cluster tends to drift away from the densest part of 
the cluster. This gives a tendency for forming 

clusters of equal numbers of points. 

5. Of the' methods analysed which form dendrograms, centrold 
and Ward's were the best method with round groups. 
They were also able to find more straggly groups than 

expected. Centroid had some difficulty when groups of 
widely differing. density were present', and Ward's 

method had difficulty identifying outliers. 
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6. Values of CA. and (, with the extended flexible method were 

affected by chaining and pairing in some cases. 
Several parameter values correctly grouped all the 64 

round tests, and had the highest success of any method 

with the full null hypothesis. With straggly groups, 

slightly less success was achieved than in the methods 
discussed so far. The best parameter values were 

0.6,6 = -0.7; oc = 0.7, and x_ 0.7, 

7. The Klink and Nucleus methods both reduced the chaining 
effects of nearest neighbour, but had difficulty 
identifying small groups and outliers. Klink was 
generally better than Nucleus, and Klink 2 was the best 

method. 

S. Dissimilarity analysis-did not do well. It had 

successes in cases where groups of differing densities 

were present, where other methods had difficulty, but 

had a tendency to allocate outlying members of large 

clusters to smaller nearby clusters. 

g, . Beelets method was surprisingly 
Ward's; this is due to the use 
as an objective function, which 
pheral points of large clusters 
clusters. Beale's method was, 
tham any of the dendrogram form 
full null hypothesis. 

not as successful as 
of error sum of squares 
can misallocate peri, - 
to nearby small 
however, more successful 

ing methods under the 

10. Group average relocation failed because of the use of 
group average as an objective function, the method had 
bad performance, although with the-full null hypothesis, 
it worked well. 

ý1. The neighbourhood method was very successful with round 

groups, and as good as the best round group method with 

straggly groups. 
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12. mode analysis had similar failings to Klink and Nucleus, 

but to a lesser degree. Mode 1 was the best method, 

and one which outperformed nearest neighbour. 

13. The condensation model method worked very well on round 

groups and as well as the best hierarchical methods on 

straggly groups. There was some difficulty with 
elongated parallel groups. The parameter c=0.2 was 
better than 0.3 or 0.4, but the results on the other two 

parameters were difficult to interpret. 

14. Of all the methods which form a dendrograri the only 
method to succeed on all the round tests was the 

condensation method. The other methods v&ich succeeded 
on all these were the extended flexible, and the 

neighbourhood method. 

15. Nearest neighbour succeeded most of the 32 straggly 
tests, then cane Node analysis and Klink. 

16. With the null hypotheses tests, the extended flexible 

method perl ormed best, with Beale' s, 'lard's and the 

Centroid methods next best. 

17. Axaong the methods discussed there is a clear, distinction 
between methods glich search specifically for round 
groups and those vfnich seek 'natural' clusters. 

Comparison with other Researches 

Hoer do our results compare with other people's? From 

the chart on page 220 one can see that 'our results are at 

variance with the. few studies that have been previously 

attempted. The main difference between our results and the 

other studies i's the high position in our tests of centroid, 
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and. the low position of furthest neighbour. Cunningham 

(1972) and Strauss (1971) are the, previous two major works in 

this field. Cunningham's study was on six data sets (four 

of, which contained a large number of ties), and was a 

comparison 'of hierarchies and the original data, which may 

well give different results from our experiments which have 

been tests of clustering, rather than hierarchic 

representation. Strauss' results show greater correspondence 

with our results, but as shown by our tests, there are only 

slight differences in performance between the methods Strauss 

used, and with only a few tests his results could easily show 

a different ordering. 

Our results coincide with those of Sneath in the table 

on page 22--results which are based on long experience with 

the four methods he discusses. 

Computer Considerations 

The computer times for the methods depend on the 

algorithm used, and the expertness of the programming. 

Having no claim to such expertise, general conclusions"will 

be drawn as to the time taken for each method, and no actual 

times will be compared. 

Dissimilarity analysis was probably the fastest method 

in our study,. and had the advantage that one could stop 

groups below a certain size being further divided and so 

shorten the computation further. 

All the methods which can be performed by Lance and 

Williams' algorithm are very fast, and all take approxiuately 

the same time (but with those dependent on group size - 
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group average, centroid and Ward's method having very 

slightly slower times). Nearest neighbour and furthest 

neighbour could be executed faster by simplification of this 

algorithm, and nearest neighbour can be speeded up even more 

by a different algorithm. Both these neighbour methods can. 

be performed manually fairly easily up to about 50 objects. 

The condensation method was the next fastest, due to the 

way in which a large number of points merge at early stages 

in the algorithm, and so the effective data set size is 

reduced for most of the calculation. 

The group average relocation method and Beale's method 

are probably the next fastest, although much slower than the 

methods above - due to the search for improvement at each 

stage. The methods have the advantage that if one begins 

with a random or stratified grouping, after a few fusions and 

their associate 'reallocations, the grouping . would be near 

optiMal. This obviously reduces computer time, but with a. 

greater chance of error. A more accurate approach would, be 

to 's: ritch off' the relocation procedure (in Which case tine 

methods revert to group average and Ward's, respectively) 

until the number of groups has been reduced. 

The other four methods are based on neighbourhoods and 

not on similarity to a group centre, and hence take longer 

computationally - in the probable order of Klink, mode. 

analysis, Nucleus method, neighbourhood method, with the 

f astest first. 
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The computer storage requirements of cluster analysis 

have been discussed in general terms earlier. Most of the 

above methods can be programmed to store either the data 

matrix, or the. lower off-diagonal distance -matrix, whichever 

is smaller. Nearest neighbour. has the advantage ' that . it can 

be pro rained with much less storage than this (see the 

algorithm by Sibson 1973). 

Decision Rules for Choice of Method 

No one method dominated all others, and so the decision 

of What method to employ in a specific case cannot be simply 

answered. The most important consideration in deciding the 

approach to be taken is the problem itself, including the 

data Which is available, and the type of question one is 

investigating. This may preclude the use of certain 

mathods. 

In order to facilitate our discussion we have tabulated 

(Table 19) the results of the-best methods on both sets of 

tests at the first and third. success levels (i. e. the groups 

found, and the groups significant with the full null 

hypothesis). An indication is also given of the computer 

times involved. The ordering of the methods represents 

little but the author's prejudices. (The values of the 

best point" on Lance and Williams' mflexible-line is included 

along with their recommended point, for. completeness). 
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RESULTS 
64 Round Tests 32 Straggly Msts 

n Cc t r 11e th od Groups Groups Groups Groups 
pu z e 

Time 
found signif. found signif. 

cý-=0.6, (-> =-0.7 62 45 8 1 L0, t1 
cý=0.7, 64 45 9 0 LOrt 
oC=0.7, (, _-1.2 64 43 9 0 LOW 
d=0.04,5=0.004, c=0.2 64. 23 15 3 LO7 
d=0.08,5=0.006, c=0.2 64 31 14 2 LOW 
INEIGGHBOURH0OD, K3 64 * 14 HIGH 
NEIGHBOUROOD, K=2,5 63 14 HIGH 
NEIGHBOURHOOD, K. 1,4, 63 13 HIGH 
BEALE'S 59 34 11 1 MEDIUM 
WARD'S 61 33 12 0 LOW 
CENZTROID 61 32 14 1 LOV! 
FLEXIBLE (r, =-O- 15) 61 25 10 1. L0, #1 
Iv10DE, K-1 57 * 25 * HIGH 
KLINK, Kß. 2 53 16 25 7 HIGH 
I'DIAN 58 30 10 1 LOW 
WEIGHTED AVERAGE 58 . 29 11 0 LOW 
FLEXIBLE (r5=-0.25) 59 20 11 1 LOW 
GROUP AVERAGE 57 25' 12 0 L0t+! 
NEAREST NEIGHBOUR 53 15 29 13 LOW 
MODE, K=-2 51 21 * HIGH 
NUCLEUS, K:. 1 47 7 20 5 HIGH 
DISSIMILARITY ANALYSIS 53 7 L0,, 1 
FURTHEST I3EI GBOUR 50 19 5 0 LOW 
GROUP AV. RELOCATI oN 46 31 12 1 LIE DIUM: ý 
KLINK, Y,. --3 44 11 

. 
20 2 HIGH 

* indicates that no satisfactory null hypothesis was found 

TABLE 19 
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A strategy which can be applied to most problems is an 

initial nearest neighbour clustering to identify possible 

outliers. These can be eliminated from the data set, and 

considered independently. There are some instances where 

this would not be applicable, for example if groups had to be 

of a minimum size, but the approach 'is normally satisfactory 

even in these cases as useful additional knowledge. If 

outliers are removed from the data then certain methods 

become more accurate - these are Ward's, Beale's, and the 

neighbourhood type methods - Nucleus, Neighböurhood Llethod, 

Klink and Mode Analysis. Normally, the type of dendrogram 

produced by nearest neighbour, especially in the latter 

stages is a set of individual points gradually joining a 

large group. This is a normal type of dendroüram produced 

by excessive chaining. It is possible however that more than 

one group may persist until higher levels in the dendrograin 

this would indicate clearly separate groups. The data can 

then be divided into these groups and each analysed 

separately. 

An important consideration in considering what type of 

information we wish to extract from our data is whether a 

dendrograr is required. . 
It may for example be. necessary in 

biology or botany where clustering is required at several 

levels - subspecies, species, genus, etc. The question of 

how good a dendrograr represents data is somewhat different 

from how good clusters represent certain data, but the 

indications from our studies are that 'lard's method is 

probably better than the other methods v. ich can be performed 
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by Lance and Williams' algorithm.. Centroid is as good as 

, yard's method, but can give rise to reversals, which may or 

may not be acceptable in a particular study -. this is a 

question for user control. Other methods which can produce 

dexidrograms, and which are worth consideration, are the 
n 

condensation method, and Klink, with a value of about 5, 

where n is the number of objects under investigation. 

If there is restriction on the amIount of computer time 

available then Klink cannot be considered. ' Another 

consideration is the difficulty of round and straggly groups. 

Groups may be desired to have properties such as high 

similarity with. all other members of the group, in which case 

we need only consider round groups, and use either Ward's 

method or the condensation method (or both). There may also 

be other factors in the data, or required result which 

preclude methods for straggly groups. Also if one has 

strong reasons for expecting, or requiring, groups which may 

not be roughly hyperspherical, then one is limited to the 

Klink method, which may be precluded by computer cost -- in 

which case one is left to intuitive reasoning with the 

nearest neighbour method (and possibly in conjunction with 

the Ward's method or condensation method solution),. 

If one has no specific reason for wanting or suspecting 

groups to be any particular shape, or one is using cluster 

analysis purely for exploratory purposes, and if computer 

time were not restricted, then the use of all three methods 

mentioned above, coupled with interpretation by someone with 
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l iowledge of the data, would be the recommended approach. 

If computer time was limited then one could either rely on 

Yard's or condensation alone, remembering their fair success 

with straggly groups, or use them in conjunction, with the 

nearest neighbour solution. 

The use of prior knowledge, replicating the data set, 

obtaining other data, splitting the data in two halves, and 

other tests for robustness of clusters will be of obvious 

advantage. The construction of null hypotheses can be a 

useful-approach, but as can. be seen in the table, is mainly 

of assistance with confirming the existence of round groups, 

although as shown in our results significance tests with 

nearest neighbour may be of some value. 

If a dendrogram is not required then all the methods we 

have discussed are open to us, but there may be certain 

instances which necessitate the use of another particular 

subset of methods. If we have an open choice then the stat- 

of methods recorzaended, covering all types which may be 

required by consideration of group shape or computation time, 

are - Extended flexible., Condensation, Neighbourhood, 

Beale's, Ward's, Centroid, Mode, Klink and Nearest Neighbour. 

Our main differentiation between these nine methods are 

on consideration of the group shape and time taken. If we 

consider that the round. group methods are necessary or 

sufficiently good enough, then we have a choice of the first 

six methods listed above. Of these only the neighbourhood 

method is precluded if computation limits exist. This 
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leaves five methods, of which extended flexible is probably 

best if one intends-to use the null hypothesis, and 

condensation if one wishes to have a higher chance of 

finding groups of any shape. Most of these methods are 

fairly fast, and if it were not' too expensive then a good 

strategy would be to use two or three methods of different 

types - for instance Beale's, extended flexible and 

condensation. Similarly if the neighbourhood-method is not 

precluded then this can also be used in conjunction with 

other methods. 

If via need a method which will detect straggly groups 

accurately then we can use Mode analysis or Klink. it 

would be preferable to use both, but if only one could be 

used then Mode has the advantage of slightly better accuracy, 

while la ink has -a null hypothesis. and is a little faster. 

If these methods are too slow and expensive, one is left to 

an interpretation of a nearest neighbour solution in the 

light of a round group methods result (condensation or 

centroid do best on straggly groups). 

If the shape of groups present in the data is 

unsuspected, and unrestricted by the problem, 'then we would 

select a straggly group method and a round group method from 

the list of nine methods above and interpret them together. 

If we were limited to the faster methods we would have to use 

one of the round group methods which was best at straggly 

groups - condensation, Ward or centroid and interpret them 

with the nearest neighbour' solution. 

The decision tree of the above discussion is shown in 

Figure 29. It is important however to see this tree as a 
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general layout and to realize that each problem must be 

analysed to investigate the requirements of the method(s). to 

be employed. The validation of results is also a very 

important stage of the approach which depends largely on the 

problem. The defects of each method, as shown in the 

previous section, should be borne in mind, and play apart in 

the decision process. For example the choice between group 

average and weighted average can largely be decided from 

consideration of the problem and type of result wanted. 

The Use of Null Hypothese s 

We show the null hypotheses for six of the best methods 

in our study in Figures 30-35. These are all for thirty 

points in two dimensions. Figures 36 and 37 show for one of 

the methods the effect of a change in dimensionality, and the 

effect of an increase in number of points, for comparison 

with Figure 38 which is based on ten sets of normally 

distributed data - 30 points in 2. dimensions. The three 

sets were all normalized to unit variance, 

The main points of interest from these diagrams is the 

similarity in the shape of the curves, and the close 

resemblance between the graphs obtained from 30 points in 

2 dimensions, and 30 points in 4 dimensions. The graph of 

60 points in 2 dimensions is somewhat steeper than the other 

graphs. Thus one can suppose a family of curves of similar 

shape becoming more steep as the number of points increases 

and less dependent on the number of dimensions. 
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The recommended use of null hypotheses as a practical 

significance test is to generate random numbers with the same 

number of points and the same variance in each direction (as 

shown by a principal components analysis), as the data under 

investigation, using the method of clustering to be used in. 

the study. 

Areas for Further Research 

The results above and of the previous section indicate 

several areas which would be. worth investigation. These are 

discussed below: 

1. The extended flexible results indicated that, whilst the 

probably best values of o4 and ý'j had been investigated, 

values of ý less than -1.2 should be further considered. 

2. The condensation method also showed good results and the 

parameters of the method need further refinements to 

determine best values. Other gravitational models 
would also be worth investigation - such as an inverse 

cube law, or a more physically exact version of the 

movement of masses in a viscous medium. 

3. The effect on these methods of different similarity 
measures-is one of the areas of cluster analysis which 
needs greater research. It is hoped that the comparison 
of method study in this. research, being freer of 
dependence on the .. sim laxity measure used than some 
other studies, forms a basis which reduces the number of 
methods to be further analysed with different similarity 
measures. 
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ý. Some recent work on the examination of the distance 

matrix for evidence of clustering (see Inglis and 
Johnson 1970, Hills 1969 and Kruskal 1972), seems to be 

a possible direction that could lead to a method of 
detecting whether round or other shape groups were 

present, and this could be a useful line for further 

research. 

ý. Of the methods we have examined for some we were unable 
to devise suitable null hypotheses and for others the 

null hypothesis was not completely satisfactory, and in 

this area there is a need for further work. Here 

again the studies in this work have identified methods 

Which are worth investigating more in this direction. - 

Large Data Sets 

One particular aspect of cluster analysis which is of 

particular interest in some sciences, is the extension of the 

use of the methods to large data sets. Only the nearest 

neigh bour method can be programmed to take up store of the 

order n (where 'n is the number of objects under study), and 

most methods need storage of the order n2, or by increasing 

computation timet 
. storage of n*r1 (where in is the number of 

variables). This latter strategy will normally increase the 

number of objects which can be analysed, especially if the 

nunber of variables is reduced by principal component 

analysis, but there still exist restrictions on the size of n. 

Our proposed strategy for dealing with large values of n 

is explained in one of the case studies in section E. 2. The 

key to the problem as we see it is the fact that nearest 

neighbour can be programmed efficiently for several thousand 

objects. If the, maximum nuither of objects that can be 
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analysed by a certain method on a certain computer is n then 

generally one can, by employing the following two strategies, 

achieve an effective increase in n of up to 101. The 

strategies are: 

1. Use of nearest neighbour to identify outliers which can 
be eliminated from the data set. 

2. The identification of almost identical groups or pairs 

of objects (also by nearest neighbour); all but one 
from each group can be eliminated. The group 

representative may be taken as the group average, or 

more simply as one of the original group members, chosen 

at random. This may call for a change in weight of 
this group representative, depending on the cluster 

method used. 

The strategy developed in section E. 2 depends'on a 

further property of nearest neighbour - the fact that it 

identifies the densest regions of objects. 

Constraints 

Another area of development in clustering is the use of 

constraints in cases where one requires a certain 'structure 

in the output clusters. - These can easily be incorporated 

into most of the programs which we have dealt with. With 

the Lance and Williams algorithm methods, each pair of groups 

which would have been joined at a particular stage are tested 

to see if their fusion violates preset conditions, such as 

contiguity in geographical studies. Constraints can be set 

allowing only certain elements to join, groups-to be limited 

to a certain number of elements or to a certain area group, 

etc. 
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Me use of side conditions is of particular importance 

in operational research, where in order to adapt general 

methods to particular problems it is necessary to incorporate 

the constraints of a real world to reach a useful solution. 

Such problems are difficult to discuss in generalitLes, and 

it is one of our aims to show cluster analysis as an 

adaptable approach rather than a set technique, so we 

illustrate the use of constraints in problems by case studies 

given in section E. 3. 

N-Dimensional Data 

A particular problem that can occur in certain instances 

is that of objects which are themselves matrices:. Here'the 

difficulty lies in calculating the similarity between the 

objects. We have mentioned the problem in section B. 5, and 

there we carne to the conclusion that the question is a 

difficult one, but one that should be resolved by the analyst 

in each case, and no overall solution can be put forward. 

This particular problem occurs, in our case study in 

section E. 2 , here for a set of companies we had three 

dimensional data -a breakdown of employees by age, sax, anal 

occupation. in this example several possible resolutions of 

the data are discussed, and a 'preferred method is analysed. 


