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Abstract

We show the existence of realistic vacua in string theory whose observ-

able sector has exactly the matter content of the MSSM. This is achieved

by compactifying the E8 ×E8 heterotic superstring on a smooth Calabi-Yau

threefold with an SU(4) gauge instanton and a Z3 ×Z3 Wilson line. Specif-

ically, the observable sector is N = 1 supersymmetric with gauge group

SU(3)C × SU(2)L ×U(1)Y ×U(1)B−L, three families of quarks and leptons,

each family with a right-handed neutrino, and one Higgs–Higgs conjugate

pair. Importantly, there are no extra vector-like pairs and no exotic matter

in the zero mode spectrum. There are, in addition, 6 geometric moduli and

13 gauge instanton moduli in the observable sector. The holomorphic SU(4)

vector bundle of the observable sector is slope-stable.

Email: vbraun, ovrut@physics.upenn.edu, yang-hui.he@merton.ox.ac.uk,

tpantev@math.upenn.edu.

http://arXiv.org/abs/hep-th/0512177v3
http://arXiv.org/abs/hep-th/0512177


In a number of conference talks [1], we introduced a minimal heterotic standard

model whose observable sector has exactly the matter spectrum of the MSSM. This was

motivated and constructed as follows.

The gauge group Spin(10) is very compelling from the point of view of grand unifica-

tion and string theory since a complete family of quarks and leptons plus a right-handed

neutrino fits exactly into its 16 spin representation. Non-vanishing neutrino masses indi-

cate that, in supersymmetric theories without exotic multiplets, a right-handed neutrino

must be added to each family of quarks and leptons [2]. Within the context [3] of N = 1

supersymmetric E8 × E8 heterotic string vacua, a Spin(10) group can arise from the

spontaneous breaking of the observable sector E8 group by an SU(4) gauge instanton

on an internal Calabi-Yau threefold [4]. The Spin(10) group is then broken by discrete

Wilson lines to a gauge group containing SU(3)C × SU(2)L × U(1)Y as a factor [5].

To achieve this, the Calabi-Yau manifold must have, minimally, a fundamental group

Z3 × Z3.

Until recently, such vacua could not be constructed since Calabi-Yau threefolds with

fundamental group Z3 × Z3 and a method for building appropriate SU(4) gauge instan-

tons on them were not known. The problem of finding elliptic Calabi-Yau threefolds

with Z3 × Z3 fundamental group was rectified in [6]. That of constructing SU(4) in-

stantons was solved in a series of papers [7], where a class of SU(4) gauge instantons

on these Calabi-Yau manifolds was presented. Generalizing the results in [8, 9], these

instantons were obtained as connections on rank 4 holomorphic vector bundles. In order

for such connections to exist, it is necessary for the corresponding bundles to be slope-

stable. A number of non-trivial checks of the stability of these bundles was presented

in [7]. A rigorous proof of the conjectured slope-stability recently appeared in [10]. The

complete low energy spectra were computed in this context. The observable sectors

were found to be almost that of the minimal supersymmetric standard model (MSSM).

Specifically, the matter content of the most economical of these vacua consisted of three

families of quarks/leptons, each family with a right-handed neutrino, and two Higgs–

Higgs conjugate pairs. Apart from these, there were no other vector-like pairs, and no

exotic particles. That is, the observable sector is almost that of the MSSM, but con-

tains an extra pair of Higgs–Higgs conjugate fields. Additionally, there are 6 geometric

moduli [6] and 19 vector bundle moduli [11]. In [12], it was shown that non-vanishing

µ-terms can arise from cubic moduli-Higgs–Higgs conjugate interactions. Despite the
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extra Higgs–Higgs conjugate fields, the vacua presented in [7] are so close to realistic

particle physics that we refer to them as “heterotic standard models”.

These results were very encouraging. However, an obvious question is whether one

can, by refining these vector bundles, obtain compactifications of the E8 ×E8 heterotic

string whose matter content in the observable sector is exactly that of the MSSM. The

answer to this question is affirmative. In this paper, we present models with an N =

1 supersymmetric observable sector which, for both the weakly and strongly coupled

heterotic string, has the following properties:

Observable Sector

• SU(3)C × SU(2)L × U(1)Y × U(1)B−L gauge group

• Matter spectrum:

– 3 families of quarks and leptons, each with a right-handed neutrino

– 1 Higgs–Higgs conjugate pair

– No exotic matter fields

– No vector-like pairs (apart from the one Higgs pair)

• 3 complex structure, 3 Kähler, and 13 vector bundle moduli

The holomorphic SU(4) vector bundle V leading to this observable sector is slope-stable.

A rigorous proof of this will be presented in [13]. Note that, although very similar to the

supersymmetric standard model, our observable sector differs in two significant ways.

These are, first, the appearance of an additional gauged B − L symmetry and, second,

the existence of 6 + 13 moduli fields, all uncharged under the gauge group.

The structure of the hidden sector depends on the choice of a stable, holomorphic

vector bundle V ′. The topology of V ′, that is, its second Chern class, is constrained by

two conditions: first, the anomaly cancellation equation

c2

(
V ′

)
= c2

(
TX

)
− c2

(
V

)
− [W], (1)

where [W] is a possible effective five-brane class and, second, a necessary condition of

slope-stability given by ∫

X

ω ∧ c2

(
V ′

)
> 0 (2)
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for some Kähler class ω. Often, this inequality is the only obstruction to finding stable

bundles. We expect that the second condition is sufficiently strong that a subset of the

bundles V ′ satisfying it are slope-stable. Applying these conditions to the specific Calabi-

Yau threefold and SU(4) observable sector bundle discussed above, one can conclude

the following.

Hidden Sector

• One expects there to exist holomorphic vector bundles V ′ on the hidden sector

which satisfy the anomaly cancellation condition and are slope-stable for Kähler

classes ω for which the observable bundle V is also stable.

We have not explicitly constructed such hidden sector bundles. A search for these is

underway1. We will assume their existence in the remainder of this paper.

The vacua presented above are a small subset of the heterotic standard model vacua

presented in [7]. As discussed below, their construction involves subtleties in the anal-

ysis of the so-called “ideal sheaf” in the observable sector vector bundle, which were

previously overlooked. They appear to be the minimal such vacua, all others containing

either additional pairs of Higgs–Higgs conjugate fields and/or vector-like pairs of fami-

lies in the observable sector. For this reason, we will refer to these vacua as “minimal”

heterotic standard models.

We note that, to our knowledge, these are the only vacua2 whose spectrum in the

observable sector has exactly the matter content of the MSSM. Other superstring con-

structions [9, 17, 18, 19, 20] lead to vacua whose zero mode spectrum contains either

exotic multiplets or substantial numbers of vector-like pairs of Higgs and family fields, or

1Although exhibiting explicit N = 1 supersymmetric hidden sectors is of interest, it is not clear that

it is necessary, or even desirable, from the phenomenological point of view. For example, supersymmetry

breaking purely by gaugino condensation in the hidden sector may not lead to moduli stabilization with

a small positive cosmological constant [14]. This might require the addition of anti-five-branes in the

vacuum, as in [15], corresponding to an antieffective component of the five-brane class [W ] in the

anomaly cancellation condition. Allowing anti-five-branes in the hidden sector would greatly simplify

the search for stable hidden sector vector bundles.
2At least until yesterday [16], when a nice generalization of the construction presented in [9] (which

makes stability manifest) appeared. Their model differs from ours in two respects. First, it uses a rank 5

vector bundle instead of a rank 4 one. Second, their one pair of Higgs fields arises in a codimension-two

region in the moduli space, whereas our Higgs fields are generically present.
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both. Although these might obtain an intermediate scale mass through cubic couplings

with moduli (assuming these interactions satisfy appropriate selection rules and the ex-

pectation values of the moduli are sufficiently large), they can never be entirely removed

from the spectrum. To do so would violate the decoupling theorem. For these reasons,

we speculate that heterotic standard models and, in particular, the minimal heterotic

standard model described in this paper may be of phenomenological significance.

We now specify, in more detail, the properties of the these minimal vacua and indicate

how they are determined. The requisite Calabi-Yau threefold, X, is constructed as

follows [17]. Let X̃ be a simply connected Calabi-Yau threefold which is an elliptic

fibration over a rational elliptic surface, dP9. It was shown in [6] that X̃ factors into the

fiber product X̃ = B1 ×P1 B2, where B1 and B2 are both dP9 surfaces. Furthermore, X̃

is elliptically fibered with respect to each projection map πi : X̃ → Bi, i = 1, 2. In a

restricted region of their moduli space, such manifolds can be shown to admit a Z3 × Z3

group action which is fixed-point free. It follows that

X =
X̃

Z3 × Z3

(3)

is a smooth Calabi-Yau threefold that is torus-fibered over a singular dP9 and has non-

trivial fundamental group

π1(X) = Z3 × Z3 , (4)

as desired. It was shown in [6] that X has

h1,1(X) = 3 , h2,1(X) = 3 (5)

Kähler and complex structure moduli respectively; that is, a total of 6 geometric moduli.

We now construct a holomorphic vector bundle, V, on X with structure group

G = SU(4) (6)

contained in the E8 of the observable sector. For this bundle to admit a gauge connection

satisfying the hermitian Yang-Mills equations, it must be slope-stable. The connection

spontaneously breaks the observable sector E8 gauge symmetry to

E8 −→ Spin(10) , (7)

as desired. We produce V by building stable, holomorphic vector bundles Ṽ with struc-

ture group SU(4) over X̃ that are equivariant under the action of Z3 × Z3. This is
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accomplished by generalizing the method of “bundle extensions” introduced in [8]. The

bundle V is then given as

V =
Ṽ

Z3 × Z3

. (8)

Realistic particle physics phenomenology imposes additional constraints on Ṽ . Recall

that with respect to SU(4)× Spin(10) the adjoint representation of E8 decomposes as

248 =
(
1, 45

)
⊕

(
4, 16

)
⊕

(
4, 16

)
⊕

(
6, 10

)
⊕

(
15, 1

)
. (9)

The number of 45 multiplets is given by

h0

(
X̃,O

X̃

)
= 1. (10)

Hence, there are Spin(10) gauge fields in the low energy theory, but no adjoint Higgs

multiplets. The chiral families of quarks/leptons will descend from the excess of 16 over

16 representations. To ensure that there are three generations of quarks and leptons

after quotienting out Z3 × Z3, one must require that

n
16

− n16 =
1

2
c3

(
Ṽ

)
= −3 ·

∣∣Z3 × Z3

∣∣ = −27 , (11)

where n
16

, n16 are the numbers of 16 and 16 multiplets, respectively, and c3(Ṽ ) is the

third Chern class of Ṽ .

The number of 16 zero modes [9] is given by h1
(
X̃, Ṽ ∗

)
. Therefore, if we demand that

there be no vector-like matter fields arising from 16-16 pairs, Ṽ must be constrained so

that

h1

(
X̃, Ṽ ∗

)
= 0 . (12)

Similarly, the number of 10 zero modes is h1
(
X̃,∧2Ṽ

)
. However, since the Higgs fields

arise from the decomposition of the 10, one must not set the associated cohomology to

zero. Rather, we restrict Ṽ so that h1
(
X̃,∧2Ṽ

)
is minimal, but non-vanishing. Subject

to all the constraints that Ṽ must satisfy, we find that the minimal number of 10

representations is

h1

(
X̃,∧2Ṽ

)
= 4 . (13)

In [7], the smallest dimension of this cohomology group that we could find in the heterotic

standard model context was h1(X̃,∧2Ṽ ) = 14. However, as discussed below, a more

detailed analysis of the ideal sheaf involved in the construction of the vector bundle

allows one to reduce this from 14 to 4.
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We now present a stable vector bundle Ṽ satisfying constraints eqns. (11), (12)

and (13). This is constructed as an extension

0 −→ V1 −→ Ṽ −→ V2 −→ 0 (14)

of two rank 2 bundles, V1 and V2. Each of these is the tensor product of a line bundle

with a rank 2 bundle pulled back from a dP9 factor of X̃. Using the two projection

maps, we define3

V1 = O
X̃

(−τ1 + τ2) ⊗ π1
∗(W1) , V2 = O

X̃
(τ1 − τ2) ⊗ π2

∗(W2) , (15)

where

span{τ1, τ2, φ} = H2(X̃, C)Z3×Z3 (16)

is the Z3 × Z3 invariant part of the Kähler moduli space. The two bundles, W1 on B1

and W2 on B2, are constructed via an equivariant version of the Serre construction as

0 −→ χ1OB1
(−f1) −→ W1 −→ χ2

1
OB1

(f1) ⊗ IB1

3
−→ 0 (17)

and

0 −→ χ2

2
OB2

(−f2) −→ W2 −→ χ2OB2
(f2) ⊗ IB2

6
−→ 0 , (18)

where IB1

3
and IB2

6
denote the ideal sheaf4 of 3 and 6 points in B1 and B2 respectively.

Characters χ1 and χ2 are third roots of unity which generate the first and second factors

of Z3 × Z3.

The crucial new observation occurs in the definitions of W1 and W2. Satisfying

condition eq. (11) requires that one use ideal sheaves of 9 points in total. In our previous

papers [7], we chose W1 to be the trivial bundle and defined W2 as an extension of two

rank 1 bundles, one of which contained a single ideal sheaf, I9. This comprises 9 points,

as it must. However, it is possible to use several such sheaves in the definitions of W1

and W2, as long as the total number of points is 9. Note that while the Z3 × Z3 action

on X̃ only has orbits consisting of 9 points, the Z3 × Z3 action on the base surfaces B1

and B2 is not free and, in fact, has orbits of 9 and of 3 points. This allows one to define

the ideal sheaf IB1

3
using the fixed points of the second Z3 on B1 and the ideal sheaf

IB2

6
using the fixed points of the second Z3 on B2 taken with multiplicity 2. That is,

3See [7] for our notation of line bundles O
X̃

(· · · ), etc.
4The analytic functions vanishing at the respective points.
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previously we only considered the case where the total of 9 points were distributed as5

0 + 9. In this paper, we distribute the points into two different ideal sheaves as 3 + 6.

This allows us to obtain the precise MSSM matter content.

We now extend the observable sector bundle V by adding a Wilson line, W , with

holonomy

Hol(W ) = Z3 × Z3 ⊂ Spin(10) . (19)

The associated gauge connection spontaneously breaks Spin(10) as

Spin(10) −→ SU(3)C × SU(2)L × U(1)Y × U(1)B−L , (20)

where SU(3)C × SU(2)L × U(1)Y is the standard model gauge group. Since Z3 × Z3 is

Abelian and rank
(
Spin(10)

)
= 5, an additional rank one factor must appear. For the

chosen embedding of Z3 × Z3, this is precisely the gauged B − L symmetry.

As discussed in [9], the zero mode spectrum of V⊕W on X is determined as follows.

Let R be a representation of Spin(10), and denote the associated Ṽ bundle by UR(Ṽ ).

Find the representation of Z3 × Z3 on H1
(
X̃, UR(Ṽ )

)
and tensor this with the represen-

tation of the Wilson line on R. The zero mode spectrum is then the invariant subspace

under this joint group action. Let us apply this to the case at hand. To begin with, the

single 45 decomposes into the SU(3)C × SU(2)L ×U(1)Y ×U(1)B−L gauge fields. Now

consider the 16 representation. It follows from eq. (12) that no such representations

occur. Hence, no SU(3)C × SU(2)L × U(1)Y × U(1)B−L fields arising from vector-like

16-16 pairs appear in the spectrum, as desired. Next examine the 16 representation.

The constraints (11) and (12) imply that

h1

(
X̃, Ṽ

)
= 27 . (21)

One can calculate the Z3 × Z3 representation on H1
(
X̃, Ṽ

)
, as well as the Wilson line

action on 16. We find that

H1
(
X̃, Ṽ

)
= RG⊕3, (22)

where RG is the regular representation of G = Z3 × Z3 given by

RG = 1 ⊕ χ1 ⊕ χ2 ⊕ χ2

1
⊕ χ2

2
⊕ χ1χ2 ⊕ χ2

1
χ2 ⊕ χ1χ

2

2
⊕ χ2

1
χ2

2
. (23)

5The ideal sheaf of 0 points is just the trivial line bundle.
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Furthermore, the Wilson line action can be chosen so that

16 =
[
χ1χ

2

2

(
3, 2, 1, 1

)
⊕ χ2

2

(
1, 1, 6, 3

)
⊕ χ2

1
χ2

2

(
3, 1,−4,−1

)]
⊕

⊕
[(

1, 2,−3,−3
)
⊕ χ2

1

(
3, 1, 2,−1

)]
⊕ χ2

(
1, 1, 0, 3

)
. (24)

Tensoring these together, we find that the invariant subspace consists of three families

of quarks and leptons, each family transforming as

(
3, 2, 1, 1

)
,

(
3, 1,−4,−1

)
,

(
3, 1, 2,−1

)
(25)

and
(
1, 2,−3,−3

)
,

(
1, 1, 6, 3

)
,

(
1, 1, 0, 3

)
(26)

under SU(3)C × SU(2)L ×U(1)Y ×U(1)B−L. We have displayed the quantum numbers

3Y and 3(B − L) for convenience. Note from eq. (26) that each family contains a

right-handed neutrino, as desired.

Next, consider the 10 representation. Recall from eq. (13) that h1
(
X̃,∧2Ṽ

)
= 4.

We find that the representation of Z3 × Z3 in H1
(
X̃,∧2Ṽ

)
is given by

H1
(
X̃,∧2Ṽ

)
= χ2 ⊕ χ2

2
⊕ χ1χ

2

2
⊕ χ2

1
χ2 . (27)

Furthermore, the Wilson line W action is

10 =
[
χ2

2

(
1, 2, 3, 0

)
⊕ χ2

1
χ2

2

(
3, 1,−2,−2

)]
⊕

[
χ2

(
1, 2,−3, 0

)
⊕ χ1χ2

(
3, 1, 2, 2

)]
. (28)

Tensoring these actions together, one finds that the invariant subspace consists of a

single copy of
(
1, 2, 3, 0

)
,

(
1, 2,−3, 0

)
. (29)

That is, there is precisely one pair of Higgs–Higgs conjugate fields occurring as zero

modes of our vacuum.

Finally, consider the 1 representation of the Spin(10) gauge group. It follows

from (9), the above discussion, and the fact that the Wilson line action on 1 is trivial that

the number of 1 zero modes is given by the Z3 × Z3 invariant subspace of H1
(
X̃, Ṽ ⊗Ṽ ∗

)
,

which is denoted by H1
(
X̃, Ṽ ⊗ Ṽ ∗

)Z3×Z3

. Using the formalism developed in [11], we

find that

h1

(
X̃, Ṽ ⊗ Ṽ ∗

)Z3×Z3

= 13. (30)

That is, there are 13 vector bundle moduli.
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Putting these results together, we conclude that the zero mode spectrum of the

observable sector has gauge group SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L, contains three

families of quarks and leptons each with a right-handed neutrino, has one Higgs–Higgs

conjugate pair, and contains no exotic fields or additional vector-like pairs of multiplets

of any kind. Additionally, there are 13 vector bundle moduli.

As a final step, one must demonstrate that Ṽ is slope-stable. This has been proven,

in detail, and will be presented in [13]. Here, suffice it to say that Ṽ will be stable with

respect to any Kähler class in a finite three-dimensional region of Kähler moduli space

containing the point

ω = 3
(
2τ1 + 3τ2 + φ

)
. (31)

Henceforth, we restrict our discussion to this region of moduli space, which we denote

by Ks.

Another important constraint for realistic compactifications is the existence of Yukawa

couplings. Recall that (via the Kaluza-Klein reduction) the massless fields are associ-

ated with a number of vector-bundle valued harmonic one-forms Ψi on the Calabi-Yau

threefold. Their Yukawa coupling is then given by the integral

λijk =
1

9

∫

X̃

Ω ∧ Tr
(
Ψi ∧ Ψj ∧ Ψk

)
, (32)

where the Tr denotes a suitable contraction of the vector bundle indices. The integral

is only non-zero if the legs of the three one-forms Ψi span the π1-fiber direction, the π2

fiber direction, and the base P1 direction. This is the case here. A detailed analysis

reveals that we do, indeed, have non-vanishing Yukawa couplings [21].

Thus far, we have discussed the vector bundle of the observable sector. However,

the vacuum can contain a stable, holomorphic vector bundle, Ṽ ′, on X whose structure

group is in the E ′

8
of the hidden sector. The requirement of anomaly cancellation relates

the observable and hidden sector bundles, imposing the constraint that

c2

(
Ṽ ′

)
= c2

(
TX̃

)
− c2

(
Ṽ

)
− [W], (33)

where [W] must be an effective class and c2 is the second Chern class. In the strongly

coupled heterotic string, [W] is the class of the holomorphic curve around which a bulk

space five-brane is wrapped. In the weakly coupled case [W] must vanish. We have

previously constructed X̃ and Ṽ and, hence, can compute c2

(
TX̃

)
and c2

(
Ṽ

)
. They are

found to be

c2

(
TX̃

)
= 12

(
τ 2

1
+ τ 2

2

)
, c2

(
Ṽ

)
= τ 2

1
+ 4τ 2

2
+ 4τ1τ2 (34)

9



respectively. Inserting these results, eq. (33) becomes a constraint on the hidden sector

bundle Ṽ ′. Henceforth, we assume that Ṽ ′ satisfies (33). The easiest possibility is that

Ṽ ′ is the trivial bundle. However, in this case, we find that [W] is not effective. Hence,

we must choose the hidden sector bundle Ṽ ′ to be non-trivial.

However, simply satisfying (33) is not sufficient. As discussed previously, Ṽ ′ must

also be slope-stable. As a guide to constructing stable, holomorphic vector bundles

Ṽ ′ in the hidden sector, we note the following condition. It can be shown that if Ṽ ′ is

slope-stable with respect to a Kähler class ω, it must satisfy the “Bogomolov inequality”

∫

X̃

c2

(
Ṽ ′

)
∧ ω > 0. (35)

Note that if c2

(
Ṽ ′

)
is Poincare dual to an effective (antieffective) curve, then (35) is

satisfied (never satisfied) for any choice of Kähler class. Most vector bundles Ṽ ′ have a

second Chern class whose Poincare dual is neither effective nor antieffective. In this case,

constraint (35) is satisfied for ω’s contained in a non-vanishing subspace of the Kähler

cone. One can explicitly analyze this subspace using the second Chern class derived from

anomaly condition (33). It is simplest to limit our discussion to Ṽ ′ for which [W] = 0.

The generalization to the case where [W] is non-vanishing is straightforward. In this

case, eqns. (33) and (34) imply that

c2

(
Ṽ ′

)
= 11τ 2

1
+ 8τ 2

2
− 4τ1τ2. (36)

Recalling from (16) that τ1,τ2 and φ are a basis for the Z3 × Z3 invariant Kähler moduli

space, we can parameterize an arbitrary such Kähler class by

ω = x1τ1 + x2τ2 + yφ. (37)

Then, using the relations τ 3

1
= τ 3

2
= φ2 = 0, τ1φ = 3τ 2

1
and τ2φ = 3τ 2

2
we see using (36)

and (37) that

c2

(
Ṽ ′

)
∧ ω = 4x1 + 7x2 − 12y. (38)

It follows that constraint (35) will be satisfied if

4x1 + 7x2 − 12y > 0. (39)

This defines a three-dimensional region of moduli space which we denote by KB. Note

that the Kähler class (31) for which the observable sector bundle Ṽ was proven to be
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stable also satisfies (39). Hence,

Ks ∩ KB 6= ∅. (40)

In fact, one can show that Ks ∩ KB is a finite three-dimensional subcone of the Kähler

cone. It follows that both Ṽ and Ṽ ′ can, in principle, be slope-stable with respect to

any Kähler class ω ∈ Ks ∩ KB.

Fix ω ∈ Ks∩KB. There are numerous vector bundles Ṽ ′ with second Chern class (36)

which satisfy condition (35) for this choice of ω. Since (35) is only a necessary condition

for stability, we expect that many such Ṽ ′ are not stable. Indeed, one can construct

explicit examples for which this is the case. However, (35) is a very strong condition

and it is believed that at least some Ṽ ′ are slope-stable with respect to ω. Furthermore,

since one may choose any ω in the three-dimensional space Ks ∩ KB, it becomes even

more probable that there exist slope-stable vector bundles Ṽ ′ with respect to at least

one such ω.

We conclude that one expects that there should exist hidden sector holomorphic

vector bundles Ṽ ′ that satisfy the anomaly cancellation condition and are slope-stable.

Explicit examples of such bundles will be presented elsewhere.
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