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Abstract

Using techniques of algorithmic algebraic geometry, we present a new and efficient

method for explicitly computing the vacuum space of N = 1 gauge theories. We

emphasize the importance of finding special geometric properties of these spaces in

connecting phenomenology to guiding principles descending from high-energy physics.

We exemplify the method by addressing various subsectors of the MSSM. In particular

the geometry of the vacuum space of electroweak theory is described in detail, with and

without right-handed neutrinos. We discuss the impact of our method on the search

for evidence of underlying physics at a higher energy. Finally we describe how our

results can be used to rule out certain top-down constructions of electroweak physics.
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1 Introduction and Summary

It is often heard that definitive statements about high-energy physics cannot be obtained

from low-energy experiments. In particular, it is frequently maintained that one needs to

achieve energy scales comparable to the natural scale of the theory under consideration in

order to probe its validity. This is not necessarily so. Consider, for example, the case of

supersymmetric grand unified field theories (GUTs). These are well-defined, high-energy

modifications of the Standard Model that have an associated energy scale of roughly 1016

GeV, below which the grand unified group breaks. Yet, despite the large fundamental scale,

the minimal SU(5) version has been experimentally excluded by current limits on the lifetime

of the proton [1]. This is possible for the following reason: once one adopts the organizing

principle of high-energy grand unification certain testable properties of the low-energy theory

immediately ensue. The question we would like to pose is whether the paradigm can be

inverted: can the presence or absence of certain operators in the low-energy theory be used

to ascertain guiding principles for the theory at high energies? In other words, in the absence

of experiments that directly probe the high-energy regime, it might simply suffice to develop

a more clever low-energy attack tailored to the nature of the expected low-energy theory in

order to infer physics at higher energies.

Of course this idea is among the oldest in particle physics. The useful concept of ’t Hooft

naturalness [2], born as it is from our experience with gauge and discrete symmetry principles,

has been a primary tool for low-energy model building for some time. But in supersymmetric

theories there are additional tools that we can utilize. In this paper we expand upon our

proposal [3] to search for evidence of the nature of the high-energy completion of the Standard

Model of particle physics within the context of the vacuum geometry of the low-energy

theory itself. While our search assumes nothing about the specifics of the true high-energy

completion of phenomenological theories, it is especially sensitive to signals of underlying

string physics.

The proposal is conceptually simple. We wish to study the geometry of the vacuum space

of the Minimal Supersymmetric Standard Model (MSSM). The fundamental idea is that if

we were to find that the geometry has some very special form, which (a) is not and cannot

be explained in terms of symmetries relating the relevant degrees of freedom in the effective

field theory; and (b) is astonishingly unlikely to have occurred by chance, then this special

form should be regarded as a consequence of as yet unknown physics. For our purposes here,

we shall take special to be synonymous with non-trivial properties of the algebraic geometry

(such as the vanishing of certain topological numbers) describing the vacuum space. The

presence of any special geometrical structures in the vacuum space would be a collective

consequence of such factors as the gauge group, the particle spectrum, and the interactions
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in the theory. As such the special structures would tell us about the physics that determines

these properties of our world.

Viewed from a bottom-up perspective, this proposal is more than simply a search for

explanations of existing phenomenology. It can be used to make predictions. This is because

the prior arguments lead very naturally to a new principle for constructing and extending low-

energy phenomenological theories. If a special geometry is found which is incredibly unlikely

to have arisen by chance, then the existence of this geometry in the vacuum space should be

taken as a fundamental property of the high-energy completion, whatever this happens to

be. As such when adding higher dimensional operators to our theory, only those compatible

with this structure should be included. This is a very restrictive constraint — generically

more restrictive than gauge invariance alone — and therefore a highly predictive statement.

It means that any process mediated by those other higher dimensional operators should be

suppressed. Whether this is indeed true is something that may be tested experimentally.

Another application of a study of the vacuum space geometry of phenomenological the-

ories is to rule out certain methods of top-down model building from ever achieving desired

low-energy outcomes. In some cases one of the most evident structures of a model created

by a top-down construction is the geometry of its vacuum space. A prime example of this

is the growing industry of creating phenomenological theories on the worldvolume of a stack

of D3-branes localized on a singularity.1 In providing the same information for phenomeno-

logically motivated theories themselves, the work presented here facilitates a comparison of

the two. Such a comparison can instantly rule out large classes of approaches to Standard

Model building. For example, if one wishes to construct a phenomenological theory which

has a vacuum space which is not Calabi–Yau, then one cannot use a top-down approach

which is known to always give rise to such a structure.

While the physical motivations for our studies are straightforward and easy to understand,

new technical methods are required to study the geometry of the supersymmetric vacuum

spaces that we encounter. We make use of advances in algorithmic algebraic geometry to

achieve our physical aims. In due course, we develop a new and efficient algorithm for

computing the explicit vacuum moduli space of N = 1 gauge theories. This involves the

development of a novel method for determining the geometry of supersymmetric vacuum

spaces, the solutions to the F- and D-flatness constraints of the theory. For every solution

to the F-terms, there exists a solution to the D-terms in the completion of the orbit of the

complexified gauge group [12]. The D-orbits are themselves specified by the minimal set

of holomorphic gauge invariant operators (GIOs) in the theory. The algorithms we shall

discuss in this paper apply the F-flatness constraints to the gauge invariant operators to

1This program was initiated with [4, 5, 6], with systematic progress in [7, 8, 9]. Some algorithmic

perspectives were developed in [10, 11].
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obtain a description of the vacuum space as the solution to a set of algebraic relations

among the operators. One of the advantages of this attack is that it is built to exploit the

computational algebro-geometric tools currently available. As well, the methods we advance

allow the careful study of the geometry of general N = 1 theories in other contexts. For this

reason alone our investigation should be of interest to phenomenologists, formal theorists,

and mathematicians alike.

Though our methodology certainly applies to the full MSSM, it is unfortunately the case

that the number and complexity of the gauge invariant operators renders this field theory

too complicated to analyze with standard computational means. Therefore, while the use

of a supercomputer to attack the full problem is clearly a project of great importance —

and one that we are currently pursuing — we will in this paper concentrate on subsectors of

particular interest for the sake of illustrating and applying the methodology. Already, there

is interesting physics here. In particular, we find that the existence of non-trivial geometry

in the vacuum space of the MSSM depends crucially on the number of generations of matter

fields. Restricting to the electroweak sector by setting vacuum expectation values (vevs)

of quarks to zero by hand, we find that special structures emerge. When dimension four

R-parity preserving terms are added to the renormalizable superpotential with µ-term and

standard Yukawa interactions, the moduli space of vacua is an affine cone over the Veronese

surface. The Veronese surface is one of the simplest varieties encountered in algebraic geom-

etry. Adding R-parity violating operators destroys the structure entirely: the geometry of

the vacuum space becomes trivial, being either a line or a point. Similarly, when we include

a right-handed neutrino with Majorana and Dirac mass terms, the vacuum space is again a

cone over a Veronese base, only this time at the renormalizable level itself. This structure

is stable under R-parity preserving interactions at higher mass level. These results suggest

that geometry and phenomenology might well be correlated. We have carried out a general

survey of superpotentials in the electroweak sector to discover how special these structures

are.

The outline of this paper is as follows. In Section 2, we detail our methodology for

computing the moduli space as an algebraic variety. We include a number of examples to

illustrate our techniques explicitly. In Section 3, we discuss the moduli space of the MSSM.

As we have indicated, we will focus much of our attention on supersymmetric electroweak

theory. This is both a computationally tractable problem and an interesting laboratory for

finding and mapping special geometries. In Section 4, we discuss prospects for continuing

this program. A short Appendix explains the relevant algebraic geometry to physicists who

may be initially unfamiliar with the language.
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2 Computing Moduli Spaces of N = 1 Gauge Theories

In this Section, we begin by reviewing the method of Luty and Taylor [12] for describing

the moduli space of N = 1 supersymmetric gauge theories. We then proceed to describe

how this perspective on the geometry of the space of supersymmetric vacua is natural for

algebraic geometry. The vacuum space of the gauge theory is captured as the image of a

particular ring map. In this form the geometry can be efficiently investigated algorithmically.

We illustrate our discussion with simple examples.

2.1 The Moduli Space

Consider the N = 1 globally supersymmetric theory defined by

S =

∫

d4x

[
∫

d4θ Φ†
ie

V Φi +

(

1

4g2

∫

d2θ tr[WαW α] +

∫

d2θ W (Φ) + h.c.

)]

. (1)

The Φi are chiral superfields transforming in some representation Ri of the (compact) gauge

group G; V is a vector superfield transforming in the Lie algebra g; Wα = iD
2
e−V DαeV , the

gauge field strength, is a chiral spinor superfield; and W (Φ) is the superpotential, which is

a holomorphic function of the Φi.

The standard discussion, as found in [13] for example, tells us that field configurations

in global superspace which do not break supersymmetry extremize the superpotential when

treated as a function of the scalar components of the chiral fields:

∂W (φ)

∂φi

∣

∣

∣

∣

φi=φi0

= 0. (2)

Here the φi0 are vacuum expectation values of the scalar components of Φi. These are the

F-flatness conditions. For each generator of G, there is also a D-flatness condition that

supersymmetric field configurations must satisfy. In Wess–Zumino gauge, this condition

takes the familiar form

DA =
∑

i

φ†
i0 TA φi0 = 0, (3)

where the TA are the generators of the gauge group.

In principle, we could examine the vacuum space of gauge theories just by restricting

to the subspace of field configurations in the theory that satisfy both the F- and D-flatness

constraints. Removing the gauge redundancy within this subspace then returns to us the

space of interest. However, for complicated examples such as the MSSM this procedure

makes studying the nature of the resulting geometry calculationally intensive. We shall

instead obtain the supersymmetric vacuum space in a different manner, one that is designed
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to give us the geometry in a form that is then amenable to an analysis of its properties on

a computer.

The first step in reformulating the description of the moduli space is to switch from

Wess–Zumino gauge to a less restrictive gauge. The action (1) has a huge gauge invariance

that we do not normally see. This invariance may be parameterized by a chiral superfield

gauge parameter Λ ∈ g:

Φ 7→ g · Φ, eV 7→ g† −1eV g−1, (4)

where g = eiΛ. In particular, this chiral superfield parameter can be taken to be a complex

scalar, giving a subset of the invariance of the action which is the complexification Gc of the

original gauge group G.

Luty and Taylor [12] choose a gauge where the residual gauge invariance left over from

the full symmetry of the action is precisely this complexification. In this gauge the vector

superfield has an expansion

VA = CA − θσµθvµA + iθθθλA − iθθθλA + iθθθθDA, (5)

which can alternatively be taken as the definition of the gauge. The right hand side of (5)

differs from Wess–Zumino gauge because of the addition of the degree of freedom CA.

We wish to study the space of supersymmetric configurations of the theory. The F-term

constraints are unchanged from their usual expressions in this gauge. Imagine that we take

a solution to the F-flatness conditions, which we shall again denote by φi0. The D-term

constraints in this gauge are given by the equations

∂

∂CA

∑

i

φ†
i0e

Cφi0 = 0, (6)

where C = CATA. Substituting the solution φi0 from the F-flatness conditions into the above

D-term conditions yield equations for CA0. The F-terms are holomorphic quantities in the

fields that carry a gauge index and thus are covariant under changes of the imaginary part of

the gauge group. Consequently, we can perform such a transformation on our solution to the

F-term constraints and recover another solution. We use this freedom to rotate the solution

for CA0 to the D-terms to the point where C = 0. When we do this, we of course obtain

a solution to the D-terms in the standard Wess–Zumino gauge, which we have regained.

(That the correct D-terms are obtained in this gauge can be checked by comparing (3) to (6)

with CA set to zero once we have differentiated.) The non-trivial statement here is that for

every solution to the F-term constraints there is one and only one solution to the D-flatness

conditions in Wess–Zumino gauge. In this sense the D-flatness conditions are simply a gauge
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fixing condition. For a more careful analysis of this and related points we refer the reader

to the original literature [12, 14, 15, 16, 17].

In the end, the relevant observation for us is that the space of all supersymmetric vacua

is given by the space of all of the solutions to the F-term constraints F modulo the com-

plexification of the gauge group (the real part being used to remove the standard gauge

redundancy and the imaginary part to obtain the solution to the D-terms in Wess–Zumino

gauge). The moduli space is the symplectic quotient:

M = F//Gc. (7)

Moreover, the moduli space of vacua is an algebraic variety.2

2.2 Parameterizing the Moduli Space

We have seen that for any solution to the F-terms, there also exists a solution to the D-terms

in the completion of the orbit of the complexified gauge group. It is intuitively reasonable

that the moduli space M will be parameterized by the set of holomorphic gauge invariant op-

erators, with relations among them. We generally expect such relations to exist because there

will generically be more gauge invariant operators for any particular theory than dimensions

in the vacuum space. That is to say, the gauge invariant operators are an over-complete set

for describing F- and D-flat field directions. The D-orbits are the loci in the space of fields,

described in the previous section, for which the D-terms are stationary with respect to Gc.

Because holomorphic gauge invariant operators are invariant under Gc, they provide a basis

for labeling these orbits. Additional relations among gauge invariant operators arise because

they are built out of fields and these fields must themselves satisfy relations — the F-term

constraints.

Luty and Taylor prove the following theorem [12]:

Theorem Given a group Gc acting on a variety A, there is a one-to-one

correspondence between A//Gc and the set of points in the affine variety AG

defined by the ring RG of G-invariant elements in R = R(A), where R(A) is the

ring of polynomials defining the variety A.

The algebro-geometric concepts in the statement of the theorem and in the discussion that

follows are disentangled for the reader in the Appendix of our paper. What the statement

means for our purposes is that the vacuum space M = F//Gc can be described in algebraic

geometry in terms of the ring consisting of all polynomials built out of holomorphic gauge

invariant operators that are themselves built from constant field configurations, which are

solutions to the F-term equations.
2The definition of an algebraic variety is given in the Appendix to this paper.
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2.2.1 The Computational Problem

In a language conducive to calculation, the issue with which we are confronted is the following

problem in polynomial computation. Given an N = 1 theory, with superfields whose scalar

components are {φi} and superpotential W (Φi) (i = 1, . . . , n), one always has a finite gener-

ating set, D := {rj(φi)}, of gauge invariant operators encoding the D-terms (j = 1, . . . , k).

We here suppress gauge indices for the fields for convenience, but in the actual computation

we will expand everything into components. Any gauge singlet is then a polynomial in the

elements of D, which is to say that the elements of D generate the chiral ring of gauge

invariant operators. The gauge invariant operators in the set D are themselves polynomials

in the (components) of the fields φi. The vacuum moduli space will be parameterized by

this set. That is, the coordinates of the vacuum space M as an algebraic variety are the rj .

In the case when the superpotential is vanishing, the F-terms are trivial, and the equations

of M are simply the (non-trivial, independent) algebraic relations amongst the elements of D.

To determine these relations is a standard syzygy problem.3 Let there be d such independent

relations; that is, there are d equations in the k variables rj. Then the moduli space is a

variety defined by the d equations in C[r1, . . . , rk]. In the case of n F-terms {fi = ∂iW = 0},

one needs to find all relations subject to the F-term constraints.

It is expedient to rephrase the above discussion in terms of an algorithm for formulating

the space in the language of computational algebraic geometry. A systematic attack can then

be directed employing such computer packages such as Macaulay 2 [18] or Singular [19].

We make extensive use of this technology in performing computations throughout this paper.

2.2.2 The Algorithm

1. The n fields {φ1, . . . , φn} define the ring R := C[φ1, . . . , φn]. Elements of this ring

are polynomials in the fields φi. In general, a monomial expression φm1
1 · · ·φmn

n will

transform non-trivially under the action of the gauge group G. The F-term constraints

are ∂iW = 0. Since there are n fields, there will be n (possibly trivial) F-flat conditions,

each coming from taking the derivative of the superpotential with respect to a field

and each of the form of a polynomial (in the n variables {φi}) being set to zero. Note

that the F-terms will also in general carry a representation of the gauge group. The

key is that the F-terms furnish an ideal F := 〈〈f1, . . . , fn〉〉 of the polynomial ring R,

where each fi = ∂iW is a polynomial F-flatness equation. (Double angle brackets are

used to indicate the generators of the ideal.) By definition, then, the quotient ring

C[φ1, . . . , φn]/F is a polynomial ring in which all F-flat conditions fi = 0 are satisfied.

3The syzygy problem is simply to find relations among generators of an ideal. The word syzygy is borrowed

from astronomy where it denotes an alignment (conjunction or opposition) of celestial bodies.
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Therefore, F-flatness is automatically imposed by working in the quotient ring

F = R/〈〈∂iW 〉〉. (8)

In practice, one always puts the generators of the ideal of F-terms in standard Gröbner

basis.

2. The physics in the D-terms are exactly captured by holomorphic gauge invariant op-

erators as these are constant along orbits in Gc. We take a minimal generating set

of gauge invariant operators D = {rj({φi})}, where j = 1, . . . , k. As the generators

rj are polynomial in the fields φi, D can be regarded as defining a ring map from R

to S := C[r1, . . . , rk]. Again, the rj are minimally placed in a Gröbner basis. In the

absence of the F-terms, the syzygies of this map will give the d independent relations

amongst the rk. To impose F-term constraints, one simply regards D as a map from

the quotient ring F above where F-flatness is automatic. That is, we have a map from

F to S as

F = C[φ1, . . . , φn]/〈〈∂iW 〉〉
D

−→ C[r1, . . . , rk]. (9)

3. The moduli space of F- and D-flat configurations is the image Im(D) of this map.

It is the space of all holomorphic gauge invariant operators built out of F-flat field

configurations. The vacuum manifold

M ≃ Im
(

F
D

−→ S
)

(10)

is an ideal of S = C[r1, . . . , rk] and is an affine variety in C
k.

Once we have the geometry in the form of an image of a ring map in this manner,

we use Macaulay 2 and Singular to study its properties algorithmically. These programs

manipulate the types of polynomial systems described above using Gröbner basis techniques.

A good introductory guide to these kinds of methods can be found in [20]. A clear advantage

of the algorithm outlined here is that the explicit affine equation of M can be given as the

intersection of polynomial equations.

2.3 Some Examples

We shall now provide some simple examples to illustrate how the prescription works in

practice. As well as serving as a demonstration of our methods, we shall see that these

examples correctly reproduce known results. In addition, we have selected these cases to show

how special geometry can indeed arise in phenomenological compactifications of superstring

theory. This validates the particular power of our method in searching for evidence of high-

energy completions or in ruling out certain models.
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2.3.1 The Conifold

We shall first illustrate our procedure by the famous D3-brane worldvolume theory at a

conifold singularity [21]. Consider placing a stack of N parallel D3-branes on the surface

containing the conifold singularity defined as a hypersurface in C4:

{uv − zw = 0} ⊂ C[u, v, z, w]. (11)

The result is a quiver theory [4] with two nodes as depicted below:

SU(N) SU(N)

xi=1,2

yj=1,2

1x  , x2

1
y  , y

2

>>

>> (12)

It is an SU(N) × SU(N) theory with fields (x1, x2) charged as ( , ) (in standard Young

Tableaux notation) and (y1, y2) as ( , ) together with a superpotential

W = Tr(x1y1x2y2 − x1y2x2y1). (13)

Now, for the simple case of a single brane, i.e. N = 1, W clearly vanishes as the matrices

xi, yi now commute. Then, the supersymmetric vacuum space of the theory is generated by

the four polynomials

{r1, r2, r3, r4} = {xiyj}i,j=1,2 (14)

without further constraints. The moduli space M is hence given by the relations among the

ri. In this case there is a single relation and if we define

u = x1y1, v = x2y2, z = x1y2, w = x2y1, (15)

then the relation is precisely (11). This must be so by construction. Since the degrees of

freedom in the N = 1 worldvolume theory correspond to the position moduli of the brane, the

moduli space of the D-brane probe is the local equation of the Calabi–Yau space containing

the singularity.

In terms of our three-step algorithm, the above procedure is realized as follows. Here,

R = C[x1, x2, y1, y2], D = {r1, r2, r3, r4} = {u = x1y1, v = x2y2, z = x1y2, w = x2y1} and

S = C[u, v, z, w]. The first step in this case is trivial because we have no F-term constraints.

Thus the ring of polynomials describing the space of F-flat conditions is simply the same as

that describing field space itself; it is thus the ring R of all polynomials in the fields. The

map D takes R to S with a single relation uv = zw.
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2.3.2 Non-trivial F-terms

The case above for N > 1 is slightly more involved as we must add non-trivial F-terms

constraints; the explicit parameterization can be found, for example, in [22]. Let us illustrate

the case of non-trivial F-terms instead with another well-known example, a D3-brane on the

orbifold C3/Z3 with action (1, 1, 1). The gauge theory is a U(1)3 quiver theory:

>>
>

2

<<<
<<

<

3

1

W = ǫαβγX
(α)
12 X

(β)
23 X

(γ)
31 . (16)

There are nine fields X
(α)
12 , X

(β)
23 , and X

(γ)
31 , α, β, γ = 1, 2, 3 and 27 gauge invariant operators

formed by their products corresponding to the closed cycles in the quiver. Note that this is

an example in which the superpotential consists of all possible gauge-invariant operators at

the renormalizable level. The moduli space is

M ≃ Im

(

C[X
(α)
12 , X

(β)
23 , X

(γ)
31 ]

〈〈ǫαβγX
(β)
23 X

(γ)
31 , ǫαβγX

(α)
12 X

(γ)
31 , ǫαβγX

(α)
12 X

(β)
23 〉〉

D={X
(α)
12 X

(β)
23 X

(γ)
31 }

−→ C[r1, . . . , r27]

)

.

(17)

We find, using [18], that the image of the map D is an affine variety of dimension three and

degree nine; it is the intersection of 17 lines and 27 quadratics in C27. The presentation of

these 44 equations is uninstructive. However, we shall set the notation that (k|d, δ|mn1
1 mn2

2 ...)

signifies a variety of complex dimension d and degree δ, given as the intersection of ni

polynomials, each of degree mi in Ck. For the cases we shall present in this paper, the affine

varieties are intersections of homogeneous polynomials. As such, we can write them as affine

cones over a compact projective variety of one lower dimension. Hence,

(k|d, δ|mn1
1 mn2

2 ...) := Affine variety of complex dimension d, realized as an affine (18)

cone over a projective variety of dimension d − 1 and degree δ,

given as the intersection of ni polynomials of degree mi in Pk.

In this notation, the moduli space for the above theory is (27|3, 9|117227). Now, the 17

linear relations are trivial and allow us to eliminate 17 variables, leaving us with only 10.

The result is actually that M = (10|3, 9|227) and is in fact given by the 27 quadratic relations

11



amongst the (affine cone over the) standard cubic (Veronese) embedding:

P
2 → P

9

[x0 : x1 : x2] 7→ [x0
3 : x0

2x1 : x0x1
2 : x1

3 : x0
2x2 : x0x1x2 : x1

2x2 : x0x2
2 : x1x2

2 : x2
3].

(19)

Affinizing this to a map from C[x0, x1, x2] to C[y1, . . . , y10], where the yi are the 10 cubic

terms on the right hand side of (19), we see that the image is an affine variety in C10, with

the relations

{y2
2 − y1y3, y2y3 − y1y4, y3

2 − y2y4, y2y5 − y1y6, y3y5 − y1y7, y2y6 − y1y7,

y4y5 − y2y7, y3y6 − y2y7, y4y6 − y3y7, y5
2 − y1y8, y5y6 − y1y9, y2y8 − y1y9,

y6
2 − y2y9, y5y7 − y2y9, y3y8 − y2y9, y6y7 − y3y9, y4y8 − y3y9, y7

2 − y4y9,

y5y8 − y1y10, y6y8 − y2y10, y5y9 − y2y10, y7y8 − y3y10, y6y9 − y3y10, y7y9 − y4y10,

y8
2 − y5y10, y8y9 − y6y10, y9

2 − y7y10}.
(20)

This defines the three-dimensional orbifold C3/Z3, as specified by the total space of OP2(−3).

(The reader is referred to the Appendix for this standard notation for line bundles). Of

course, this is no surprise to us [4, 23]. The moduli space, in a D-brane probe scenario, must

locally be the singularity probed ab initio. This is then a good check of our method.

3 The MSSM Moduli Space

The preceding section has provided a general methodology for efficiently computing prop-

erties of the vacuum space of N = 1 supersymmetric theories. Clearly the most important

supersymmetric theory is the minimal supersymmetric extension of the Standard Model

(MSSM). The existence of supersymmetry at the TeV scale will be determined at the LHC,

as will the existence of supersymmetric representations of the Standard Model gauge group.

For the remainder of this article we will devote our attention exclusively to this class of

models.

3.1 The Full Theory

The MSSM is an N = 1 globally supersymmetric gauge theory in four dimensions. As such

our method can be applied here in exactly the same way as it was for the examples in the

previous section. An earlier systematic classification of the flat directions in the MSSM was

undertaken in the pioneering work of [24]; we shall largely adhere to their nomenclature.

We emphasize, however, that our method goes well beyond finding flat directions and the

dimensions of the moduli space — it finds the vacuum space explicitly as an algebraic variety.
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The field content of the MSSM constitute the input data. This is given in Table 1 below,

along with our index conventions. Once we expand into components, there are a total of

18 + 9 + 9 + 6 + 3 + 2 + 2 = 49 scalars. This means we are initially working over the

polynomial ring C[φ1, . . . , φ49], which is significantly larger than the toy examples presented

in Section 2.3.

INDICES

i, j, k, l = 1, 2, 3 Flavor (family) indices

a, b, c, d = 1, 2, 3 SU(3)C color indices

α, β, γ, δ = 1, 2 SU(2)L indices

FIELDS

Qi
a,α SU(2)L doublet quarks

ui
a SU(2)L singlet up-quarks

di
a SU(2)L singlet down-quarks

Li
α SU(2)L doublet leptons

ei SU(2)L singlet leptons

Hα up-type Higgs

Hα down-type Higgs

Table 1: Index conventions and field content of the MSSM.

The first step in applying our method to the MSSM is to look at the submanifold of the

field space spanned by the above fields which corresponds to F-flat configurations. To work

out the F-flatness constraints we require the superpotential. We could for example take the

following “minimal” renormalizable expression

Wminimal = C0
∑

α,β

HαHβǫ
αβ +

∑

i,j

C1
ij

∑

α,β,a

Qi
a,αuj

aHβǫ
αβ

+
∑

i,j

C2
ij

∑

α,β,a

Qi
a,αdj

aHβǫαβ +
∑

i,j

C3
ije

i
∑

α,β

Lj
αHβǫαβ . (21)

Here C0, C1,2,3
ij are flavor mixing matrices and are constant coefficients in the superpotential;

there is a total of 1+3·32 = 28 of these parameters. In general these are complex parameters,

but for the purpose of obtaining topological information about the vacuum manifold defined

by (21) we can take these numbers to be real without loss of generality. In fact, we can

restrict the entries of these matrices to be integer valued for ease of computation.4 Indeed,

the particular values of the coefficients determine the complex structure of the vacuum

variety. Finally, dimension counting reveals the matrices C1,2,3
ij to be dimensionless while C0

carries positive mass dimension. This last coefficient is, of course, the µ-parameter of the

4We choose these integer values at random prior to performing the computations. To ensure that this

restriction does not lead to accidental cancelations among various terms within the F-flatness conditions, we

then repeat the calculation with a different random number seed.
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MSSM superpotential. As we are uninterested in the scale of vevs along flat directions we

can absorb the mass parameter into the coefficient as we have done in (21).

The F-term constraints can be obtained from the above superpotential by setting its

derivatives with respect to the fields to zero. Once we have the F-flatness conditions we

can create the quotient ring describing the geometry of F-flat configuration space exactly

as we did in the examples in the previous section. Here this is determined by a list of 49

polynomials in R which generate the ideal F = 〈〈∂iW 〉〉. We then must find the quotient

ring F = R/F as defined in (8).

The second of step for applying our algorithm to the MSSM involves an investigation of

the holomorphic gauge invariant operators in the theory. Gherghetta, Kolda, and Martin

have performed this analysis; according to their paper [24], the space of gauge invariant

operators of the MSSM is generated by a finite set of 28 types. These are listed in Table 2,

where we define

(QQQ)4 := [(QQQ)4]αβγ = Qi
a,αQj

b,βQ
k
c,γǫ

abcǫijk, (22)

which transforms as a singlet of SU(3)C and as a 4 of SU(2)L, and where the notation

antisymmetric{(i, j), (k, m)} means that the multi-indices I = (i, j) and J = (k, m) for

i, j, k, m = 1, 2, 3 are antisymmetrized so that I, J = 1, . . . , 9 and J < I. As can be seen

from this table, the field content and gauge group structure of the MSSM is considerably

more complicated than any of the previous examples from Section 2.3. This results in many

more gauge invariant operators, each of which having an appreciably more involved structure.

We count a total of 991 operators. That is, the map D = {ri} maps F ⊂ C[φ1, . . . , φ49]

to S = C[r1, . . . , r991]. The image of the ring map from the ring describing the F-flat

configurations to the ring S is then the vacuum space we desire.

We have attempted to implement the algorithm of Section 2.2.2 on the MSSM directly.

The number of matter fields, the number of operators in the superpotential, and the size

of the minimal set of gauge invariant operators all contribute to the complexity of the

computational analysis. Unfortunately, at present, these forces overwhelm the capacity of

our desktop machines. It should be emphasized that this is not a failure of the algorithm

itself — it is simply a complicated case which will require more powerful computing resources

to tackle. This is work in progress. For now, we make a first search for special structure

within subsectors of the full theory. This is a sensible course of action in any case even

excluding the computational difficulties that we have mentioned. Often in string models, for

example, different sectors of low-energy effective theories come from different parts of the

construction. Any one of these sub-constructions may give rise to structure of the type we

are searching for.
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Type Explicit Sum Index Number

LH Li
αHβǫαβ i = 1, 2, 3 3

HH HαHβǫαβ 1

udd ui
ad

j
bd

k
c ǫabc i, j = 1, 2, 3; k = 1, . . . , j − 1 9

LLe Li
αL

j
βekǫαβ i, j = 1, 2, 3; k = 1, . . . , j − 1 9

QdL Qi
a,αdj

aLk
βǫαβ i, j, k = 1, 2, 3 27

QuH Qi
a,αuj

aHβǫαβ i, j = 1, 2, 3 9

QdH Qi
a,αdj

aHβǫαβ i, j = 1, 2, 3 9

LHe Li
αHβǫαβej i, j = 1, 2, 3 9

QQQL Qi
a,βQ

j
b,γQk

c,αLl
δǫ

abcǫβγǫαδ i, j, k, l = 1, 2, 3; i 6= k, j 6= k,

j < i, (i, j, k) 6= (3, 2, 1)
24

QuQd Qi
a,αuj

aQ
k
b,βdl

bǫ
αβ i, j, k, l = 1, 2, 3 81

QuLe Qi
a,αuj

aL
k
βelǫαβ i, j, k, l = 1, 2, 3 81

uude ui
au

j
bd

k
c elǫabc i, j, k, l = 1, 2, 3; j < i 27

QQQH Qi
a,βQ

j
b,γQk

c,αHδǫ
abcǫβγǫαδ i, j, k, l = 1, 2, 3; i 6= k, j 6= k,

j < i, (i, j, k) 6= (3, 2, 1)
8

QuHe Qi
a,αuj

aHβekǫαβ i, j, k = 1, 2, 3 27

dddLL di
ad

j
bd

k
cLm

α Ln
βǫabcǫijkǫαβ m, n = 1, 2, 3, n < m 3

uuuee ui
au

j
bu

k
cemenǫabcǫijk m, n = 1, 2, 3, n ≤ m 6

QuQue Qi
a,αuj

aQ
k
b,βum

b enǫαβ i, j, k, m, n = 1, 2, 3;

antisymmetric{(i, j), (k, m)}
108

QQQQu Qi
a,βQ

j
b,γQk

c,αQm
f,δu

n
f ǫabcǫβγǫαδ

i, j, k, m = 1, 2, 3; i 6= m, j 6= m,

j < i, (i, j, k) 6= (3, 2, 1)
72

dddLH di
ad

j
bd

k
cLm

α Hβǫabcǫijkǫαβ m = 1, 2, 3 3

uudQdH ui
au

j
bd

k
cQm

f,αdn
f Hβǫabcǫαβ i, j, k, m = 1, 2, 3; j < i 81

(QQQ)4LLH (QQQ)αβγ
4

Lm
α Ln

βHγ m, n = 1, 2, 3, n <= m 6

(QQQ)4LHH (QQQ)αβγ
4

Lm
α HβHγ m = 1, 2, 3 3

(QQQ)4HHH (QQQ)αβγ
4

HαHβHγ 1

(QQQ)4LLLe (QQQ)αβγ
4

Lm
α Ln

βLp
γeq m, n, p, q = 1, 2, 3, n ≤ m, p ≤ n 27

uudQdQd ui
au

j
bd

k
cQm

f,αdn
f Q

p
g,βdq

gǫ
abcǫαβ

i, j, k, m, n, p, q = 1, 2, 3;

j < i, antisymmetric{(m, n), (p, q)}
324

(QQQ)4LLHe (QQQ)αβγ
4

Lm
α Ln

βHγep m, n, p = 1, 2, 3, n ≤ m 9

(QQQ)4LHHe (QQQ)αβγ
4

Lm
α HβHγen m, n = 1, 2, 3 9

(QQQ)4HHHe (QQQ)αβγ
4

HαHβHγem m = 1, 2, 3 3

Table 2: The set D = {ri} of generators of gauge invariant operators for the

MSSM. The 28 types are listed in the first column with the explicit sum and indexing given

in the next two columns. The final column counts the number of possible flavor combinations

for each type.
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Wminimal + ? dim(M) M

0 1 C

LH 0 point

QdL 0 point

QuQd 1 C

QuLe 1 C

QuHe 1 C

Table 3: Vacuum space geometry for one generation MSSM plus deformations.

3.2 One Generation

A first simple case study one could undertake is to look at the situation where there is only

one generation of particles, i.e. if all i, j, k = 1. In this instance we may indeed use the

simplified notation as in the left-most column of Table 2 above without ambiguity. Most of

the gauge invariant operators listed anticommute to zero and the remaining list is

LH, HH, QdL, QuH, QdH, LHe, QuQd, QuLe, QuHe. (23)

We are now working in R = C[φ1, . . . , φ9], mapping to S = C[r1, . . . , r9], a much more

manageable task indeed. The renormalizable superpotential of (21) simplifies to

Wminimal = C0
∑

α,β

HαHβǫαβ +C1
∑

α,β,a

Qa,αuaHβǫ
αβ +C2

∑

α,β,a

Qa,αdaHβǫ
αβ +C3

∑

α,β

eLαHβǫ
αβ .

(24)

We may now freely input the above data into our algorithm. For comparison, let us

include some other terms into the superpotential in addition to those in (24). In particular

there are five possible operators which are monomial in the gauge invariant operators of (23).

Adding any one of these to (24) represents a deformation to the base superpotential. We

may consider (24) and these deformations as a class of related theories. We collect in Table 3

the perturbation considered to the base superpotential against the geometry this gives rise

to in the supersymmetric vacuum space.

The above results do not seem too exciting. In words, the result M = C for the base case

of (24) implies that there is a one parameter family of field vevs which are left undetermined

in the supersymmetric vacuum space and these vevs determine the complex line. Adding

certain deformations, such as LH , to the superpotential reduces this space. Specifically, the

supersymmetric vacuum of Wminimal + LH is a point in a nine-dimensional complex space at

which all nine fields in the theory must acquire a well-defined vev.
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Perhaps a more interesting moduli space can be found by looking for structure within

Wminimal by reducing the number of terms in the superpotential. For example, if we neglect

the Higgs mass term and consider

Wminimal = C1
∑

α,β,a

Qa,αuaHβǫαβ + C2
∑

α,β,a

Qa,αdaHβǫ
αβ + C3

∑

α,β

eLαHβǫαβ, (25)

then we find that dim(M) = 2; in fact

M = C
2. (26)

As these cases are geometrically trivial we find that there is no interesting geometric structure

in the supersymmetric vacuum space of a one generation minimal supersymmetric standard

model with any reasonable phenomenology (matter Yukawa couplings). This is potentially

an encouraging result in its own right as it implies that any interesting structure which might

be present in the full MSSM is crucially dependent on the existence of multiple families of

Standard Model matter. This gives us hope that we might be able to link the phenomenolog-

ically puzzling existence of non-trivial flavor structure to a higher dimensional explanation.

3.3 Electroweak Sector

Let us proceed to a less trivial example: the electroweak sector of the MSSM.5 We set the

fields Q, u, and d to zero in Table 2 and in the superpotential (21).6 The fields are then L, H ,

H and e and the set D of Table 2 reduces to that of Table 4. There are 22 holomorphic gauge

invariant operators. Thus we are studying R = C[φ1, . . . , φ13] mapping by the operators D

to an ideal of S = C[r1, . . . , r22]. The renormalizable superpotential is, from (21),

Wminimal = C0
∑

α,β

HαHβǫ
αβ +

∑

i,j

C3
ije

i
∑

α,β

Lj
αHβǫ

αβ . (27)

5The resulting theory is anomalous. When fields are charged under an anomalous U(1), the generalized

Green–Schwarz mechanism [25, 26, 27] renders the theory consistent. We have D-terms
∑

i φ
†
iφi − ξ2 = 0.

The algorithm, as we have seen, implements D-flatness via a (symplectic) quotient and is unmodified by the

addition of a Fayet–Iliopoulos term. The analysis of the electroweak sector should be regarded as a survey

of the vacuum space of a particular subsector of the full theory. In any case, the electroweak theory is not

the entirety of physics, and it is perfectly acceptable for a subsector to be anomalous.
6We note as an aside that when all the vevs of a field charged under a particular gauge group vanish

identically, this gauge symmetry is preserved by the vacuum. Thus setting the quark fields to zero is

consistent with the unbroken SU(3)C symmetry of the Standard Model. Insisting upon this feature of the

vacuum space may be a useful input in the search for high-energy physics. It should be remembered, however,

that we are interested in the geometry of the supersymmetric rather than the non-supersymmetric vacuum.

As such, this restriction is not compulsory. We thank David Berenstein for a discussion on this point.
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Type Explicit Sum Index Number

LH Li
αHβǫ

αβ i = 1, 2, 3 3

HH HαHβǫαβ 1

LLe Li
αLj

βekǫαβ i, j = 1, 2, 3; k = 1, . . . , j − 1 9

LHe Li
αHβǫ

αβej i, j = 1, 2, 3 9

Table 4: The set D = {ri} of generators of gauge invariant operators for the

electroweak sector of the MSSM.

We find that the resulting moduli space M, as an affine variety, is five-dimensional. It

is in fact an affine cone over a base manifold B of dimension four. As a projective variety,

B has degree six and is described by the (non-complete) intersection of six quadratics in P8.

That is to say,

MEW = (8|5, 6|26). (28)

Because of the high dimensionality of M in this case, the moduli space is mathematically

difficult to study. The equations for the base manifold do not indicate obvious special

structure.

As in the one generation case, we could add various deformations to the superpotential

from the list of gauge invariant operators in Table 4. In particular there are two additional

types of operators which we could add to the superpotential (27), LH and LLe. Both types of

operators LH and LLe violate R-parity, which in this simple theory is equivalent to lepton

number. The principal supersymmetric candidate for cold dark matter is lost with their

inclusion, but neither term (alone or in conjunction) generates proton decay. Furthermore,

the dimensionless coefficients of these terms are only weakly and indirectly constrained by

observation. Both can contribute new supersymmetric contributions to µ - e conversion,

rare leptonic decays, leptonic branching fractions for mesons, and the anomalous magnetic

moment of the muon. But these constraints (for 100 GeV mass scales) are no more than

O(10−3) for the individual dimensionless couplings [28], so there is no a priori reason to

forbid them from the point of view of phenomenology.

For each of three cases, we repeat the analysis performed above and tabulate the results

in Table 5. Once again we verify our intuition that adding additional interactions to the

superpotential reduces the dimensionality of the resulting vacuum manifold. In this case the

effect is dramatic. The terms LH and LLe reduce a rich structure to a trivial one.
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Wminimal + ? dim(M) M

0 5 (8|5, 6|26)

LH 1 C

LLe 0 point

LH + LLe 0 point

Table 5: Vacuum space geometry for renormalizable electroweak sector of the

MSSM plus deformations.

3.3.1 Lifting the Higgs Terms

Let us consider another class of deformations of the base case in (27). By adding the allowed

order four terms from the list in Table 4, flat directions associated with field vevs for the

Higgs multiplets can be lifted, meaning that 〈H〉 and 〈H〉 are constrained to vanish.7 Let

us therefore take the superpotential

W = Wminimal + λ(HαHβǫαβ)2 + λij(LiHα)(LjHβ)ǫαβ , (29)

with λ and λij flavor mixing coefficients. This is the most general superpotential possible at

this order which is consistent with R-parity. The new terms in (29) are natural to consider

precisely because both arise in well-motivated contexts in which heavy Standard Model

singlets are integrated out of the theory: a singlet that generates the µ-term as in the

NMSSM for the first term or (famously) a right-handed neutrino to generate the canonical

see-saw mechanism for the second term. We expect that the addition of these new interaction

terms to the superpotential will generically make the F-flatness conditions more involved and

thus harder to satisfy. This should näıvely reduce the dimensionality of the resulting vacuum

space. Indeed, in this case we find that the moduli space of the theory defined by (29) is

three-dimensional. More precisely, M is an affine cone over a base surface B. The geometry

of B is as follows. It is given by the (non-complete) intersection of six quadratics in P5. The

degree of B is four. Thus,

Mlifted EW = (5|3, 4|26). (30)

7In principle, the µ-term in the renormalizable superpotential lifts the Higgs by itself. However, because

µ is of order the electroweak scale, the term produces a negligible contribution to the scalar potential.
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Since B is a (compact) projective variety we can readily compute its Hodge diamond

hp,q(B) =

h0,0

h0,1 h0,1

h0,2 h1,1 h0,2

h0,1 h0,1

h0,0

=

1

0 0

0 1 0

0 0

1

. (31)

According to the classification of degree d surfaces in Pd+1 [29], there are only three possible

degree four surfaces in P5. These are

1. The Veronese surface, which is an embedding of P2 in P5:

P2 → P5

[x0 : x1 : x2] 7→ [x0
2 : x0x1 : x1

2 : x0x2 : x1x2 : x2
2];

(32)

2. The rational scroll S(1, 3), formed by lines joining a point to the twisted cubic curve;

3. The rational scroll S(2, 2), formed from two conics in P5.

All three candidates have the same Hodge diamond as above and all have Hilbert polynomial

−3H(P1) + 4H(P2). Moreover, all crude birational invariants for the three surfaces are

also the same. So how do we distinguish amongst them? It turns out that we can do

so by studying the Fano variety of lines8 associated with these three surfaces [18]. In the

case of the manifold defined by (30), the Hilbert polynomial of the Fano variety of lines

for B vanishes. This is true only of the first case of the three possibilities; therefore we

conclude that B is the Veronese surface. Thus we have been able not only to compute the

dimensionality of the moduli space of the MSSM electroweak sector (which could have been

done by traditional methods such as counting F-terms), but we have also extracted the full

information about this space and conclusively identified what it is. Because the Veronese

surface is an embedding of P2 into P5, it inherits the Hodge structure of P2; however it is

algebraically and geometrically more complicated as a manifold.

As an aside we note that since the Veronese surface is defined by a degree two embedding

of P2 into P5, the affine cone M over B is simply

X = OP2(−2). (33)

We remark, that the line bundle OP2(−3), which happens to be the canonical bundle of P2,

is a familiar object in string theory. It is a Calabi–Yau resolution of the orbifold C3/Z3

8The Fano variety of lines F (B) is just the variety parameterizing lines on B. This should not be confused

with a Fano variety with ample anticanonical bundle.
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Wminimal + ? dim(M) M

0 3 (5|3, 4|26)

LH 2 (2|2, 2|2) ≃ {cone over P
1}

LLe 0 point

HHν 3 (5|3, 4|26)

LH + HHν 2 (2|2, 2|2) ≃ {cone over P1}

Table 6: Vacuum space geometry for renormalizable electroweak sector of the

MSSM with right-handed neutrinos, plus deformations.

which has been extensively studied in the context of D-brane probes [23]. This case was

examined in detail in Section 2.3.2. On the other hand, our present cone over the Veronese

surface, OP2(−2), is not a Calabi–Yau space. As such constructing the electroweak model

under consideration in the Coulomb phase of a single D3-brane on a singularity would be

strictly impossible.

3.3.2 Adding the Right-Handed Neutrino

Another general class of deformation one could consider is to add new degrees of freedom in

terms of chiral superfields. For example, in the electroweak sector we may wish to include

right-handed neutrinos. Though these fields are singlets of the Standard Model gauge group,

models of neutrino mass typically involve superpotential couplings of these fields with other

fields in the electroweak sector. Thus we will add three generations of right-handed neutrino

νi=1,2,3 to the gauge invariant operators listed in Table 4.

For our baseline superpotential we will adopt the couplings required for the standard

see-saw mechanism [30, 31, 32, 33]. The analogue of (27) then becomes

Wminimal = C0
∑

α,β

HαH
β
ǫαβ +

∑

i,j

C3
ije

i
∑

α,β

Lj
αHβǫ

αβ +
∑

i,j

C4
ijν

iνj +
∑

i

C5
ijν

i
∑

α,β

Lj
αHβǫ

αβ .

(34)

We find that with the addition of these extra degrees of freedom the moduli space changes

dramatically at the renormalizable level. It is now three-dimensional, is the intersection of

six quadratics in P5, and is degree four. In fact, it is our familiar cone over the Veronese

surface. Therefore, with the addition of the right-handed neutrino, the renormalizable su-

perpotential, without order four terms, gives the same three-dimensional variety which we

found previously.

Let us now consider how robust the Veronese surface is to further deformations of the

superpotential away from (34). For example, we may consider adding renormalizable terms
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analogous to those considered in Table 5. The results of this analysis are compiled in Table 6.

Some properties of this table deserve mention. First it is again the case that inclusion of R-

parity violating operators LLe and LH reduces the vacuum space to a trivial one. However,

in this example there is the possibility of adding the operator HHν without altering the

vacuum space at all. This is an example of an ineffectual “flat” direction in the space of all

possible deformations to the base theory (34). Under an ineffectual deformation, although

the superpotential and interactions of the theory change, the vacuum moduli space remains

the same. Note that this implies that the special structure in this example — that is, the

fact that the vacuum space is simply described by the cone over the Veronese embedding of

P2 in P5 — is not merely a reflection of some underlying gauge symmetry such as SO(10)

since this operator would be forbidden in the case where ν arises from the 16 of SO(10) but

the Higgs doublets are associated with 10 representations.

In fact, this particular example illustrates the possible power in associating special geo-

metric structure in the vacuum space of a theory with low-energy phenomenology. First, we

know now that neutrinos have mass [34], and the theory considered in (34) is one of the lead-

ing candidates for a phenomenological description of this fact. Second, the special structure

which has appeared in this case emerges at the renormalizable order. This is important due

to the nature of the globally supersymmetric limit we are considering of these theories. Since

we expect Nature to be described by supergravity at energies well below the string scale,

there are various sources of MPl suppressed corrections to the moduli space geometry which

we are not considering here. In this sense including the order four terms in Section 3.3.1

could be viewed as somewhat problematic in that there are other corrections of the same

size which are being neglected.9 This criticism does not apply to the example of the field

theory with right-handed neutrino that we have presented in this subsection.

3.4 A Systematic Analysis of the Electroweak MSSM

We have seen indications that the geometry of the supersymmetric vacuum space of the

electroweak MSSM is special in at least some sense. The minimal superpotential (27) with

µ-term and LHe Yukawa terms yields the vacuum manifold MEW = (8|5, 6|26). Only when

we incorporate into the superpotential either (a) R-parity preserving terms at mass level

four, or (b) Majorana and Dirac mass couplings involving right-handed neutrinos do we

obtain as the vacuum manifold the affine cone over the Veronese surface, which is one of the

simplest non-trivial structures encountered in algebraic geometry. Each of the deformations

9We point out, however, that in adding to the superpotential (34) at mass level four either or both of

the R-parity preserving terms from before, (HH)2 or (LH)2, the Veronese surface persists as the vacuum

manifold. These are ineffectual terms for geometry.
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to (27) that lead to the Veronese surface that we have so far examined are motivated by

phenomenological considerations: in the first case, R-parity ensures stability of the proton

and preserves a stable candidate for cold dark matter; in the second, neutrinos acquire mass

through a canonical see-saw. Interactions demanded by particle phenomenology therefore

refine the geometry of the vacuum manifold from the complicated (8|5, 6|26) variety to the

simpler Veronese surface, whose topological invariants are precisely those of P2. The Hodge

diamond (31) consists only of 0s and 1s. This geometry is special in that there is no simpler

two-dimensional complex variety (other than the trivial P2). Deforming the physical theory

by adding additional operators that are not present in the minimal models in general destroys

the geometric structure we have uncovered and renders the moduli space of the theory

trivial. The additional operators that we include do not respect lepton number and are thus

disfavored from the point of view of phenomenology (or at least heavily suppressed).

We must ask ourselves whether the coincidence of geometry and phenomenology in this

example is accidental or consequential. In other words, how special is the Veronese surface?

We will answer this question by studying a class of theories with the same field content,

but different interactions among the fields. There are 16 matter degrees of freedom in

total: the Higgs doublets Hα and Hα and the leptons Li
α, ei, and νi. For the interactions,

we will consider possible superpotentials consistent with gauge invariance up to mass level

three (renormalizable order). In order to restrict the cases we must analyze, we impose the

extra condition of flavor democracy, which means that if an operator with a given flavor

structure is present in the superpotential, then that interaction is present for all possible

values of the flavor indices.10 This is simply to say that we do not write down a Yukawa

term for the electron without also writing down Yukawa terms for the muon and tau. Each

term and each assignment of flavor indices appear in the superpotential with a random

coefficient. As before, for the purposes of determining the geometry, the mass dimension of

the coefficient will not matter.

Working to renormalizable order, we can write superpotentials involving nine types of

operators. These are listed in Table 7. Each of these are either present or absent in the

superpotential, so, subject to flavor democracy, there are 29 = 512 cases to explore. Most of

the superpotentials are of course completely unphysical. We want to test whether interesting

geometry correlates to interesting physics, so of course we should study a class of theories

involving both superpotentials that might make sense as a description of Nature and those

that manifestly will not.

Of the 512 superpotentials we can write from operators in Table 7, we have calculated the

10We do not consider textures. For algebraic geometry, what is important is whether an operator is present

or absent in the superpotential. The relative weight of its coefficient with respect to the other coefficients

will not matter for the analysis of topological features of the manifold.
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Mass Level Interactions

1 ν

2 LH , HH, ν2

3 LHe, LLe, LHν, HHν, ν3

Table 7: Renormalizable interactions in the electroweak sector.

dimension of the supersymmetric vacuum space in 445 cases (87%). The reason we have not

calculated the dimension for the remaining 67 is simply that the Gröbner basis calculations

are more intensive in these instances. Experience has taught us that such cases tend to

give varieties of very low dimension, as might be expected as more equations admit a more

restrictive solution space. As such, completing the analysis of all 512 cases would require a

greater commitment of time and computer resources while furnishing little new information.

We have therefore restricted ourselves to the 445 cases that are more readily analyzed.

In order to compare the geometry of the moduli space of these theories to those that

we have examined in Section 3.3.2, we will focus our attention on the three-dimensional

manifolds. Of the 58 three-dimensional varieties in the data set, we have performed a

detailed geometric analysis of 46. Most of the vacuum manifolds are flat space or multiple

copies of flat space, but among the geometries are also a number of conifolds. As well, we find

examples of the Veronese surface that we tabulate in Table 8.11 Interestingly, the rational

scrolls never appear (these are possibilities 2 and 3 from the list of degree four surfaces in

P
5 from page 20).

In this list, Case 1 is the MSSM with a right-handed neutrino sector. Case 2 includes the

ineffectual lepton number violating HHν deformation that we encountered in Section 3.3.2.

Case 3 replaces the ν2 Majorana term with a cubic neutrino interaction, which also clearly

fails to conserve lepton number. Case 4 drops the µ-term. This changes the vacuum geometry

from the Veronese surface to the Veronese surface plus a complex line. Case 5 drops the

µ-term and adds the HHν deformation, which is again ineffectual. Case 6 drops the µ-

term and the ν2 Majorana term and includes the ν3 vertex. Case 7 is an ineffectual HHν

deformation to Case 6. Finally, Case 8 is completely unphysical as it does not even include

Yukawa couplings for electrons, muons, and taus. While adding ineffectual deformations

restricts to a particular class of theories, this list is certainly more general. At a minimum,

11In general, the vacuum spaces are reducible varieties, which is to say that they are the union of separate

irreducible varieties. To properly analyze the geometry, one must first split the reducible variety into its

irreducible components using a technique known as primary decomposition (see [20] for details) and then

analyze each component separately. When we say that M is an affine cone over Veronese ∪ C, what is meant

is that one component of the base is the Veronese surface and another is the complex line.
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Case Superpotential terms B

1 HH, ν2, LHe, LHν Veronese

2 HH, ν2, LHe, LHν, HHν Veronese

3 HH, LHe, LHν, ν3 Veronese

4 ν2, LHe, LHν Veronese ∪ C

5 ν2, LHe, LHν, HHν Veronese ∪ C

6 LHe, LHν, ν3 Veronese ∪ C

7 LHe, LHν, HHν, ν3 Veronese ∪ C

8 ν2, LLe, LHν, HHν Veronese

Table 8: Veronese surfaces in the electroweak sector. The vacuum moduli space

M is an affine cone over B.

it involves several classes.

What should we conclude from this exercise? We will first make some comments about

the top-down approach to model building. Having the Veronese surface as the vacuum vari-

ety does not uniquely determine the interactions in the theory. With identical field content,

different superpotentials give rise to the same moduli space of F- and D-flat configurations.

This is perhaps not a surprise since we know that the same quiver diagram (field content

of the gauge theory) associates to different superpotentials based on the structure of the

underlying singularity [35]. Nevertheless, the catalogue of superpotentials and geometries

constrains the options for model building. If, for example, one wanted to consider a theory

such that the vacuum space was the conifold, only certain superpotentials possess this prop-

erty at renormalizable order. The conifold examples that we have found share the feature

that the LHe Yukawa coupling does not appear in the superpotential. Because these exam-

ples do not exhibit any reasonable phenomenology in the low-energy effective theory, we do

not present these data here or attempt a top-down string construction.

If we were to place D-branes at singularities, we may use the worldvolume gauge theory

on the brane as a probe of higher dimensional physics. In these models, the equation for the

vacuum space as an algebraic variety is the same as the equation for the singularity whose

transverse directions the D-brane probes. The gauge theory captures motion on the resolved

space [4]. Though one comes close, we know that the MSSM does not arise as a quiver

gauge theory corresponding to a D-brane at an isolated orbifold singularity on a Calabi–Yau

threefold [8]. The MSSM electroweak sector with right-handed neutrinos does not arise in

this way either, for the affine cone over the Veronese surface is not Calabi–Yau. We conclude

as a result of these investigations that a method of top-down model building that results
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in a three-dimensional Calabi–Yau vacuum variety cannot be used to construct low-energy

effective electroweak theory. These observations supply further evidence for believing that a

top-down construction of the MSSM will demand new advances in model building.

There are lessons for the bottom-up approach here as well. The philosophy we have

adopted is that if we have a vacuum geometry with suitably special features that are un-

explained by discrete and continuous symmetries in field theory, then we should regard this

as an imprint of high-energy physics in the low-energy theory and use this to make predic-

tions about other low-energy phenomenology. We posit that the operators that preserve the

structure — namely the ineffectual ones — give new interactions in the theory while other

equally gauge invariant operators do not. In the electroweak sector, we cannot say that

this methodology should be applied for the simple reason that a single class of deformations

to the superpotential (34) does not associate uniquely to the Veronese surface. In other

words, the vacuum geometry, though simple and geometrically appealing, is not suitably

special enough for us to pursue a dedicated study of its deformation theory and promote the

Veronese geometry to a principle regarding the ultraviolet completion of the gauge theory.

We are thus unable to test the hypothesis we have made within the electroweak sector.

Here, we have considered a theory with a small number of fields (16 of them) and a small

minimal basis of holomorphic gauge invariant operators (25 of these) as inputs. It may be

that in such a theory the possibilities for three-dimensional vacuum spaces are fairly limited,

so perhaps it is not a surprise that the Veronese surface appears many times rather than just

once. A more complicated theory, or a more complicated sector of the MSSM, may provide

a better arena to explore the utility of vacuum geometry for phenomenology.12

4 Discussion

Our goals in studying the supersymmetric vacuum space of phenomenological theories are

threefold. First, we wish to search for special geometric structures in the vacuum moduli

space of N = 1 gauge theories. Such structures are common in the low-energy effective field

theories descending from string and M-theory, but unmotivated in field theories in general.

As such this structure, if present, would constitute significant evidence for string physics

underlying the Standard Model.

Should such structures be found, we can then move on to our second goal. If the geometry

is suitably special, meaning that it is unlikely to be a result of chance, then we might conclude

that this geometry is a fundamental consequence of the high-energy completion that Nature

has chosen. Therefore, when considering higher order terms in the superpotential and Kähler

12We thank Nima Arkani-Hamed for comments on this point.
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potential, the theory necessarily restricts to operators that respect this structure. The slogan

is no longer that anything not forbidden by gauge invariance is allowed. Rather, the standard

we advocate is that anything not forbidden by gauge invariance and consistent with vacuum

geometry is allowed. Application of this principle would then predict the absence of certain

operators in the theory — and thus the suppression of the effects they mediate.

N = 1 vacuum manifolds as well often enjoy global isometries, continuous or discrete, that

are not a priori evident from the superpotential. For example, in D-brane probe scenarios,

one could find such symmetries of the vacuum variety, and then rearrange or redefine fields

in the superpotential to exhibit the hidden global symmetries explicitly [36]. The techniques

we have presented may also facilitate the search for manifestly symmetric forms of the

Lagrangian, but these symmetries are logically distinct from the use and utility of geometry

as a selection principle in its own right. Indeed, by considering discrete symmetries in this

language our approach makes it easier for string model-builders to engineer their presence

in the low-energy effective Lagrangian.

Finally, if no special structure is found, we can still make powerful statements. Because

many string constructions are known to produce theories whose vacuum spaces exhibit special

structure it is clear that the issue of what sorts of low-energy theories are possible and which

are impossible in a given construction is illuminated by a search such as the one we have

initiated. Developing a catalogue of theories and their vacuum geometries is the third goal

of this research. This is in the spirit of [37] in isolating the physical theories that have an

embedding within a string framework.

In this paper we have presented in detail our method for computing the supersymmetric

vacuum space of N = 1 gauge theories. This discussion reduces the analysis to a pure

algorithmic process involving Gröbner basis techniques. We have applied this method to

various sectors of the MSSM, providing the first new results in this regard since the dimension

was calculated in 1995 [24]. In particular, we have analyzed the geometry of the vacuum

space of the full one-generation MSSM and, in some detail, of electroweak theory, with and

without right-handed neutrinos. These examples were presented as illustrations of how our

algorithms can be implemented and as an initial scan for new physics in the vacuum space.

While interesting exercises in their own right, these examples are not intended to be the final

expression of our goals. Nevertheless, several interesting lessons can already be identified.

The first lesson is that special structure of any kind is indeed rare. The SU(2)L ×U(1)Y

sector of the MSSM is a relatively simple system. Most superpotentials that can be con-

structed from the fields of this system yield a trivial vacuum space. Of the 512 (renormaliz-

able) superpotentials, we have found that only eight of these theories have a vacuum space

which is a cone over the Veronese base. That these eight possibilities include the minimal

electroweak model of the MSSM with the canonical see-saw mechanism is encouraging, as is
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the fact that higher-order terms which preserve the special structure can be identified. From

the point of view of string model-building, it is also interesting that this is a surface of three

complex dimensions. Of course this is merely a subsector of a truly realistic model, such

as the full three-generation MSSM. Yet within this toy-model context would we be wise to

consider the Veronese structure as somehow fundamental and use its presence as a guide to

further model-building?

The answer, unfortunately, is profoundly unclear at this point. The presence of the

Veronese structure does not specify one superpotential and a class of deformations to this

structure uniquely. We see, however, that this structure is not identical to gauge invari-

ance, since the other 504 superpotentials also enjoyed the SU(2)L × U(1)Y invariance. The

Veronese structure does not arise from including all possible gauge invariant terms to this

mass dimension, but only certain subsets. These subsets are not distinguished by any ob-

vious discrete symmetry properties, nor by how they could be embedded in a larger gauge

theory such as SO(10). Indeed, presence or absence of special geometrical structure is clearly

related, but not identical to, these properties of the theory. Even more interesting is the re-

lation between the presence of multiple generations and vacuum space geometry: any special

structure which may exist in the Standard Model must be intrinsically linked to the presence

of multiple generations and the accompanying flavor degrees of freedom. This link between

flavor physics and geometry gives us hope that a new perspective on this difficult subject

may evolve from this work.

With these examples, we certainly conclude that special structure is indeed rare, but it

remains unclear how this correlates with other phenomenological properties of the theory.

More investigation into wider classes of models may help settle the issue and this is work

currently in progress. A more general survey of the MSSM will require an improvement in

the computational implementation of our algorithm due to the exponential growth of the

Gröbner basis complexity as the number of gauge invariant operators and F-term constraints

increase. Nevertheless, many laboratories are accessible: GUTs with unified representations,

neutrino mass models, pure supersymmetric QCD, and the MSSM extended by additional

U(1) symmetries (which reduce the number of gauge invariant operators and allowed su-

perpotential couplings). In the meantime, the power of our approach to achieve the third

of our goals is already apparent and conclusive. In this example it is already possible to

state unequivocally that the electroweak MSSM does not arise from a D3-brane on a local

singularity on a Calabi–Yau.

It is our expectation that some form of string physics underlies the four-dimensional

effective field theory at low-energies. Therefore we anticipate that the enterprise of building

string models that generate theories such as the MSSM (or whatever supersymmetric model

may be revealed at the LHC) can only be accelerated by an investigation of the vacuum
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manifold of those theories in the manner we propose here. We also expect that whatever

effective theory is eventually the theory of physics beyond the Standard Model, it will likely

exhibit special geometric structure. This is simply a statement that the superpotential, gauge

group, and matter representations of the theory are ultimately determined by the (non-

trivial) geometry of some compact space transverse to our (3 + 1)-dimensional world. It is

our hope that these structures can be determined to correlate with certain phenomenological

properties of the resulting effective Lagrangians, thereby elucidating a new pathway for

connecting string constructions to the observable world.
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A A Brief Guide to Algebraic Geometry

As our investigation is heavily interdisciplinary, the linguistic barrier may necessitate a bit of

activation energy. The greatest hurdle is perhaps the terminology and nomenclature of (com-

putational) algebraic geometry. This is especially likely to be true for the phenomenologist.

It is therefore expedient to gather together some facts in an instructive and non-rigorous

manner and produce a skeleton key to the mathematics invoked. We emphasize that the

concepts are straightforward: at the core this is only polynomial arithmetic.

A.1 Affine Varieties and Polynomial Rings

The key idea behind algebraic geometry is to describe a space (for example a manifold)

in terms of the vanishing of some polynomials. For example let us start by describing the

concept of an affine variety. An affine variety is a set of points in n-dimensional complex

space Cn with coordinates (x1, . . . , xn), which satisfy a set of polynomial equations of the

form fi(x1, . . . , xn) = 0. An affine variety is thus loosely speaking a submanifold of flat space

which is defined as the locus on which a set of polynomials vanish. It can be shown that

the number of these polynomial equations can always be taken to be finite to describe any

particular submanifold M ⊆ C
n.
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The purpose of algebraic geometry is to study geometrical properties of the variety M, in

the language of commutative algebra. This is because there is another way of describing such

a submanifold of flat space which turns out to be more powerful when analyzing properties of

the space. Instead of defining M in terms of the vanishing of a finite set of polynomials, we

specify it by the set of all polynomials which vanish on M. The resulting set of polynomials,

which we shall refer to as I(M), is an example of a polynomial ring.

We recall that a ring is simply a set with addition and multiplication. The set of

polynomials is clearly a ring since adding and multiplying polynomials together return a

polynomial. We denote the ring of polynomials in n variables with coefficients in C as

C[x1, . . . , xn]. Now, I(M) is clearly a subset of C[x1, . . . , xn]. In fact, I(M) is an ideal

of C[x1, . . . , xn]. This simply means that I(M) is a closed subset in the following sense:

multiplying any element of I(M) by an element of C[x1, . . . , xn] remains in I(M).

Much like normal subgroups, because I(M) is an ideal of C[x1, . . . , xn], it is possible

to define the quotient ring C[x1, . . . , xn]/I(M). This is defined to be the ring of all

polynomials in the variables x1, . . . , xn where two polynomials are considered equivalent if

they differ by a member of the ideal I(M). It is not difficult to verify that this resulting

object is also a polynomial ring.

The final object, the quotient ring C[x1, . . . , xn]/I(M), encodes all of the geometrical

information about M in an algebraically powerful package. For example, the ideals of this

quotient ring are in one-to-one correspondence, in a similar manner to the correspondence

between M and I(M) described above, with submanifolds of M. The most important aspect

of this correspondence is the following. The smallest possible submanifolds, the points of

M, correspond to maximal ideals of the quotient ring C[x1, . . . , xn]/I(M). A maximal

ideal is not contained in any other ideal, except for the trivial one, namely the ring itself. A

maximal ideal is also a prime ideal, which for complex algebraic geometry means that the

ideal corresponds to an irreducible variety, one that cannot be decomposed as the union

of other non-empty algebraic varieties.

In a polynomial ring, all ideals are finitely generated. To introduce some notation, we

denote an ideal which is generated by the elements f1, . . . , fn by F = 〈〈f1, . . . , fn〉〉. In other

words this is the ideal which vanishes on the affine variety defined by f1 = . . . = fn = 0. We

see that this formalism first of all naturally adapts to the concept of F-terms. The vanishing

of n F-terms defines the ideal F , and the variety of F-flatness corresponds to the quotient

ring F = C[x1, . . . , xn]/F .
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A.2 Projective Varieties and Affine Cones

While easy to define, affine varieties are sometimes difficult to work with in calculations.

This is ultimately because non-compact embedding spaces can lead to various difficulties,

such as points escaping off to infinity. One of the advantages of using projective varieties

is to remove such difficulties by “compactifying” the varieties.

We recall that projective space Pn is the space of one-dimensional complex vector

subspaces of Cn+1. Points in projective space are labeled by coordinates [x0 : x1 : . . . : xn],

and [x0 : x1 : . . . : xn] = [y0 : y1 : . . . : yn] when there is a non-zero λ ∈ C such that yi = λxi

for all i. The equivalence classes of points define homogeneous coordinates.

Projective varieties are defined in a manner similar to their affine counterparts, but

slightly more care is required in the definition. One cannot simply talk about polynomial

equations on projective space. If a set of polynomial equations in the homogeneous variables

is homogeneous, which is to say that all the monomials have the same total degree, then

we can talk instead about the loci of zeros of such equations. This locus is invariant under

the rescaling of the homogeneous coordinates. Thus we can define a projective variety as a

set of points in projective space where a series of homogeneous polynomials in the projective

coordinates vanishes. All of the objects described above in connection with the affine variety

M then have analogues in the case of a projective variety.

Since we are computing the vacuum moduli space embedded into the space of fields,

which is clearly Cn, we are interested in affine varieties. Why then have we introduced

projective varieties here? Our goal is to introduce the concept of an affine cone, an object

we make extensive use of in the paper. The reason for adopting this setup is that projective

algebraic geometry, due to compactness, is much easier to handle, both conceptually and

using computer packages. We are computing the local properties of the vacuum space. It

will often (but not always!) be the case that the moduli space is an an affine cone over

some compact projective space whose properties we can directly calculate. Hence we have

introduced the notation in (18).

The base of an affine cone is simply defined by considering an affine variety and then

taking the variables x1, . . . , xn to be homogeneous coordinates on projective space. From

the comments on projective varieties above we see that this procedure is only possible if the

equations defining the original affine variety are homogeneous. The radial direction of the

cone can then be thought of as the scale of the projective space (with the point at zero scale

put back in). As a simple example consider the case where we have two variables x1 and

x2 and where the defining equations of the original affine variety are trivial. The base of

the resulting affine cone will then simply be P
1, with projective coordinates [x1 : x2]. The

space C2, with affine coordinates (x1, x2), is then an affine cone over P1. Thus flat space is
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an affine cone over complex projective space.

A.3 A Brief Glossary

Now that we are working within the realm of projective algebraic geometry, a few concepts

liberally used in our analysis should be explained here. The reader who requires more detail

should be able to acquire this from an introductory text such as [20, 38, 39], or a more

advanced one like [29].

Degree: We have mentioned the term degree many times. When the ideal is described by

a single polynomial, the degree of the variety is simply the degree of this polynomial. In the

case of multiple polynomials, the degree is the generalization of this, i.e. it is the number of

points at which a generic line intersects the variety.

Gröbner Basis: Any computer package, given an ideal of a set of multivariate polynomials,

first places the set in a standard basis. This Gröbner basis is a generalization of Gaussian

elimination for a multivariate linear system to general polynomials. A Gröbner basis is

defined with respect to some monomial ordering, which lets us unambiguously compare

two monomials u = xℓ1
1 · · ·xℓn

n and v = xm1
1 · · ·xmn

n and determine when u < v. Given this

ordering, Γ is a Gröbner basis for the ideal I when the ideal given by the leading terms of

polynomials in I is itself generated by the leading terms of the basis Γ. In computational

algebraic geometry, the Gröbner basis is determined by (modifications of) Buchberger’s

algorithm. Most implementations of the Gröbner basis calculation are generically exponential

in running time. This is the main hurdle in performing our computations. However, for

certain problems, lower bounds on the algorithm can be shown to be polynomial [40]. We

hope that the specific nature of our problem may induce a non-prohibitive Gröbner reduction.

Hilbert Polynomial: This is an extremely important characteristic of a projective variety.

It is not a topological invariant like the Hodge diamond and depends on the specific embed-

ding. However, giving an embedding projective space, two varieties with different Hilbert

polynomials are clearly distinct. The polynomial is a generating function of the degree n

pieces of the variety. That is, its k-th coefficient is the dimension of the space of degree k

homogeneous monomials on the variety. In particular, the constant is simply the dimension

of the projective variety.

Line Bundles: We have also used the notation OPn(−k) throughout. This is the line

bundle of degree k over P
n. In other words, it is a bundle of rank 1 (i.e. lines fibered over

Pn) whose transition functions are degree k homogeneous polynomials over Pn.
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