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Abstract

Humans or intelligent software agents are increasingly faced with the challenge of making deci-
sions based on large volumes of streaming information from diverse sources. Decision makers
must process the observed information by inferring additional information, estimating its reli-
ability, and orienting it for decision making. Processing streaming trust framework, when fact
is getting created and inferred is a process in online mode and our paper works efficiently in
online mode. In offline mode, someone initiates a query and gets an output based on the query.
In this paper we have mainly shown that unstructured reports from unreliable and heterogeneous
sources are processed to generate structured information in Controlled English. Uncertainty in
the information is modelled using Subjective Logic that allows statistical inference over uncertain
information. Trustworthiness of information is modelled and conflicts are resolved before fusion.
This process is totally undertaken on streaming information resulting in new facts being inferred
from incoming information which immediately goes through trust assessment framework and
trust is propagated to the inferred fact. In this paper, we propose a comprehensive framework
where unstructured reports are streamed from heterogeneous and potentially untrustworthy infor-
mation sources. These reports are processed to extract valuable uncertain information, which is
represented using Controlled Natural Language and Subjective Logic. Additional information is
inferred using deduction and abduction operations over subjective opinions derived from the re-
ports. Before fusing extracted and inferred opinions, the framework estimates trustworthiness of
these opinions, detects conflicts between them, and resolve these conflicts by analysing evidence
about the reliability of their sources. Lastly, we describe an implementation of the framework us-
ing International Technology Alliance (ITA) assets (Information Fabric Services and Controlled
English Fact Store) and present an experimental evaluation that quantifies the efficiency with
respect to accuracy and overhead of the proposed framework.
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Figure 1: The OODA loop

1. Introduction

A number of effective decision-making processes devised to support strategic operations
and/or tactical missions and tasks in both military and civilian settings follow a recurring pattern
from information gathering to action taking. This pattern is summarily represented by USAF Col.
John Boyd’s OODA loop (Brehmer, 2005) containing the following four phases (see Figure 1):

• The Observe phase comprises the processes of accumulating information pertinent to a
situation of interest.

• The Orient phase comprises the processes of analyzing the information within the context
of the particular task (operation or mission) at hand.

• The Decide phase comprises the processes of determining a proper course of action based
on the knowledge gained during the Orient phase.

• The Act phase comprises the processes involving the actual (physical) actions taken.

The OODA phases continuously interact with each other, with, for example, the Orient phase
requesting additional information from the Observe phase to drive better decisions. The in-
terpretation of facts and information analysis in the Orient phase is heavily influenced by the
existing (background) knowledge and understanding of the current situations at various levels in-
cluding social, political, economic, cultural, administrative, logistic capabilities, resource avail-
ability, past experiences, and so on. In proposing the OODA loop, Col. Boyd had argued that
in conflict situations, such as when acting to intercept an enemy airplane, in order to prevail
one must execute his own OODA cycle at a pace faster than that of his opponent’s OODA loop
causing the opponent confusion by acting on stale information from situations that have already
changed.

Our interest in this work are in the first two phases that deal with the gathering, processing,
and contextual placing of information to drive subsequent decisions and actions. It is motivated
by the fact that decision makers (humans or software agents alike) are increasingly faced with
the challenge of examining large volumes of information originating from heterogeneous sources
requiring to ascertain opinion in various pieces of arriving information. Detection of conflicts
between opinions and resolution of conflicts is a very important part of the solution. Resolving
conflicts by analysing evidence about the reliability of the sources is shown very well in this
paper. The challenge is exacerbated when the decision makers should employ uncertain rules
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to reason about the information collected from these heterogeneous sources. Unfortunately, this
is the case in most settings, since inferencing rules are uncertain and vague in many sensing
domains and scenarios.

In typical applications of the OODA loop, the information sources feeding the Observe and
supporting the Decide phases, such as the intelligence gathering scouts or the visual and elec-
tromagnetic sensors on a fighter airplane, are assumed to be administratively associated (if not
physically owned and controlled) by the OODA beneficiary, e.g., the mission planners or the
fighter pilot. In such cases, the capabilities of these sources are typically well known and docu-
mented and this background knowledge can be accounted for sufficiently well during the Orient
phase. However, in coalition environments involving loosely coupled sensory systems (Sensoy
et al., 2012) ownership, control and effectiveness of the sources cannot be guaranteed. The sens-
ing resources may belong to different coalition partners or the informants may be locals. In such
cases, the provenance and ultimately the quality of the information (Bisdikian et al., 2009, 2011)
derived from these sources becomes questionable. Therefore, to properly support decision and
action processes, the Observe and Orient phases must explicitly deal with uncertain informa-
tion from sources whose capabilities are only partially (if at all) known and documented. In
other words, the level of trustworthiness of the gathered information needs to be accounted for
and properly weighed in the decisions and actions taken. There are various definitions of trust.
McKnight and Chervany’s work (Jøsang and Presti, 2004) defines trust as follows: Trust is the
extent to which one party is willing to depend on somebody, or something, in a given situation
with a feeling of relative security, even though negative consequences are possible. We follow
this definition as it is used in most computer science publications and applications.

It is thus an objective of this work to design a opinion assessment framework that “scores”
information arriving from uncertain sources and resolved conflicts. In supporting the Observe
and Orient phases of the OODA loop, the framework will accommodate streaming information,
acknowledging the need to deal with fast-paced information, such as that derived from sensors
deployed across geographical spreads.

The main significance of this work shows the information being processed from streaming
data, facts derived from it and new facts inferred from it. When new facts are inferred, trust is
assessed for the new facts. So the process is executed on a continuous online mode. This is main
difference between the previous works in this area and our work. In the offline mode, the facts
are not processed immediately and the trust is not assessed instantaneously.

Another key observation from this paper is that the work introduces key facts being derived
from streaming data and the key facts lead to new facts being inferred. As the new facts are
inferred it is passed through the trust assessment framework to propagate a trust value to the new
inferred fact.

This solution is very applicable in social computing and social networks (Wang et al., 2015)
Social networking applications like twitter can be used to collect information, our information
sources are users, information is received as unformatted text which needs to be converted into
Controlled English format. The formatted text would infer new facts and a trust assessment
framework is used to assess the trust of the new fact.

The organization of the paper is as follows: Section 2 presents background and highlights fea-
tures of our assessment framework along with an exemplar use case. Section 3 provides a brief
introduction to subjective logic that we use in our framework to assess opinions in Section 4. Sec-
tion 4 describes the opinion assessment framework and its components. Section 5 describes how
conflicts between opinions are detected and resolved before during information fusion. Section
6 describes an implementation of our framework on the Information Fabric (Wright et al., 2009)
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and evaluates the performance and accuracy of our opinion assessments. Section 7 discusses the
related work and finally, Section 8 concludes the paper with an overview of contributions and
directions for future work.

2. Background

As information accumulates and is read for consumption, its trustworthiness must be as-
sessed for weighing properly in subsequent decision-making. Several authors have explored
various opinion computation models on static data (e.g., eBay recommendation system (Schafer
et al., 1999), NetFlix movie ratings, EigenTrust (Kamvar et al., 2003), PeerTrust (Xiong and
Liu, 2004), etc.). A common data model subsumed by several trust computation models (as
succinctly captured in Kuter and Golbeck (Kuter and Golbeck, 2007)) is the assignment of nu-
meric trust scores between pairs of entities (e.g., in eBay recommendation buyers rate sellers,
in Netflix movie ratings users rate movies, etc.). Such pair-wise numeric ratings contribute to a
(dis)similarity score (e.g., based on the L1 or L2 norms, cosine distance, etc.) which is used to
compute personalized trust scores (as in PeerTrust) or recursively propagated to compute global
trust scores (as in EigenTrust).

There are two common assumptions in several such opinion models that are viable in com-
mercial settings: (i) a statistically significant number of trust evidence (e.g., ratings) is available
prior to opinion assessment, and (ii) assessed opinion values tend to vary slowly over time. In
contrast, military settings warrant: (i) trust assessment over partial, uncertain and streaming (live
and real-time) information from heterogeneous sources, and (ii) coping up with the dynamic and
evolving nature of the ground truth. While most of the past work is focused on static data, the
goal of this work is to develop a family of opinion operators for such dynamic information flows,
i.e., assess opinion over data-in-motion rather than a large corpus of static data.

2.1. Use Case and System Highlights
Let us consider the following scenario comprising the events:

• Event e0: An explosion occurs at location l0 at time t0. Event e0 represents the ground
truth and is assumed that there is no direct evidence available to support it in the opinion
assessment system.

• Event e1: An acoustic sensor reports a possible explosion at location l1 at time t1.

• Event e2: A human agent reports unusual dust level at location l2 at time t2.

In this scenario, the goals are two-fold: (i) fact inference (e.g., infer an explosion from event
e2) and information fusion (e.g., fuse events e1 and e2 based on their spatio-temporal proximity),
and (ii) assessing additional information (metadata) about the inferred/fused facts, such as an
estimate of where and when (l̂0 and t̂0) the explosion took place, or an assessment of opinion in
the fact that an explosion occurred based on previously seen events.

With reference to Figure 2, the first goal is addressed by the analytics component, the design
of which is outside the scope of this paper. In general, we expect to deal with a live (and po-
tentially bursty) stream of events (e.g., textual or sensory reports) that are tagged with metadata
(e.g., location, time, owner/author-ship, beliefs). The stream of events may be subject to various
analytics operations, e.g., fact extraction from event data using the Controlled English (Mott,
2010) Store, event data fusion using the Information Fabric (Wright et al., 2009), etc. We do
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Figure 2: Opinion Assessment on Streaming Information

not make any specific assumptions on the nature of such analytics operations, but for the fact
that they are constrained to operate on streaming data. Hence, given latency constraints, storage,
archival and post processing (or even batch processing) of event data may not be a viable option.
We remark that this does not preclude the option of storing compact summaries (e.g., in a CE
fact store (Mott, 2010)); only storing all (or a signification portion of) historical events is deemed
infeasible. We also note that the goal of this paper is not to support such analytics operations;
instead our goal is to augment such operations with opinion metadata assessment.

While the internal workings of the analytics component are isolated from the opinion assess-
ment system, we assume that the background knowledge is shared (e.g., rules for Bayesian infer-
ence, Controlled English fact inference rules, etc.). Intuitively, we model the analytics operation
as accepting one or more inputs and a quasi-static background knowledge and generating one or
more outputs. Here, the “quasi-static” qualifier means that the background knowledge is updated
at a rate that is significantly slower than the event rate. This background knowledge is sometimes
also referred to as the domain knowledge.

We model opinion assessment as a family of operators that accepts input opinion metadata and
background knowledge and computes output opinion metadata. This model only requires that the
background knowledge be shared between the analytics and the opinion assessment. Typically,
such background knowledge is compact and has well defined semantics and isolates the opinion
assessment system from understanding all the intricate details of the analytics operations (see
Figure 2). Architecturally speaking, opinion is assessed as a part of a call-back function that
is invoked each time the analytics operation generates a new output; the call-back function is
supplied with the opinion metadata of the relevant inputs that were used to derive the said output.

Another interesting component of this work is the representation of rules with opinions. Past
work assumed that the rules were always certain. Through this paper, we have experimented the
rules with opinions and certain uncertainty using the Subjective logic triples, i.e., belief, disbelief,
and uncertainty.

In this paper we present a realization of this model using subjective logic triples (i.e., belief,
disbelief and uncertainty) for representing opinion and Bayesian inference network for the back-
ground knowledge. In this setting, we have built a family of subjective logic operators that can
be used to compute opinion metadata for an output event, given the opinion metadata on the
input events and a Bayesian network that encodes probabilistic dependencies between one or
more facts, e.g., Pr(dust|explosion) = 1, Pr(dust|¬explosion) = 0.25, and these probabilities may
change over a time horizon that is significantly longer than the duration of an event burst. Later in
the paper, we also present an early implementation of our opinion assessment framework within
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the Information Fabric along with some experimentation results from the implementation.
In closing this section, we note that in Figure 2, we have separated the functional modules

of opinion assessment in two parts: (i) the part that represents the incoming information prod-
uct (Info Stream) and the processes that “blindly” operate on it, such as for extracting metadata
(opinion Metadata), and (ii) the part that qualifies the information or its metadata, makes infer-
ences using it, provides context and produces outgoing information products. While the OODA
loop does not represent a system architecture, it, nonetheless, would be natural to associate the
modules in the first part with the Observe phase as they relate with the accumulation of infor-
mation, and the modules in the second part with the Orient phase as they relate with providing
context and assessments within that context for the information.

3. Subjective Logic

Subjective logic (SL) is a type of probabilistic logic that explicitly takes uncertainty and belief
ownership into account. In general, SL is suitable for modelling and analysing situations in-
volving uncertainty and incomplete knowledge (Jøsang, 2011). Arguments in SL are subjective
opinions about propositions.

A binomial opinion of an agent A about the truth of a proposition x is represented by the
quadruple wA

x = (b, d, u, a), where: b is the belief that x is true; d is the belief that x is false; u is
the uncertainty (or, uncommitted belief) about x; and a is the base rate about x which represents
the a priori probability about x in the absence of evidence; and b + d + u = 1.0 and b, d, u,
a ∈ [0, 1]. Characteristics of a binary subjective opinion can be summarised as follows:

• b = 1 then it is equivalent to binary logic TRUE

• d = 1 then it is equivalent to binary logic FALS E

• b + d = 1 then it is equivalent to traditional probability

• b + d < 1 then it expresses some degrees of uncertainty

• b + d = 0 then it expresses total uncertainty

A binomial opinion can be represented as a Beta distribution. The probability expectation
value of an opinion is defined as E(wA

x ) = b + u × a, based on the corresponding Beta distri-
bution (Jøsang, 2011). Through the correspondence between binomial opinions and Beta dis-
tributions, SL provides an algebra for subjective opinions. Some of the operators defined over
subjective opinions are listed in Table 1. Detailed descriptions and proofs for soundness of these
operators are out of the scope of this paper, but they can be found elsewhere (Jøsang, 2011, 2001,
2002; Jøsang and Grandison, 2003; Jøsang and McAnally, 2005; Jøsang, 2007).

Each opinion wx = (b, d, u, a) for a proposition x implies another opinion w¬x = ¬wx =

(d, b, u, 1 − a). For instance, let x be the proposition “Dust storm in location X”, the a priori
probability for x be 1

2 , and the opinion of sensor s1 about x be ws1
x = (0.75, 0.1, 0.15, 1

2 ), then
the sensor’s opinion about “No dust storm in location X” would be ws1

¬x = (0.1, 0.75, 0.15, 1
2 ).

If another sensor s2 has another opinion ws2
x = (0, 0.7, 0.3, 1

2 ), these two opinions are fused
into a single opinion using the consensus (a.k.a., cumulative fusion) operator ⊕ (Jøsang, 2007):
(0.75, 0.1, 0.15, 1

2 ) ⊕ (0, 0.7, 0.3, 1
2 ) = (0.55, 0.34, 0.11, 1

2 ). The consensus operator is defined as
follows, see (Jøsang, 2002).
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Table 1: Some operators for binary opinions in Subjective Logic (Jøsang, 2011).

Operator Name Notation
Complement (Jøsang, 2001) w¬x = ¬wx

¬(b, d, u, a) = (d, b, u, 1 − a)

Discounting (Jøsang, 2001) wA:B
x = wA

B ⊗ wB
x

Fusion (Jøsang, 2002, 2007) wA�B
x = wA

x ⊕ wB
x

w1�...�n
x = ⊕{w1

x, . . . ,w
n
x}

Disjunction / OR (Jøsang and McAnally, 2005) wx1∨x2 = wx1 t wx2

wx1∨...∨xm = t{wx1 , . . . ,wxm }

Conjunction / AND (Jøsang and McAnally, 2005) wx∧y = wx · wy

wx1∧...∧xm = ·{wx1 , . . . ,wxm }

Deduction (Jøsang and Grandison, 2003) wy||x = wx } (wy|x,wy|¬x)
Abduction (Jøsang and Grandison, 2003) wy|̄|x = wx}̄(wy|x,wy|¬x)

Definition 1. Let wA
x = (bA

x , d
A
x , u

A
x , a

A
x ) and wB

x = (bB
x , d

B
x , u

B
x , a

B
x ) be opinions respectively held

by agents A and B about the proposition x. When uA
x , u

B
x → 0, the relative dogmatism between

wA
x and wB

x is defined by γ = uB
x /u

A
x . The fused opinion wA�B

x = (bA�B
x , dA�B

x , uA�B
x , aA�B

x ) can be
computed as follows, where κ = uA

x + uB
x − uA

x uB
x :

for κ , 0
1. bA�B

x = (bA
x uB

x + bB
x uA

x )/κ
2. dA�B

x = (dA
x uB

x + dB
x uA

x )/κ
3. uA�B

x = (uA
x uB

x )/κ
4. aA�B

x = (aA
x uB

x + aB
x uA

x − (aA
x + aB

x )uA
x uB

x )/κ

for κ = 0
1. bA�B

x = (γbA
x + bB

x )/(γ + 1)
2. dA�B

x = (γdA
x + dB

x )/(γ + 1)
3. uA�B

x = 0
4. aA�B

x = (γaA
x + aB

x )/(γ + 1)

Discounting operator ⊗ allows normalisation of opinions based on the trustworthiness of their
owners (Jøsang, 2001). In order to allow different trust models in our work easily, we adopt
a slightly modified version of the discounting operator. Let us assume that we get the opinion
(bi

x, d
i
x, u

i
x, a) from source i about the fact x and have ti as the trustworthiness of the source. The

resulting opinion normalised based on opinion is computed as

(bi
x × ti, di

x × ti, ui
x + (1 − ti) × (bi

x + di
x), a)

where the idea is to move a percentage of belief and disbeleif to uncertainty based on the level of
trust in the source. The trustworthiness of information sources can be calculated using different
models. For example, beta reputation system (Jøsang and Ismail, 2002) uses beta probability
density functions (Jøsang and Ismail, 2002) to model trust. A Beta distribution has two parame-
ters (ri + 1, si + 1), where ri is the amount of positive evidence and si is the amount of negative
evidence for the trustworthiness of the source i. The degree of trust ti is then computed as the
expectation value of the Beta distribution:

t j
i =

r j
i + 1

r j
i + s j

i + 2
(1)
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Figure 3: Opinion Assessment Framework

While this computation is simple and straight forward, there exist more complicated approaches
for modelling trust. Our work is flexible enough to integrate any of such model as long as these
models provide a trust value in range [0, 1].

Now, we give a concrete example of discounting operation. Let the trustworthiness of s1 and
s2 be 0.1 and 0.8, respectively. Then, normalised opinions of s1 and s2 would be ws1

x ⊗ 0.1 =

(0.07, 0.01, 0.92, 1
2 ) and ws2

x ⊗ 0.8 = (0.0, 0.56, 0.44, 1
2 ), respectively. In this case, fusion of the

normalised opinions would be (0.03, 0.54, 0.43, 1
2 ). In the rest of the paper, and unless otherwise

specified, we will assume that all opinions are normalised based on trustworthiness of their
owners (i.e., sources).

Given opinions about different propositions (e.g., wx1 and wx2 ), SL provides conjunction (·)
and disjunction (t) operators to compute opinions for the conjunction (e.g., wx∧y) and disjunc-
tion (e.g., wx1∨x2 ) of the propositions (Jøsang and McAnally, 2005). In addition to these oper-
ators, deduction operator (}) is used to deduce new opinions from existing ones (Jøsang and
Grandison, 2003). For instance, let x be the proposition “Country A is buying missiles” and y
be “Country A is preparing to attack”. Let us assume that we have the following conditional
opinions about “y given x” and “y given ¬x”.

• wy|x = (0.9, 0.0, 0.1, 1
2 )

• wy|¬x = (0.0, 0.0, 1.0, 1
2 )

Given an opinion about x, we can deduce an opinion for y using wy||x = wx } (wy|x,wy|¬x) as
described in (Jøsang and Grandison, 2003). If the opinion about x is wx = (0.75, 0.25, 0.0, 1

2 ),
the deduced opinion about y is computed as wy||x = (0.68, 0, 0.32, 1

2 ) based on the algorithm
in (Jøsang and Grandison, 2003). Details of the deduction operator is not in the scope of this
paper, but it can be found in (Jøsang and Grandison, 2003).

4. Opinion Assessment Framework

Figure 3 shows the architecture of our opinion assessment framework; wherever appropriate,
we indicate ITA assets that could be leveraged in implementing the framework. As described ear-
lier, we assume information analytics operates over a stream of input information and generates
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information products e.g., by fusing information, by extracting facts and using inferences to de-
rive new facts, etc. Similarly to Figure 2, in Figure 3 we also show those parts of the architecture
that relate to the Observe and Orient phases of the OODA loop.

Our opinion assessment framework operates in parallel with the information processing
pipeline. The opinion assessment framework extracts facts and opinion metadata from the stream
of input information. The background knowledge store is queried for identifying relevant facts,
i.e., facts whose opinion level may influence or may be influenced by the opinion level of the in-
put information. For example, the input information may indicate unusual dust levels and back-
ground knowledge may encode the fact that unusual dust levels are often a result of an explosion;
hence, the fact store may be queried for potential explosion information. Also, the background
knowledge may encode the fact that explosion may be identified using its acoustic signature;
hence, the fact store may be queried for acoustic information from a relevant space-time region
(volume, to be more accurate) that surrounds the unusual dust level.

Once relevant facts are extracted, opinion in input information and information products is
assessed using the family of opinion operators built using subjective logic. The choice of the
opinion operator depends upon the nature of analytics operation (e.g., conjunction vs. deduction
vs. consensus). In this section we present three examples which illustrate the functionality of
various components in our opinion assessment framework.

One of our key design features is that of decoupling the analytics component with the opinion
assessment system. The analytics component is responsible for extracting and inferring facts
(e.g., from unstructured text or other primitive facts). In doing so the analytics component may
leverage (e.g., use a static road/terrain map to enrich facts) and update (e.g., Controlled English
(CE) (Mott, 2010) rules to infer new facts) background knowledge. The opinion assessment
system, on the other hand, does not infer new facts (as indicated by the unidirectional flow of
information from background knowledge to the opinion assessment system in the figure). Instead
it augments the inference task in the analytics component with opinion assessment capability, i.e.,
assesses opinion on the inferred fact.

In the rest of this section, we describe each of these steps in detail.

4.1. Fact Extraction
The input to our system is typically a stream of unstructured reports. Each report is subjected

to fact extraction, resulting in a set of facts that are subsequently used by both the analytics and
the opinion assessment components. The extracted facts and texts may be stored in Controlled
English (CE) format in a CE Store. Here is a snippet of the intelligence report.

For example, given an intelligence report the following facts may be extracted1:

• there is a group named ent1_wisrep08 that has ‘a foot patrol’ as description

• there is an entity reference named er1_wisrep08 that has ‘a foot patrol’ as description
and

– has the document wisrep08 as source and

– has the group ent1_wisrep08 as entity and

– has 40 as start position and

– has 53 as end position

1We use teletype lettering to emphasize CE specific word patterns.
9



Figure 4: A Snippet of an Unstructured Report

4.2. Metadata Extraction

Beyond fact extraction, we also extract various metadata attributes from a report including,
Creator, Keywords, Opinion, Subject, Title, Security Level, Company, Category, Document
parts, etc. For example,

• Source = “Dr Dave Sloggett”

• has ‘Opinion’ as (0.7, 0.2, 0.1, 0.5)

• Keywords = “IED, Pathfinder”

• Subject = “Daisy Chain Device”

• Title = “WISREP 001”

• Security Level = 0

• msole:codepage = 1252

• Company = “someCompanyName”

• Category = “WISREP”

• Document Parts = [(0, “WISREP 001”)]

Metadata attributes thus generated are also asserted as facts, thereby, permitting a uni-
form representation for both data and metadata. For example, Document ‘20110228_WIS-
REP_Report_001_ISAF’

• has the ms-word metadata ‘20110228_WISREP_-Report_001_ISAF.doc.meta.txt’ as
metadata and

• has ‘ISAF’ as filename security level and
10



• has ‘001’ as filename subtitle and

• has ‘WISREP’ as filename report type and

• has ‘20110228’ as filename date and

• has ‘Report’ as filename title and

• has ‘20110228_WISREP_Report_001_ISAF.doc.plain.txt’ as plain filename and

• has ‘Wed Jun 8 13:24:33 2011’ as time processed and

• has ‘PFIII document processor’ as agent and

It is important to emphasize the following about the reports, facts, and opinions. Within the
same report, there can be multiple facts written by multiple sources. When a fact is extracted
from a report, the meta-data includes the source and opinion asserted by the source about this
fact. Before asserting the opinion from the specific source into the knowledge base, we discount
it with the trustworthiness of the source. If the opinion is not asserted by the source in the
report, we take it as (1, 0, 0) by default and discounted based on opinion. For instance, if the
trustworthiness of the source is (0.5, 0.1, 0.4), the opinion about the fact is taken as (0.5, 0, 0.5)
after discounting. Normally, the fact may appear in different reports. Therefore, there may be
many opinions about the facts in our knowledge base. Some of these facts may be in conflict.
For instance, we may derive opinions (0.8, 0, 0.2) and (0.1, 0.8, 0.1) for the same fact “there is a
problem in the road”. The first opinion indicates that the fact is probably true while other implies
that the fact is not true. We will later describe how to handle these conflicting opinions about the
same facts.

4.3. Opinion Query

Each opinion is associated with a proposition, which may be a fact or meta-data. For example,
the knowledge base stores the opinion (0.9, 0, 0.1) from USGS about the fact “seismic activity
has happened at location X on 20th June 2014 at time 16:01” and the opinion (0.8, 0, 0.2) for the
proposition “USGS is a reliable source for seismic data”. In this section, given a specific fact
extracted from a report, we describe how to identify relevant facts (and meta-data), and retrieve
opinions related to these. In particular, we extract three types of relevant facts and retrieve
associated opinions from the knowledge base:

• The facts that exhibit causal relationships with the input fact (e.g., dust level, acoustic sensor
measurements with an IED explosion)

• The facts that exhibit spatio-temporal similarity (e.g., two explosion reports whose space-
time tags are relatively close to each other)

• The facts with matching meta-data attributes such as creator, keywords, etc.

After retrieving all the known opinions about the relevant facts and meta-data, we perform
opinion analysis as described in the next section.
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4.4. Opinion Analytics

The opinion analytics component is designed to operate in parallel with the main analytics
component; one could view our opinion analytics component as being triggered by the main an-
alytics component whenever new facts are inferred or updated by the analytics component. The
trigger would include as references the input and output facts from the analytics component and
the relevant background knowledge queried in the previous step (Opinion Query step). The opin-
ion analytics component uses a subjective logic (SL) operator library for deducing new opinions
from the existing opinions about known facts. In this section we describe three sample opinion
analytics operations.

4.4.1. Forward Chaining (input opinions are known)
Consider two known facts that are annotated with metadata such as source (e.g., coalition

member) C, location L and time T and an opinion tv. Given two annotated facts ( f1, c1, l1,
t1, tv1) and ( f2, c2, l2, t2, tv2), the analytics operation may infer and generate a new opinion
about another fact f3 using deduction as: f1 and f2 ⇒ f3. The goal of the opinion assessment
system in this case is to infer the opinion in the fact f3. In order to do this, the opinion analytics
system would identify facts f1 and f2 and the inference rule used to generate fact f3, namely,
f1 and f2 ⇒ f3. In this example, the conjunction of the opinions about f1 and f2 are computed
using the conjunction operator of SL, which is described in Definition 1. The resulting opinion
is the opinion for the left hand side of the rule, i.e., f1and f2. Based on the computed opinion and
the deduction operator } mentioned in Section 3, we compute the opinion tv3 associated with
the fact f3.

Definition 1. Let wx = (bx, dx, ux) and wy = (by, dy, uy) be opinions about two distinct proposi-
tions x and y, respectively. Then the opinion about x ∧ y is computed using the conjunction
operator as wx∧y = wx · wy = (bx∧y, dx∧y, ux∧y) where,

1. bx∧y = bxby

2. dx∧y = dx + dy − dxdy

3. ux∧y = bxuy + byux + uxuy

Deduction operator of SL allows us to associate uncertainty with rules that are used to infer
new facts. In our example, f1 and f2 ⇒ f3 may not be certain. That is, f3 may not always follow
from f1 and f2. Let shortly refer to f1 and f2 as θ. The deduction operator uses two conditional
opinions about the rule θ ⇒ f3 while deducing opinions for f3: i) w f3 |θ and ii) w f3 |¬θ.

The first conditional opinion w f3 |θ refers to the belief, disbelief, and uncertainty for the propo-
sition that f3 follows from θ. It is computed using the evidence derived from observations. Given
θ holds, if it is observed that f3 holds as well, this observation is counted as a positive evidence
while computing w f3 |θ; but if f3 does not hold, the observation is taken as a negative evidence.
Let r and s refer to the number of positive and negative evidence derived from observations.
Then, following (Jøsang and Grandison, 2003), the belief and disbelief in the opinion w f3 |θ are
computed as r/(r + s + 2) and s/(r + s + 2), respectively.

The second opinion w f3 |¬θ refers to the belief, disbelief, and uncertainty for the proposition that
f3 follows from ¬θ. This opinion is also computed using the evidence derived from observations,
as described above. If we set w f3 |θ as (0.8, 0, 0.2), this means that most of the time f3 follows
from θ, but sometimes this may not hold.
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While describing rules, we can use arbitrary propositional logic statements ( and , or , and
not ). Then, these rules can be used to infer a new fact, given a set of existing facts. For

clarity, we have only shown conjunction operator in this paper, other SL operators can be found
elsewhere.

4.4.2. Backward Chaining (input opinions are unknown)
We can also infer new opinions about facts using backward chaining, i.e., through abductive

reasoning. For instance, let us assume that we have a SL rule indicating that an explosion may
lead to high level of dust. When we have a report asserting some opinions about high level of
dust, we can use abductive reasoning or backward chaining to infer there might be an explosion
resulting in the dust.

More formally, let us assume that f1 and f2 refer to facts representing unusual dust level and
explosion at location l and time t, respectively. In our knowledge base, we may have a SL
rule relating these facts, i.e., f2 → f1 with conditional opinions w f1 | f2 and w f1 |¬ f2 . The con-
ditional opinions can be considered similar to conditional probabilities in a Bayesian network,
e.g., Pr(dust|explosion) and Pr(dust|¬explosion). Given an opinion w1 retrieved from a specific
source about f1, we can infer another opinion w2 using abduction operator ⊗̄ of SL (Josang,
2008).

4.4.3. Spatio-temporal Relevance and Reasoning with Location
Consider two facts f1 and f2 that assert the same statement (e.g., an explosion occurred) but

with a small mismatch in its metadata. For instance, the location metadata l1 associated with
fact f1 is slightly different to l2 that is associated with fact f2. Since the facts essentially agree
with each other, the goal of opinion assessment is two-fold: (i) combining opinions in both the
facts (because we now have collaborating evidence) and reduce uncertainty, and (ii) assuming
that the location l1 is not same as l2, refine the location metadata associated with the facts. For
sufficiently small deviations, we may simplify and assume that l1 = l2 in which case we can
apply the SL consensus operator for fusing the opinions tv1 and tv2 to compute tv3. However, in
general, when l1 , l2, traditional SL cannot be used directly. The authors are exploring spatial-
aware extensions of SL (coined saSL) to address cases like this, with the objective to compute
a new location l3 where the fact (e.g., explosion) could have occurred with high belief. Early
results from this work and its application to a localization scenario for cognitive radio networks
can be found in (Chakraborty et al., 2012).

Location information in a report can be in the form of latitude and longitude values. In this
case, the comparisons of locations in terms of proximity can be done using a set of geographical
calculations. On the other hand, it may be more likely to have address information (e.g., street
name, area, city etc.) in reports to indicate a specific location. Therefore, in order to identify
proximity or spatio-temporal relevance between locations, we may need to do some reasoning.
For this purpose, we can use an ontology that determines the relationships between different
locations. The linked geographical data2 can be used to determine if an area is within or close
to another area. Once we determine the relevance between locations appearing in different facts,
we can determine if the opinions about these facts are supporting one another or not.

Let us describe this using the following example. We consider that a sniper has killed someone
in an area. There are two reports about the sniper’s location. The first report is from local

2http://linkedgeodata.org
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police and indicates with high belief that “the sniper shot from a building x on street y”. The
second report is from a military force conducting operations in the region. The military force
also knows that the sniper shot from the building x. However, it does not want to reveal the
positions and density of its sensors on the region. Hence, it shares a report after obfuscating
(e.g., generalising) the location information. For instance, if the street y is in the area z, it reports
that “the sniper shot from a building in area z”, being sure that this information does not reveal
that it has sensors around the building x. When these two reports are received by the system,
the locations indicated within the reports are analysed and the relevance between these facts and
opinions are determined. That is, the system can figure out that the building x locates in the area
z, therefore, the opinions appearing within these reports support each other. Using deduction
(forward chaining), we can infer from the first report that the sniper was in the area z, which
supports the second report. Similarly, through abduction (backward chaining), the second report
supports the first report. That is, if the sniper was at a building on the area z, it is possible that
this building is the building x.

5. Fusing of Assessed Opinions

There are different ways of getting various opinions about the same fact. We can get opinions
direct from one or more information sources and discount them based on the trustworthiness of
their sources or infer opinions through some sort of reasoning mechanism such as deduction (i.e.,
forward chaining) or abduction (i.e., backward chaining). Therefore, we may expect more than
one opinion about the same facts. At this point, we may fuse these opinions using cumulative
fusion operator of SL as described in Definition 1 or some other fusion method. On the other
hand, some of these opinions may be in conflict. The conflicting opinions may significantly re-
duce the quality of the fused opinion, especially in the environments with malicious adversaries.
In this work, we advocate that conflicts between opinions should be resolved before fusing. In
this section, we detail our approach and justify it using a set of simulations.

5.1. Conflicts between Opinions

When we have two or more opinions about the same fact, these opinions may conflict. Let
us assume that we have two information sources that provide opinions some how related to the
fact f1 “The road R is bombed”. These sources are Peter and Jane, whose levels of opinion
are 0.8 and 0.75, respectively. Peter reports that the fact f2 “the road is safe” with opinion
(1, 0, 0); this opinion is discounted as (0.8, 0, 0.2) based on his trustworthiness. Given that we
have a certain rule hasExplosion(x) → ¬sa f e(x), we infer, lets say, the opinion (0, 0.8, 0.2) for
f1 using abduction based on Peter’s report. On the other hand, Jane reports an explosion on
the road with opinion (0.9, 0, 0.1); this opinion is discounted as (0.675, 0, 0.325) based on her
trustworthiness. Therefore, we have two opinions for f1: (0, 0.8, 0.2) and (0.675, 0, 0.325). It is
easy to conclude that these opinions are in conflict. The first opinion indicates that most likely
there is no explosion on the road while the other implies that there is a significant possibility of
explosion.

The conflict indicates that at least one of these opinions is misleading. To resolve this conflict,
these opinions may be discounted (possibly at different rates), hence the uncertainty within them
is increased enough to resolve the conflict. For instance, discounting the first opinion (0, 0.8, 0.2)
with 0.0 makes it (0, 0, 1), which absolutely does not conflict with (0.675, 0, 0.325) or any other
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opinion, since it does not contain any belief or disbelief, but only uncertainty. Similarly, discount-
ing both of these opinions with 0.5 leads to opinions (0, 0.4, 0.6) and (0.335, 0, 0.665), which are
quite uncertain and do not conflict.

In this paper, we argue that conflicts between opinions may serve as evidence for the necessity
to increase uncertainty within them. Although there can be more than one way to define conflicts
between subjective opinions, in this paper, we introduce Definition 2 where conflicts are defined
based on the satisfiability of beliefs and disbeliefs within opinions. In the rest of this paper, we
represent opinions using only belief and disbelief when a coincide notation is required; that is,
we use (b, d) instead of (b, d, u) since u = 1 − b − d.

Definition 2. Let O = {w0,w1, . . . ,wn} be opinions about the same proposition, where each
opinion wi = (bi, di, ui). These opinions are consistent if it is possible to have a valid opinion
that can satisfy all of these opinions. An opinion w∗ = (b∗, d∗, u∗) can satisfy the opinion wi ∈ O
iff bi ≤ b∗ and di ≤ d∗. Although there can be infinitely many such w∗, the one with the highest
uncertainty (i.e., one with the highest u∗) would be

(max(b0, b1, . . . , bn), max(d0, d1, . . . , dn)).

Therefore, there cannot be any opinion that can satisfy all opinions in O if and only if

max(b0, b1, . . . , bn) + max(d0, d1, . . . , dn) > 1.

That is, O is inconsistent iff ∃wi,w j ∈ O s.t. bi + d j > 1.

The intuition behind the definition of conflicts between opinions is as follows. Let the ground
truth about a proposition x be represented as an opinion wτ

x = (bτx, d
τ
x). Also, let wi

x = (bi
x, d

i
x, u

i
x)

be an arbitrary opinion about x. If wi
x has a higher belief than wτ

x does (i.e., bτx < bi
x), then

wi
x is misleading. Similarly, if wi

x has a higher disbelief than wτ
x does (i.e., dτx < di

x), then wi
x

is misleading. How much wi
x is misleading depends on how much extra belief and disbelief it

imposes. On the other hand, if bi
x < bτx and di

x < dτx, then wi
x is not misleading, because it does not

impose any extra belief or disbelief, but only extra uncertainty that conflicts with neither the belief
nor the disbelief within the ground truth wτ

x. In reality, we do not have the ground truth about x.
Therefore, we cannot say whether wi

x is misleading or not. However, if we have another opinion
w j

x = (b j
x, d

j
x, u

j
x), we can reason about if it is possible to have a ground truth for which neither wi

x

nor w j
x is misleading. Such a ground truth exists if and only if max(bi

x, b
j
x) + max(di

x, d
j
x) ≤ 1. If

such a ground truth cannot exist, we say wi
x and wi

x are in conflict, i.e., at least one of them must
be misleading at some degree.

5.2. Resolving Conflicts

Before fusing opinions regarding a specific fact, for example using cumulative fusion operator
in Definition 1, the conflicts between opinions should be resolved. Once we determine conflicting
opinions, several approaches can be used for this purpose. In this section, we introduce three
conflict resolution approaches and demonstrate their performance in terms success of the fusion
operation. In these approaches, discounting operator is used to resolve conflicts between opinions
by increasing uncertainty in some of these opinions. Let us have two conflicting opinions wi and
w j from information sources i and j with opinion values ti and t j, respectively. These opinions
are discounted by coefficients 0 ≤ xi, x j ≤ 1 based on information like ti and t j.
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1. Trust-based deleting: If two opinions wi and w j are in conflict, the opinion from the less
trustworthy source is deleted, and if both sources are equally trustworthy both opinions are
deleted. Thus, if the trust we have in the source of opinion wi is greater than that of the
source of w j (ti > t j) then xi = 1 and x j = 0, and when t1 = t2, we assign x1 = x2 = 0.

2. Trust-based discounting: If two opinions wi and w j are in conflict, they are discounted in
proportion to the trustworthiness of their sources. That is, the more trust worthy opinion is
discounted relatively less. Let us define a conflict over wi = (bi, di, ui) and w j = (b j, d j, u j)
as bi + d j > 1. Then, the additional discounting factors for wi and w j are computed as
ti/(biti + d jt j) and t j/(biti + d jt j), respectively.

3. Evidence-based discounting: The previous two conflict resolution methods uses discount-
ing based on trust to resolve conflicts. Trustworthiness of information sources are computed
based on past experience, i.e., evidence. Evidence relates to how reliable or unreliable a
source was in the past. The evidence-based discounting uses TRIBE (Sensoy et al., 2013)
approach for conflict resolution and depends on evidence analysis instead of trust values.
As described before, each opinion in the proposed system is already discounted by the trust-
worthiness of its source. Discounting an opinion further to resolve a conflict implies making
its trustworthiness less than the trustworthiness of its source. For instance, let us assume
that our trust for Jack and Jane as information sources are 0.8 and 0.9, respectively; and
they give opinions (1, 0, 0) and (0, 1, 0) for the fact “the road is not safe”, respectively. After
discounting based on the trustworthiness of their sources we have opinions: (0.8, 0, 0.2) and
(0, 0.9, 0.1). These opinions are still in conflict. To resolve the conflict, we need to discount
them further. For instance, we can discount both of these opinions with 0.5 and have two
non-conflicting opinions: (0.4, 0, 0.6) and (0, 0.45, 0.55). Hence, the trustworthiness of the
first opinion becomes 0.5 × 0.8 = 0.4 and that of the second becomes 0.45. Let us assume
that the trust in the source of the first opinion is computed as (r+1)/(r+s+2) = 0.8 based on
Equation 1 where r = 8, s = 0. We can trivially calculate that 11 extra negative evidence,
i.e., speculative evidence, should be added to s to decrease the trust from 0.8 to 0.4, i.e.,
(8 + 1)/(8 + 11 + 2) = 0.4. TRIBE aims at optimising the total amount of speculative ev-
idence necessary to resolve all conflicts by finding the best discounting factors. Therefore,
it considers not only the trust values, but also the evidence used to calculate them.

We evaluated the performance of the listed conflict resolution approaches in cumulative fusion
through a set of simulations. In these simulations, there are two types of information sources
that provides opinions about fact: honest and malicious sources. At each time step, a fact is
randomly selected and a ground truth is generated for the fact. Our fusion model collects opinions
provided by various information sources and fuse these opinions by i) detecting conflicts, ii)
resolving conflicts, and iii) applying the cumulative fusion operator to generate a single fused
opinion. The success of the fusion operation is measured using absolute error. Let (b, d, u) be
the ground truth and (b′, d′, u′) be the fused opinion, then the absolute error is computed as
errB(a) = abs(δb) + abs(δd), where δb = b′ − b and δd = d′ − d.

The honest sources provide opinions close to ground truth; they add small amount of Gaus-
sian noise with N(0, 0.01) to belief and disbelief within the ground truth. The malicious sources
behave like honest sources for a while until they build up some trust (above 0.7) and then they
start to provide misleading opinions. The misleading opinions are generating by switching the
belief and disbelieve within genuine opinions, which are close to the ground truth. In order to
increase the uncertainty in the behaviour of sources, we also let honest sources provide mis-
leading opinions with a probability of 0.1. During simulations there are 10 information sources
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Figure 5: Error of cumulative fusion operator in the face of liars for varying Rliar

and we have run the simulations for different ratio of liars. For each ratio of liars, we repeat
our experiments 10 times and we demonstrate the mean absolute error for our experiments in
Figure 5. In the figure, Naive Deleting method is a baseline method in our evaluations. This
method simply deletes all of the conflicting opinions before fusion. Our results indicate that
trust-based discounting and evidence-based discounting have similar performance for low ratio
of liars. However, considering only trust is not enough for higher ratios of liars. Trust-based
deleting and naive deleting approaches do not perform good. They lead to highly erroneous
fused opinions. Evidence-based discounting is by far the best conflict resolution approach. It al-
lows misleading opinions to be discounted before the cumulative fusion takes place. Therefore,
we suggest to use evidence-based discounting in the proposed system.

6. Experimental Evaluation

The SL-based opinion assessment process has been implemented on the Information Fabric
(or Fabric) that serves as the underlying platform for executing the opinion assessment work-
flows. The opinion assessment operations appear as a service that is accessible over the Fabric.
Specifically, packaged as a Java library, the SL-based operators are invoked as needed by the
opinion assessment service.

The SL-based opinion assessment has also been implemented using Controlled English as the
inference engine. opinion assessment framework appears as a plugin in the Controlled English
Store. On execution of the inference engine, the opinion assessment plugin will be invoked and
will perform the assessment. Subjectiove logic operator has been used to represent the rules with
opinions hence associating rules with some uncertainty. This complies to real life scenario and
hence a good experimentation of the assessment.

All our experiments were performed on the SYNCOIN dataset (Graham et al., 2011). We
used the CE Store to a priori extract facts from the dataset. These facts are then streamed over
the Fabric to an in-memory database wherein facts are annotated with opinion metadata.

6.1. Performance

Table 6 summarizes the performance overhead added by our opinion assessment approach.
We compared the latency and throughput of a nop (no operation) Fabric service with that of
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Figure 6: Forward Chaining Figure 7: Consensus (Self Chaining) Figure 8: Backward Chaining

Metric Mean Std dev
Throughput (per sec) 33.6 / 33.5 / 2.98% 2.4 / 2.8 / 16.67%

Latency (ms) 32.2 / 36.4 / 13.04% 12.1 / 13.2 / 9.09%

Figure 9: Performance Overhead x/y/z where x denotes the performance of a nop Fabric service, y denotes the perfor-
mance of our opinion service and z shows the relative overhead (i.e., percentage decrease in throughput and percentage
increase in latency)

our Fabric opinion service by streaming events through them at high speed. The nop Fabric
service takes a stream of events as input and returns an identical stream of events as output.
Thus, execution of nop reflects the cost of an event entering and exiting the Information Fabric
platform without any processing within the Fabric platform. The trust service takes a stream of
events as input and returns a opinion annotated stream of events as output. We have repeated the
experiment by calling each of the SL operators shown in Table 1. The variation in latency and
throughput across these SL operators were hardly noticeable. All our experiments were repeated
seven times. The experiments were repeated until we attained reasonable variance and 5-7 runs
reduced the variance.

Our initial results indicate that including a trust service does not significantly alter the through-
put of the Fabric platform. In general, we expect the information analytics operator is likely to
be at least as complex (if not more) than the opinion assessment operator; hence, the relative loss
in throughput is expected to be reasonably small (roughly 3%). With regard to latency, the trust
service adds a relatively larger overhead (13%). This is because in our current implementation,
the opinion assessment operator does not run concurrently with the analytics operator; we require
the analytics operation to be complete and the output information product be available before the
opinion assessment operation can infer the opinion metadata on the information product. For fu-
ture implementations, we anticipate that once the choice of the analytics operation is determined,
e.g., which CE rule will be applied, we could concurrently issue a request to the opinion service
without waiting for the analytics operation to complete. Hence, in this case, we expect that the
latency overhead due to the trust service would decrease.

6.2. Accuracy

Next, we compare the accuracy of the assessed opinion using our online opinion assessment
system versus an offline approach. The offline approach waits for all reports to be received
before assessing opinion in various facts. In contrast, our online approach operates on a stream
of incoming reports with the goal of ascertaining opinion in various facts as information arrives.
Assuming that opinion levels in reports do not change with time, the opinion assessed by the
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offline approach can serve as a benchmark, representing a ceiling for the opinion levels that
can be ascertained as the entire body of information is available at decision time. Against this
benchmark, we can assess how our online approach fares. The online approach operates on a
compact set of facts where the incoming reports are discarded immediately after fact extraction
and opinion assessment. We will refer to the difference between the opinion levels attained by
the offline and online approaches as the accuracy in the opinion assessment.

Figures 6, 7 and 8 compare the accuracy for different classes of opinion analytics operators.
Note that the forward chaining operators (such as the SL and and or operators) and the SL con-
sensus operator are associative and commutative and, hence, the order in which these operators
are applied does not change the outcome. As a result, the online opinion assessment approach
will eventually converge to the value attained by the offline approach when these operators are
used; this behavior is seen in Figures 6 and 7. On the other hand, backward chaining operators
(such as the SL deduction and abduction operators) are neither commutative nor associative and,
hence, the order of their application does matter. In the backward chaining case, see figure 8,
the online opinion assessment system exhibits inaccuracies by assessing opinion at levels that
remain “distant” to those attained by the offline approach.

The inaccuracy notwithstanding, the online approach allows for fast-paced evaluation of opin-
ion as information arrives. In the particular example, without the computer processing time,
there is practically zero delay from the moment the information arrives until a new opinion level
can be assessed. When opinion level reach satisfactory levels and remain at such levels for a
sufficient period of time, decisions could be made and actions taken at earlier times, resulting in
fast-paced execution of the pertinent OODA loop as well. Clearly, though, the level in opinion
accuracy attained and the responsiveness with which it is attained presents a design and system
management trade-off parameter. To this end, in future work, we will explore operational impli-
cations of alternative designs where, for example, we trade-off delay to accuracy by operating in
a near-streaming manner. In the latter case, the system could operate over time frames assessing
opinion based on reports arriving over a single frame in an offline fashion, but assessing opinion
over successive windows in an online fashion.

7. Related Work

There has been research in areas of trust based data management. Patwardhan et al. propose a
trust-based data management framework for enabling individual devices to harness the potential
power of distributed computation, storage, and sensory resources available in pervasive comput-
ing environments (Patwardhan et al., 2005). They take a holistic approach that considers trust,
security, and privacy issues of data management in these environments.

Lim et al. has explored data stream management and exploited the notion of confidence pol-
icy while taking into account trustworthiness of data items in data management and query pro-
cessing. They propose a provenance-based framework that enforces confidence policies in the
evolution of continuous queries over streaming data. Based on the notion of physical and logi-
cal networks, they introduce the notions of the physical and logical provenances for data items,
respectively. The authors also introduce a cyclic framework of computing actual trust scores of
data items and network nodes based on the value and provenance similarities embedded in data
items.

Unlike these approaches, in our work, we use unstructured reports from unreliable information
sources and derived structured knowledge based on Controlled English using ITA (International
Technology Alliance) assets. ITA (International Technology Alliance) is a collaborative research
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alliance between UK Ministry of Defence ( UK MoD) and US Army Research Laboratory (ARL)
and a consortium of leading industry and academic partners. Some of the assets that has resulted
due to this research collaboration includes Controlled English (Mott, 2010) and Information
Fabric (Wright et al., 2009). Controlled English (CE) is an ITA asset that has been extended
and modified by the ITA programme. Mott defines the syntax with examples of CE formatted
text and shows how to map to predicate logic (Mott, 2010) . CE is a type of Controlled Natural
Language (CNL) and is mainly used to be readable by any one who knows English. It repre-
sents information in a very structured form using certain syntax. This syntax can be parsed and
the content can be understood by a computer. Hence, CE enables the communication between
computer and humans.

Schwitter has described the use of controlled natural language as a high level specification
language for modelling commonsense reasoning problems (Schwitter, 2015). The paper shows
how defaults and exceptions can be incorporated into a current controlled natural language and
what is required to signify and motive with them in a not so straight way.

In this work, we use a trust model that is based on trust evidence. The retrieval or derivation of
trust evidence is out of the scope of this paper. Usually, there are two type of evidence: direct and
indirect. In the literature, there are several trust approaches where direct evidence is combined
with indirect evidence to model trust in information sources. Direct evidence is based on personal
observations, while indirect evidence is received from others. Jøsang and Ismail proposed the
beta reputation system (BRS) (Jøsang and Ismail, 2002). It estimates the trustworthiness of an
information source using beta probability density functions, as we do in this paper. For this
purpose, aggregation of direct evidence and indirect evidence from information sources are used
as the parameters of beta distributions. Evidence shared by sources are equivalent to binary
opinions in Subjective Logic (Jøsang, 2011). Whitby et al. extended BRS to handle misleading
indirect evidence from malicious agents using a majority-based algorithm (Whitby et al., 2005).
Teacy et al. proposed TRAVOS (Teacy et al., 2006), which is similar to BRS, but it uses personal
observations about information sources to filter misleading indirect evidence.

Subjective logic has been extended to include belief updates from partially visible evidence
(Kaplan et al., 2015).. Lance et.al show that assets of the partial observable update as a function
of the state likelihood and demonstrate the use of these likelihoods for a trust estimation applica-
tion. The value of the partial observable updates is shown through different imitations including
the trust estimation case.

Yu and Singh proposed a trust approach that handles misleading indirect evidence using a
version of weighted majority algorithm (Yu and Singh, 2003). In their algorithm, weights are
assigned to information sources. These weights are initiated as 1.0 and can be considered as
the trustworthiness of the corresponding sources. The algorithm makes predictions about trust
related propositions (e.g, i is trustworthy) based on the weighted sum of indirect evidence (i.e.,
ratings) provided by those sources. The authors proposed to tune the weights after an unsuc-
cessful prediction so that the weights assigned to the unreliable sources are decreased. They
assume that the ratings from dishonest sources may conflict with the personal observations. By
decreasing the weights of these sources over time, misleading evidence is filtered.

In this paper, we describe conflicts between binomial opinions and analyse evidence about
information sources to resolve conflicts between opinions before performing fusion. Conflicts
in knowledge lead to inconsistencies that hamper the reasoning over the knowledge. Therefore,
before using such knowledge bases, their conflicts should be resolved. Gobeck and Halaschek
(Golbeck and Halaschek-Wiener, 2009) present a belief revision algorithm for ontologies, which
is based on trust degrees of information sources to remove conflicting statements from a knowl-
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edge base. However, as the authors point out, the proposed algorithm is not guaranteed to be
optimal. Dong et al. (Dong et al., 2009) propose to resolve conflicts in information from mul-
tiple sources by a voting mechanism. Double counting in votes is avoided by considering the
information dependencies among sources. The dependences are derived from Bayesian analysis.

When considering multiple sources espousing multiple claims, it is possible to estimate their
reliability through corroboration without direct and/or indirect evidence. For example, fact-
finding algorithms aim to identify the truth given conflicting claims. Yin et al. proposed
TruthFinder (Yin et al., 2007) which utilizes an iterative approach to estimate trustworthiness
of information sources and information they provide. Their approach based on the assumption
that a source is trustworthy if it provides many pieces of true information, and a piece of infor-
mation is likely to be true if it is provided by many trustworthy sources. Therefore, very similar
to BRS, TrustFinder also assumes that the information provided by the majority is trustworthy.

In our paper, the key differences compared to the papers described in this section are mainly the
streaming nature of updates (online mode). Most facts are inserted as information, as inferences
are derived we can see that we are propagating from source to information to inference and a
trust annotation for the inference. Unlike our online mode, information is non-streaming in the
offline mode.

8. Conclusions

Effective applications of the OODA loop requires a fast-paced execution of its Observe and
Orient phases. The latter becomes challenging when faced with voluminous information of
questionable provenance and trustworthiness arriving in streaming fashion from multiple souse,
as the the case might be in military coalition environments.

In this paper, we introduced an opinion assessment framework comprising a family of opinion
operators, based on subjective logic. The framework is suitable for dynamic information flows
assessing opinions for data-in-motion online rather than for a large corpus of static data. We have
also described an implementation of our opinion assessment framework using ITA assets (Infor-
mation Fabric Services (Wright et al., 2009) and Controlled English Fact Store (Mott, 2010)) and
presented an experimental evaluation that quantifies the efficacy (e.g., accuracy and overhead) of
our framework. Initial analysis shows promising results compared to a benchmark offline design
when utilizing opinion assessment operators that satisfy associative and commutative properties.
If these properties do not hold, the online assessment exhibit inaccuracies and considerations are
under way to improve accuracy in this case as well.

In future work, we also plan to explore additional opinion assessment frameworks that may be
even better suited at handling dynamic information flows, for example, considering performing
opinion assessment across a loosely coupled offline and online system.
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