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Abstract

We present a practical, algebraic method for efficiently calculating the Yukawa couplings

of a large class of heterotic compactifications on Calabi-Yau three-folds with non-standard

embeddings. Our methodology covers all of, though is not restricted to, the recently classified

positive monads over favourable complete intersection Calabi-Yau three-folds. Since the algo-

rithm is based on manipulating polynomials it can be easily implemented on a computer. This

makes the automated investigation of Yukawa couplings for large classes of smooth heterotic

compactifications a viable possibility.
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1 Introduction

Some of the most important pieces of data defining a phenomenological theory of particle physics are

the Yukawa couplings. Since these parameters determine particle masses and interactions, no theory’s

phenomenology can be understood in even a rudimentary manner without knowledge of their values. In

string phenomenology, Yukawa couplings are usually some of the first things one attempts to calculate

once the low energy particle spectrum of a model is known [1, 2, 3]. However, despite their importance,

in many cases it is not known how to carry out the calculations in practice.

For compactifications of heterotic string theory and M-theory on Calabi-Yau three-folds, Yukawa

couplings have been be calculated in only a relatively small number of cases. Examples include orbifold

compactifications and heterotic models with “standard embedding”, that is, models where the gauge

bundle is chosen to be the tangent bundle of the Calabi-Yau manifold. Aside from these, only a few

other, isolated, examples appear [4, 5, 6, 7], with some of these being closely related to the standard

embedding.

In this paper, we considerably improve this situation by providing a simple, easy to implement,

algorithm for calculating the Yukawa couplings in a large class of heterotic compactifications on smooth

Calabi-Yau spaces with “non-standard embedding”. In such compactifications the gauge fields are defined

in terms of a general, poly-stable holomorphic vector bundle [8]. Our approach is in the spirit of the

recent papers [9, 10], where a systematic analysis of such general heterotic compactifications by means

of computational algebraic geometry has been pursued.

The manifolds we will consider are the favourable complete intersection Calabi-Yau (CICY) manifolds

[11], which comprise a set of 4515 three-folds. In addition, we consider vector bundles defined over these

manifolds that are built using the monad construction [12]. For simplicity, we will present our method

for the case where certain bundle cohomology groups vanish, as summarised in Table 2, but it is likely

that the basic ideas can be extended to all stable bundles on CICY manifolds. These conditions are

automatically satisfied for positive monad bundles and a large number of “not too negative” monad

bundles. The class of positive monad bundles has been recently studied in references [10, 13, 14, 15],

and the methods described in the present paper represent a further step towards a systematic analysis of

their phenomenological properties.

Our method calculates the Yukawa couplings that appear in the superpotential of the four-dimensional

theory. They are related to the physical Yukawa couplings by a field rotation that brings the matter field

kinetic terms into canonical form. Unfortunately, the matter field kinetic terms and, hence, the required

field redefinitions, are not explicitly known, so the physical Yukawa couplings cannot be computed directly.

Numerical calculations [16] may be the only way to overcome this common limitation, and we have

nothing more to say about it in the present paper. In practice, this means that only certain invariants

of the Yukawa couplings, which are unchanged under redefinition of the matter fields, can be regarded

as physical. For example, in cases where one can talk about a Yukawa matrix, such as in a model
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with SO(10) gauge group and a single Higgs representation in 10, the rank of this matrix is physically

meaningful.

Of the many different methods of constructing vector bundles, the monad construction is one that

has been of consistent interest in the physics literature over the years (see, for example, references

[10, 13, 17, 18, 19]). These constructions, which will be reviewed in section 2.2, lend themselves nicely

to methods of computational algebraic geometry. This feature, which allows us to systematically study

large classes of such bundles at a time, is one of main motivations for focusing on monad bundles in

this paper. We shall consider the cases of SU(n) bundles, where n = 3, 4, 5, corresponding to the GUT

visible sector gauge groups E6, SO(10) and SU(5), respectively. We will give examples throughout our

discussion, but in particular, in section 4, we give a detailed presentation of an SO(10) model. We show

how to engineer models with a single 10 multiplet of SO(10). In addition, we show that the rank of the

Yukawa matrix for the 16 multiplets of a model engineered in this way is one. As a result, these cases

correspond to compactifications with one heavy family.

Before we delve into technicalities let us briefly outline the basic method for computing Yukawa

couplings, which is quite simple in principle. For a heterotic compactification on a Calabi-Yau three-fold

X, the families can be identified as elements of the cohomology group H1(X,V ) of the gauge bundle

V . Anti-families correspond to H2(X,V ) ≃ H1(X,V ⋆), but our focus will be on models without anti-

families, a property which is automatic for positive monad bundles, as we will review. To be specific,

let us discuss the case of an SU(3) bundle which leads to the low-energy gauge group E6 and families

in 27 representations. In this case, we are interested in the 273 Yukawa couplings, that is, we need to

understand the map H1(X,V ) ×H1(X,V ) ×H1(X,V ) → H3(X,∧3V ) ≃ C (the last equivalence holds

because ∧3V ≃ OX for an SU(3) bundle V and h3(X,OX ) = 1). It turns out, for monad bundles, that the

“family cohomology group” H1(X,V ) can be represented by a quotient of polynomial spaces, containing

polynomials of certain, well-defined, degrees. Likewise, we can represent the “Yukawa cohomology group”

H3(X,∧3V ) by a quotient of polynomial spaces which, of course, must be one-dimensional. Let Q

be a representative of the single class in this quotient and PI , where I, J,K, . . . = 1, . . . , h1(X,V ), a

polynomial basis for the families. Then the Yukawa couplings λIJK are obtained by multiplying three

family representatives. The result represents an element in the one-dimensional Yukawa quotient space

and must, hence, be proportional to Q. The constant of proportionality is precisely the desired Yukawa

coupling, so [PIPJPK ] = λIJK [Q], where [·] denotes the class in the quotient space. Hence, calculating

Yukawa couplings is reduced to a simple procedure of multiplying polynomials and projecting the result

onto the class representative Q. For the cases of bundles with structure groups SU(4) and SU(5) the

procedure is analogous although slightly more complicated.

The plan of this paper is as follows. In the next section, we introduce the general methodology

available for computing Yukawa couplings in heterotic compactifications and the arena in which we shall

be working: positive monad bundles over the complete intersection Calabi-Yau manifolds. In section
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3, we proceed to outline the procedure for calculating Yukawa couplings in such compactifications. We

split the discussion into several subsections - one for each of the possible visible sector gauge groups of

interest (E6, SO(10), and SU(5)). Section 4 contains a detailed discussion of a one-Higgs SO(10) model.

In section 5 we end with conclusions and prospects. A technical result required in the bulk of the text,

as well as the proof that the polynomial-based procedure, outlined in section 3, indeed reproduces the

physical Yukawa couplings are presented in the Appendix.

2 Yukawa couplings in heterotic compactification

After a brief review of heterotic compactifications and Yukawa couplings, in §2.1 we will describe how

the problem of calculating Yukawa couplings can be rephrased in terms of bundle cohomology groups.

We will also hint at our method for calculating these interactions based thereon, leaving the technical

details of the actual procedure to the following section. In addition, in §2.2, we shall describe the basic

geometrical setup of our class of Calabi-Yau manifolds and bundles.

Let us start by considering how Yukawa couplings are usually described in heterotic compactifications.

The matter fields in Calabi-Yau compactifications of heterotic string theory and M-theory descend from

the internal parts of the gauge fields and their superpartners. In the case where we have a visible

sector gauge bundle V over the Calabi-Yau threefold X taking values in a subgroup G of E8, the low

energy observable gauge group, H, is given by the commutant of G in E8. The matter fields arise in

the decomposition of the adjoint of E8 under G × H: 248 =
∑

I(R
I
G, RI

H) with RI
G and RI

H being

representations of the groups G and H respectively, indexed by I. See Table 1 for a complete list of the

decompositions of the 248 of E8 and associated cohomologies for standard heterotic theories.

The reduction ansatz for the holomorphic part of the gauge field A in 10-dimensions is, to lowest

order [20],

A =
∑

I

Ci
Iu

a
ITai + ABG . (2.1)

Here ABG is the background gauge field vacuum expectation value satisfying the hermitian Yang-Mills

equations. The first term in (2.1) gives rise to the four-dimensional matter fields Ci
I , where I is an

index running over the terms in the decomposition of 248 above, and i runs over the dimension of each

representation RI
H . The ua

I are bundle-valued harmonic 1-forms on X, taking values in the associated

representation RI
G of the bundle structure group V . Finally, the Tia are the relevant generators of the

broken part of the original E8 gauge group, that is, those broken generators that are not part of the

bundle group G. The objects of interest in this paper are the trilinear couplings between the low energy

matter fields Ci
I .

A simple expression for the superpotential Yukawa couplings has been well known for a some time
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G×H Breaking Pattern: 248→ Particle Spectrum

SU(3)× E6 (1,78)⊕ (3,27)⊕ (3,27)⊕ (8,1)

n27 = h1(V )

n27 = h1(V ⋆) = h2(V )

n1 = h1(V ⊗ V ⋆)

SU(4)× SO(10) (1,45)⊕ (4,16)⊕ (4,16)⊕ (6,10)⊕ (15,1)

n16 = h1(V )

n16 = h1(V ⋆) = h2(V )

n10 = h1(∧2V )

n1 = h1(V ⊗ V ⋆)

SU(5)× SU(5) (1,24)⊕ (5,10)⊕ (5,10)⊕ (10,5)⊕ (10,5)⊕ (24,1)

n10 = h1(V )

n10 = h1(V ⋆) = h2(V )

n5 = h1(∧2V ⋆)

n5 = h1(∧2V )

n1 = h1(V ⊗ V ⋆)

Table 1: A vector bundle V with structure group G can break the E8 gauge group of the heterotic string into a GUT

group H . The low-energy representations are found from the branching of the 248 adjoint of E8 under G×H and the

low-energy spectrum is obtained by computing the indicated bundle cohomology groups.

[8]:

λIJK ∝

∫

X
ua

I ∧ ub
J ∧ uc

K ∧ Ω̄fabc . (2.2)

We have used a “proportional to” sign here to emphasise the fact that, without knowledge of the Kähler

potential, we can not meaningfully make statements about the overall normalization. In Eq. (2.2), the

holomorphic (3, 0) form has been denoted by Ω and the fabc are constants descending from the structure

constants of E8, designed to make the above expression invariant under the bundle group G. This is

the form for these couplings in the low energy theory as given to us by direct dimensional reduction.

Naively, the evaluation of (2.2) is computationally awkward. On a given Calabi-Yau manifold, one would

have to find explicit expressions for all of the forms involved and then integrate over the manifold. For

(2, 1) matter fields in standard embedding models this has been explicitly carried out in references [2, 21].

To repeat such an explicit calculation for non-standard embedding models would be technically very

challenging and we will instead pursue a different, more algebraic approach.

2.1 Rephrasing in terms of cohomologies

The formula (2.2) has many appealing properties [8]. In particular, it is quasi-topological1 . It depends

only on the cohomology class of the 1-forms ua
I and not upon the actual representative form within that

1 Indeed, for standard embedding models, the Yukawa couplings for (1, 1) matter fields are topological and are given by

the triple intersection numbers of the Calabi-Yau manifold.
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chosen class. Indeed, taking ua
I → ua

I + Dǫa
I , for example, one sees that the change to (2.2),

∫

X
Dǫa

I ∧ ub
J ∧ uc

K ∧ Ω̄fabc , (2.3)

vanishes upon integration by parts since both the 1-forms ub and the holomorphic 3-form Ω̄ are D closed.

Given this observation, one can regard the matter fields as being represented in the formula (2.2) by

cohomology classes, and not just their harmonic representatives. This suggests that a simple description

of Yukawa couplings in terms of topological quantities exists.

To pursue this idea, we begin by rewriting the formula for the Yukawa couplings in the case where the

bundle structure group G is SU(3). We can then calculate four dimensional couplings between three 27

multiplets of E6. The relevant structure constants in this case are fabc = ǫabc and, hence, the combination

ua
I ∧ ub

J ∧ uc
Kǫabc is an SU(3) invariant harmonic 3-form. Up to an overall constant multiple there is, of

course, only one such form on a Calabi-Yau 3-fold, namely the (3, 0) form Ω. Thus we have that,

ua
I ∧ ub

J ∧ uc
Kǫabc = KIJKΩ , (2.4)

where KIJK are complex numbers. From

λIJK ∝

∫

X
ua

I ∧ ub
J ∧ uc

K ∧ Ω̄ǫabc = KIJK

∫

X
Ω ∧ Ω̄ (2.5)

we see these numbers are proportional to the desired Yukawa couplings.

Referring to Table 1 once more, we see that the families in the 27 representation of E6 can be identified

with the cohomology group H1(X,V ). Therefore, equation (2.4) defines a map that takes three of our

bundle-valued 1-forms to a harmonic 3-form valued in the trivial bundle. Now, for an SU(n) bundle V

we have that ∧nV ∼= OX , where OX is the trivial line-bundle on X. Thus, (2.4) defines a map of the

form

H1(X,V )×H1(X,V )×H1(X,V )→ H3(X,∧3V ) ∼= H3(X,OX ) ∼= C , (2.6)

where the last equivalence follows from the fact that h3(X,OX ) = 1.

The main point of this paper is that, for a large class of compactifications, when the above cohomolo-

gies are represented by certain polynomial equivalence classes, there is a mathematically natural proposal

for what the map implicit in Eq. (2.6) is. It is essentially the unique possibility and simply involves

polynomial multiplication of cohomology representatives. In the next section, we present this proposal

in detail and show that the results to which it gives rise have all of the properties one would expect.

The rigorous proof that our method for calculating Yukawa couplings does indeed reproduce the physical

formula (2.2) is somewhat technical and is thus presented in Appendix B.

A similar procedure can be applied to the case of structure group G = SU(4) and a visible gauge

group SO(10). For such models, we are interested in Yukawa couplings of the type 10 16 16, between

two families in 16 representations and a Higgs multiplet in a 10 representation of SO(10). Note that the
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absence of anti-families in our models means there are no 16 representations. From Table 1, it is clear

that families are still identified with the cohomology group H1(X,V ) while Higgs multiplets correspond

to H1(X,∧2V ). The analogue of Eq. (2.6) is then

H1(X,V )×H1(X,V )×H1(X,∧2V )→ H3(X,∧4V ) ∼= H3(X,OX) ∼= C . (2.7)

The appearance of the fourth wedge power, ∧4V , means that one has to deal with polynomials of quite

high degree in practical calculations. For this reason, it is useful to slightly reformulate the above mapping

to

H1(X,V )×H1(X,V )→ (H1(X,∧2V ))∗ ∼= H2(X,∧2V ) . (2.8)

where the final equivalence follows from Serre duality [22] , Hp(X,W ) ≃ H3−p(X,W ∗)∗, and the fact

that ∧2V ∼= ∧2V ⋆ for SU(4) bundles. Hence, instead of mapping two families and a Higgs multiplet into

a one-dimensional space of high degree we combine two families to represent an element in the Higgs

cohomology group. The relevant Yukawa couplings are then given by expressing the result in terms of a

basis of Higgs multiplets. In this case, we only need to deal with second wedge powers of V which, as we

will see, implies lower polynomial degrees.

Finally, the case where G = SU(5) can be dealt with in either of the two ways we have discussed so

far. It turns out to be computationally more efficient to follow the second approach. From Table 1 we

have three relevant multiplets, namely 10 multiplets associated to H1(X,V ), 5 multiplets associated to

H1(X,∧2V ⋆) and 5 multiplets associated to H1(X,∧2V ) (and since we are considering models without

anti-families there are no 10 representations present). This gives rise to two types of Yukawa couplings

that are schematically of the form 10 105 and 5510. The corresponding maps in cohomology are

H1(X,V )×H1(X,V ) → (H1(X,∧2V ⋆))∗ ∼= H2(X,∧2V ) (2.9)

H1(X,∧2V )×H1(X,∧2V ) → (H1(X,V ))∗ ∼= H2(X,∧4V ) (2.10)

We now need to discuss how the maps implied in (2.6), (2.8), (2.9) and (2.10) can actually be carried out

explicitly. As we will see, within our class of models provided by CICY manifolds and monad bundles, the

various cohomology groups can be represented by quotient spaces of polynomials and the maps amount

to polynomial multiplication. To explore this in detail we now briefly describe the technical arena we will

be working in - that of positive monad bundles over CICY manifolds - before we return to the problem

of calculating Yukawa couplings in §3.

2.2 The arena: positive monad bundles over CICYs

In this paper, we will focus on heterotic compactifications involving vector bundles built via the monad

construction [12]. In particular, we consider the class of positive monads2 defined over favourable CICY

2For reviews of this construction and some of its applications, see references [10, 12, 17].

7



manifolds [11]. A systematic analysis of the stability and spectrum of this class has recently been com-

pleted in [10, 13, 14, 15].

To begin, we recall that complete intersection CICY manifolds are defined by the zero loci of K

polynomials {pj}j=1,...,K in an ambient space A = P
n1 × . . . × P

nm given by a product of m projective

spaces with dimensions nr. We denote the projective coordinates of each factor P
nr by (x

(r)
0 , x

(r)
1 , . . . , x

(r)
nr ),

its Kähler form by Jr, and the kth power of the hyperplane bundle by OPnr (k). The manifold X is called a

complete intersection if the dimension of X equals the dimension of A minus the number of polynomials.

To obtain three-folds X in this way we then need
∑m

r=1 nr −K = 3.

Each of the defining homogeneous polynomials pj can be characterised by its multi-degree qj =

(q1
j , . . . , q

m
j ), where qr

j specifies the degree of pj in the coordinates x(r) of the factor P
nr in A. These

polynomial degrees are conveniently encoded in a configuration matrix














P
n1 q1

1 q1
2 . . . q1

K

P
n2 q2

1 q2
2 . . . q2

K
...

...
...

. . .
...

P
nm qm

1 qm
2 . . . qm

K















m×K

. (2.11)

Note that the jth column of this matrix contains the multi-degree of the polynomial pj. The Calabi-Yau

condition, c1(TX) = 0, is equivalent to the conditions
∑K

j=1 qr
j = nr + 1. In terms of this data, the

normal bundle N of the CICY manifold X in A can be written as

N =
K
⊕

j=1

OA(qj) . (2.12)

Here and in the following we employ the short-hand notation OA(k) = OPn1 (k1)⊗ · · · ⊗OPnr (kr) for line

bundles on the ambient space A. In the notation given above, the famous quintic hypersurface in P
4 is

denoted as “[4|5]” and its normal bundle is N = OP4(5).

CICY threefolds have been completely classified [11] and of the 7890 manifolds, 4515 are favourable,

that is, all of their Kähler forms, J , descend from those of the ambient projective space. This means that

favourable CICY manifolds defined in an ambient space with m projective factors are characterized by

h1,1(TX) = m. We will focus on these favourable CICY manifolds in the following.

A monad bundle, V , is defined by the short exact sequence

0→ V → B
f
−→ C → 0 , where

B =

rB
⊕

i=1

OX(bi) , C =

rC
⊕

j=1

OX(cj) (2.13)

are sums of line bundles with ranks rB and rC , respectively3. From the exactness of (2.13), it follows

3More generally, a monad bundle is defined as the middle homology of a sequence of the form 0 → A
m1

−→ B → C → 0.

This sequence is exact at A and C, and Im(m1) is a subbundle of B [12]. In this paper we restrict ourselves, as is often done

in the physics literature, to the case where Im(m1) vanishes. We thus recover the description (2.13).
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that the bundle V is given by

V = ker(f) . (2.14)

From the above sequence, the rank, n, of V is

n = rk(V ) = rB − rC . (2.15)

For the structure group to be SU(n) rather than U(n) we need the first Chern class of V to vanish, hence

cr
1(V ) =

rB
∑

i=1

br
i −

rC
∑

a=1

cr
a = 0 . (2.16)

The existence of sufficiently general maps f is guaranteed by demanding that cr
j ≥ bs

i ∀i, j, r, s. We can

think of f as a matrix fai of polynomials with multi-degree ca − bi. Furthermore, from Eq. (2.14), the

bundle moduli of V can be identified as the coefficients parameterizing the possible maps f (see [13] for

a discussion). The term “positive” refers to monad bundles satisfying br
i > 0 and cr

j > 0 ∀r, i, j.

For the technical details of monad bundles, including the spectrum, moduli and such properties as

slope-stability, we refer the reader to [10, 13, 14, 15]. Here we will review one feature of positive monad

bundles that will be of use to us in the following sections:

Positive monads do not give rise to anti-generations, that is, H2(X,V ) = H1(X,V ∗) = 0.

To see this, we consider dual of the monad sequence (2.13)

0→ C∗ → B∗ → V ∗ → 0 , (2.17)

which gives rise to a long exact sequence

. . .→ H1(X,B∗)→ H1(X,V ∗)→ H2(X,C∗)→ . . . . (2.18)

Now, since B and C are sums of positive line bundles both H1(X,B∗) and H2(X,C∗) are zero from

Kodaira’s vanishing theorem (see, for example, references [21, 22]) so that H1(X,V ⋆) = 0 follows imme-

diately. Hence, there are no anti-families.

With these preliminary definitions in hand we turn now to the calculation of Yukawa couplings.

3 Calculating Yukawa couplings: general procedure

We shall consider in turn the three types of theories with E6, SO(10) and SU(5) low-energy groups,

corresponding respectively to the choices of an SU(n) bundle structure group with n = 3, 4, 5. A concrete

SU(3) example will be presented in this section but, in the interests of brevity, we postpone doing the

same for the more complicated SO(10) case until the next section. We do not give a detailed SU(5)

example in this paper because the techniques are lengthy, while qualitatively the same as in the SU(3)

and SU(4) cases.
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Case Cohomologies required to vanish

E6 H1(X,B), H3(X,∧3B), H2(X,∧3B)

H1(X,∧2B ⊗ C), H2(X,∧2B ⊗ C), H1(X,B ⊗ S2C)

SO(10) H1(X,B), H1(X,∧2B), H2(X,∧2B), H1(B ⊗ C)

SU(5) H1(X,B), H1(X,∧2B), H1(X,∧4B)

H2(X,∧4B), H1(X,∧3B ⊗ C)

H2(X,∧2B), H1(X,B ⊗ C)

Table 2: List of vanishing conditions on the sums of line bundles B and C, defining the monad bundle, required for

our calculation. All conditions are automatically satisfied for positive monads, due to the Kodaira vanishing theorem.

While the idea of computing Yukawa couplings using polynomial methods is based on the sheaf-module

correspondence and should be quite general and widely applicable, the specific realisation discussed in

this paper relies on a number of vanishing properties which we summarise in Table 2. These conditions

are all automatically satisfied for positive monad bundles V , that is, when the sums of line bundles B

and C that enter the monad sequence (2.13) consist of positive line bundles only.

Given these conditions, we would like to derive polynomial representations for certain bundle coho-

mology groups and maps between them. It is useful to first discuss this problem for the main building

blocks of the monad construction, line bundles.

3.1 Polynomial representation of line bundle cohomology

We begin with the simple case of a single projective space P
n with projective coordinates x = (x0, . . . , xn)

and an associated graded ring R = C[x]. It is well-known that the sections, H0(Pn,OPn(k)) of the line

bundle OPn(k) can be identified with the degree k polynomials in R. We denote the degree k part of R

by Rk and write H0(Pn,OPn(k)) ∼= Rk.

The generalization to products of projective spaces, A = P
n1 × · · · × P

nm, is straightforward. We

denote the projective coordinates of the rth projective space by x(r) and the associated multi-graded ring

by

R = C[x(1), . . . ,x(m)] . (3.1)

Then the sections of the line bundle OA(k) can be identified with the multi-degree k polynomials in R,

so

H0(A,OA(k)) ∼= Rk . (3.2)

In our actual applications, we are of course interested in line bundles OX(k) on the CICY manifold

X ⊂ A. They can be related to their ambient space cousins via a Koszul resolution and this leads to a

method of calculating their cohomology and, in particular, their sections. The details of this argument are

given in Appendix A but the final result is rather simple. Consider the polynomial ring (3.1), associated
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to our ambient space A, and the ideal 〈p1, . . . , pK〉 ⊂ R generated by the defining polynomials pj of the

CICY manifold X. Then we can form the coordinate ring

A =
R

〈p1, . . . , pK〉
(3.3)

of the CICY manifold X, which one can think of as the space of polynomials on X. In terms of the

coordinate ring, the sections of the line bundle OX(k) are given by

H0(X,OX (k)) ∼= Ak , (3.4)

where the Ak denotes the multi-degree k part of A. This relation requires certain vanishing conditions,

as detailed in Appendix A, which are all automatically satisfied for positive line bundles. The result (3.4)

is in close analogy to its ambient space counterpart (3.2), so all that is required when dealing with line

bundles on the CICY manifold X is passing from the full polynomial ring to the coordinate ring of X.

3.2 SU(3) vector bundles and E6 GUTS

We start by considering the case of SU(3) bundles. From Table 1, the symmetry breaking pattern and

decomposition of the matter field representations is

E8 ⊃ SU(3) × E6 (3.5)

248 = (8,1) ⊕ (1,78)⊕ (3,27)⊕ (3,27) (3.6)

The (8,1) term in this decomposition is associated with the cohomology group H1(X,V ⊗V ∗) that counts

the dimension of the bundle moduli space. Furthermore, when we are dealing with positive monads, as

discussed above, anti-families in 27, corresponding to H1(X,V ∗), are absent. Hence, we are left with

families in 27 multiplets, associated with the cohomology group H1(X,V ). The only type of Yukawa

coupling is, therefore, of the form 27 27 27 and it can be calculated from the map (2.6). To do this we

require polynomial representatives for the two cohomology groups involved, namely for H1(X,V ) and

H3(X,∧3V ).

3.2.1 Polynomial representatives for families in H1(X,V )

Looking at the long exact sequence in cohomology associated to the short exact monad sequence (2.13),

we find that

0 → H0(X,V )→ H0(X,B)
f
−→ H0(X,C) (3.7)

→ H1(X,V )→ H1(X,B)→ . . . .

For stable SU(n) bundles we know that H0(X,V ) = 0. In addition, if we assume that H1(X,B) = 0, a

condition which is always satisfied for positive monads as a consequence of Kodaira vanishing, it follows
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that

H1(X,V ) ∼=
H0(X,C)

f (H0(X,B))
. (3.8)

From Eq. (3.4), both cohomology groups on the RHS can be represented in terms of the coordinate ring

A of X, so we finally have

H1(X,V ) ∼=

⊕rC

a=1 Aca

f (
⊕rB

i=1 Abi
)

. (3.9)

The map f in this quotient is induced from the monad map in (2.13). If we represent the monad map

by a matrix fai of polynomials with multi-degrees ca − bi then its action on a vector of polynomials

(qi) ∈
⊕rB

i=1 Abi
is given by

f((qi)) =

(

rB
∑

i=1

faiqi

)

∈

rC
⊕

a=1

Aca . (3.10)

This is the action of a polynomial matrix and it allows us to explicitly compute the polynomial quotient

(3.9) once the monad map f ∼ (fai) is specified. We note that the degrees of the various polynomials

involved are given by the integer vectors bi and ca that define the monad bundle (2.13).

We have obtained explicit polynomial representatives for the families and now turn to the “Yukawa

cohomology group” H3(X,∧3V ).

3.2.2 Polynomial representatives for H3(X,∧3V )

Taking the exterior power sequence associated to our monad, as described in appendix B of reference

[13], and splitting it into short exact sequences we obtain

0 → ∧3V → ∧3B → K1 → 0

0 → K1 → ∧
2B ⊗ C → K2 → 0 (3.11)

0 → K2 → B ⊗ S2C → S3C → 0 .

Here we have introduced the (co)-kernels K1 and K2.

The following pieces may be extracted from the associated long-exact sequences in cohomology.

. . . → H2(X,∧3B)→ H2(X,K1)→ H3(X,∧3V )→ H3(X,∧3B)→ 0 (3.12)

. . . → H1(X,∧2B ⊗ C)→ H1(X,K2)→ H2(X,K1)→ H2(X,∧2B ⊗ C)→ . . . (3.13)

. . . → H0(X,B ⊗ S2C)→ H0(X,S3C)→ H1(X,K2)→ H1(X,B ⊗ S2C)→ . . . (3.14)

We now assume that the following vanishing conditions

H3(X,∧3B) = 0 , H2(X,∧3B) = 0

H1(X,∧2B ⊗ C) = 0 , H2(X,∧2B ⊗ C) = 0 (3.15)

H1(X,B ⊗ S2C) = 0 ,
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are satisfied. This is automatically the case for positive monad bundles as a consequence of the Kodaira

vanishing theorem. Then one can combine the sequences (3.12), (3.13) and (3.14) to obtain,

. . .→ H0(X,B ⊗ S2C)
F
−→ H0(X,S3C)→ H3(X,∧3V )→ 0 . (3.16)

We therefore conclude that

H3(X,∧3V ) ∼=
H0(X,S3C)

F (H0(X,B ⊗ S2C))
. (3.17)

Expressing this in terms of the coordinate ring via Eq. (3.4) as before, leads to

H3(X,∧3V ) ∼=

⊕

a≥b≥c Aca+cb+cc

F
(

⊕

i,a≥b Abi+ca+cb

) . (3.18)

The map F is induced by the monad map f ∼ (fai) and, acting on a tensor of polynomials (qiab) ∈
⊕

i,a≥b Abi+ca+cb
, it can be written as

F ((qiab)) =

(

rB
∑

i=1

qi(abfc)i

)

∈
⊕

a≥b≥c

Aca+cb+cc , (3.19)

where the brackets around the indices denote symmetrization. Since h3(X,∧3V ) = h3(X,OX ) = 1 we

know that this polynomial quotient must be one-dimensional, although this is by no means obvious from

the RHS of Eq. (3.18). For the example below we will explicitly verify that this is indeed the case.

3.2.3 Computing Yukawa couplings

From Eq. (3.9) we know that families are represented by a vector of polynomials (Pa)a=1,...,rC
with multi-

degrees ca, subject, of course, to the identifications implied by having to work in the coordinate ring of X

and the quotient in Eq. (3.9). Let us pick a basis (P I
a ), in family space, where I, J,K, . . . = 1, . . . , h1(X,V )

are the family indices. We can then form all possible symmetrized products, P I
(aP

J
b PK

c) , of these polyno-

mials which are of degree ca + cb + cc. For each choice, (I, J,K), of three families, these products form

a three-index symmetric tensor (P I
(aP

J
b PK

c) ) which defines an element of
⊕

a≥b≥c Aca+cb+cc and, hence,

from Eq. (3.18), an element of the Yukawa cohomology group H3(X,∧3V ). That the polynomial degrees

match in this way is non-trivial and, of course, necessary for our method to work. We can now pick

a representative, (Qabc), consisting of polynomials with multi-degree ca + cb + cc, whose class [(Qabc)]

spans the quotient (3.18). Since we are dealing with a one-dimensional quotient, the class, [(P I
(aP

J
b PK

c) )],

defined by the product of three families, must be proportional to [(Qabc)], so that we can write

[

(P I
(aP

J
b PK

c) )
]

= λIJK [(Qabc)] . (3.20)

The complex numbers λIJK are of course the desired Yukawa couplings. Since the “comparison class”

[(Qabc)] was chosen arbitrarily this only defines the Yukawa couplings up to an overall normalization and,

of course, relative to the chosen basis in family space, as expected.
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3.2.4 A simple E6 example

Let us illustrate this procedure by a simple example on the quintic in P
4. The coordinate ring of the

quintic is given by

A =
C[x0, . . . , x4]

〈p〉
, (3.21)

where (x0, . . . , x4) are projective coordinates on P
4 and p is the defining quintic polynomial. We would

like to consider the SU(3) monad bundle defined by

0→ V → OX(1)⊕4 f
−→ OX(4)→ 0 (3.22)

which is perhaps the simplest positive monad on the quintic. Note that, in this case, the monad map f

can be represented by a vector f = (f1, . . . , f4) of four cubics in A. To make contact with the previous

general notation, this means that the vectors bi and ca are, in fact, one-dimensional and explicitly given

by b1 = b3 = b3 = b4 = (1) and c1 = (4).

From Eq. (3.9) it follows that the families are represented by the quotient

H1(X,V ) ∼=
A4

f
(

A⊕4
1

) (3.23)

of quartic polynomials by the image of four linear polynomials. On a vector (q1, . . . , q4) ∈ A⊕4
1 consisting

of four linear polynomials, the map f acts as

f((q1, . . . , q4)) =
4
∑

i=1

fiqi . (3.24)

It is easy to count the dimension of this quotient. In general, the number of degree k polynomials in n+1

variables is,

dim(C[x0, . . . , xn]k) =

(

n + k

n

)

. (3.25)

Hence, dimA4 = 70 and dimA⊕4
1 = 20. (In general, one has to correct for the fact that one is working

with the coordinate ring, rather than the ring of all polynomials. In the present case we are dividing by an

ideal generated by a quintic polynomial so that degrees Ak, where k < 5 are not affected.) For sufficiently

generic choices of polynomials fi, the map f is injective and we conclude that the quotient (3.23) has

dimension 70− 20 = 50. So we are dealing with a model with 50 families.

For the Yukawa cohomology group (3.18) we have in the present case

H3(X,∧3V ) ∼=
A12

F
(

A⊕4
9

) , (3.26)

where F acts on a vector (r1, . . . , r4) ∈ A⊕4
9 as

F ((r1, . . . , r4)) =

4
∑

i=1

firi . (3.27)
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I = 1 I = 2 I = 3

Y11I 0 0 0

Y12I 0 0 1

Y13I 0 1 0

i = 1 i = 2 i = 3

Y21I 0 0 1

Y22I 0 0 0

Y23I 1 0 0

i = 1 i = 2 i = 3

Y31I 0 1 0

Y32I 1 0 0

Y33I 0 0 0

Table 3: The array of the 273 Yukawa couplings for the E6 GUT associated to the SU(3) monad given in (3.22) on

the quintic. There are 50 families of 27 multiplets, represented by H1(X, V ); we select three of these for illustrative

purposes here, as indexed by I = 1, 2, 3. These are represented by the monomials x4

4
, x2

2
x2

3
and x2

0
x2

1
respectively (that

is, these are the normal forms of the equivalence class of polynomials representing these families). The normal form of

the comparison class in this calculation was x2

0x
2

1x
2

2x
2

3x
4

4. The monad map is given by f = (x3

0, x
3

1, x
3

2, x
3

3).

As the degrees involved exceed 5, counting polynomials to determine the dimension of this quotient is

not so simple any more. However, it is relatively straightforward to extract this information from the

relevant Hilbert series which can be computed with computer algebra packages such as Macaulay and

Singular [23, 24]. It turns out that this dimension is indeed 1, as it must be from our general arguments.

It should be noted that the computer algebra package Singular [24] is fast enough on a standard desktop

machine to perform the calculation of the Yukawa couplings between all 50 families in a matter of minutes.

A useful interface for Singular, designed for use by physicists, may be found here [25]. A sample of the

result, for a given choice of family representatives and monad map, is given in Table 3.

3.3 SU(4) vector bundles and SO(10) GUTs

Having introduced our general method of computing Yukawa couplings for the case of SU(3) bundles,

let us move on to consider the case of SU(4) bundles. From Table 1 we have the following symmetry

breaking pattern and decomposition of the matter field representations

E8 ⊃ SU(4) × SO(10) (3.28)

248 = (15,1) ⊕ (1,45)⊕ (4,16)⊕ (4,16)⊕ (6,10) . (3.29)

The (15,1) term corresponds to bundle moduli that are counted by the cohomology group H1(X,V ⊗V ∗).

As in the E6 case anti-families in (4,16) multiplets are absent for positive monads. Therefore, the relevant

Yukawa couplings are of the form 1016 16 and couple two families in 16 multiplets, associated to the

cohomology group H1(X,V ), to a Higgs multiplet in 10, associated to the cohomology group H1(X,∧2V ).

The associated Yukawa coupling can be computed by considering the map (2.8), so we need polynomial

representations for H1(X,V ) and H2(X,∧2V ).

Polynomial representatives for the families in H1(X,V ) can be worked out in exactly the same way

as for the E6 case and the result is given by Eqs. (3.9) and (3.10).
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3.3.1 Polynomial representatives for Higgs multiplets in H1(X,∧2V )

For the 10 multiplets, corresponding to H1(X,∧2V ) ≃ H2(X,∧2V ), we introduce an exterior power

sequence associated to the defining sequence of the monad, (2.13). Splitting the sequence up using the

(co)-kernel K3 we obtain the following

0 → ∧2V → ∧2B → K3 → 0

0 → K3 → B ⊗ C → S2C → 0 . (3.30)

These induce the following long exact sequences in cohomology

. . . → H1(X,∧2B)→ H1(X,K3)→ H2(X,∧2V )→ H2(X,∧2B)→ . . . (3.31)

. . . → H0(X,B ⊗ C)
F
−→ H0(X,S2C)→ H1(X,K3)→ H1(X,B ⊗ C)→ . . . . (3.32)

Thus, if H1(X,∧2B) = H2(X,∧2B) = 0, which are two of our vanishing conditions in Table 2 satisfied

for all positive monads, we have that H1(X,K3) ∼= H2(X,∧2V ). Together with the vanishing condition

H1(X,B ⊗ C) ∼= 0, again satisfied for all positive monads, this can be used in (3.32) to obtain

H1(X,∧2V ) ∼=
H0(X,S2C)

F (H0(X,B ⊗ C))
. (3.33)

From Eq. (3.4) this translates to

H1(X,∧2V ) ∼=

⊕

a≥b Aca+cb

F
(

⊕

i,a Abi+ca

) . (3.34)

The map F is induced by the monad map f and, acting on a tensor of polynomials (qia) ∈
⊕

i,a Abi+ca
,

it can be written as

F ((qia)) =

(

rC
∑

i=1

qi(afb)i

)

∈
⊕

a≥b

Aca+cb
. (3.35)

3.3.2 Computing Yukawa couplings

We would now like to compute Yukawa couplings by mapping in the way indicated in (2.8). We note that,

from Eq. (3.9), a basis in family space takes the form (P I
a ), where I, J,K, . . . = 1, . . . , h1(X,V ) are family

indices, and the polynomials are of multi-degree ca. A basis for the Higgs space (3.34) can be expressed

in terms of multi-degree ca + cb polynomials (HA
ab), where A = 1, . . . , h1(X,∧2V ) numbers the Higgs

multiplets and (ab) is a symmetrized index pair. Hence, the product of two polynomials representing

families is precisely of the right multi-degree to be interpreted as an element of the Higgs polynomial

space. We can, therefore, write
[

(P I
(aP

J
b))
]

=
∑

A

λAIJ

[

(HA
ab)
]

(3.36)

with λAIJ being the desired Yukawa couplings. An explicit example with just one Higgs multiplet will

be discussed in the next section.
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3.4 SU(5) vector bundles and SU(5) GUTs

The final case we shall consider is that of SU(5) bundles. For this case we have the following symmetry

breaking pattern and decomposition of the matter field representations (to avoid confusion we have

marked the GUT SU(5) group with a subscript GUT):

E8 ⊃ SU(5)× SU(5)GUT (3.37)

248 = (24,1)⊕ (1,24)⊕ (5,10)⊕ (5,10)⊕ (10,5)⊕ (10,5) . (3.38)

The absence of anti-generations for positive monad bundles implies that the (5,10) states in the de-

composition above are not present in the low energy spectrum as H1(X,V ∗) = 0. The relevant Yukawa

couplings are then of the two types 510 10 and 10 55 and they have to be computed from the maps (2.9)

and (2.10). This means we must have polynomial representations for H1(X,V ), H1(X,∧2V ), H2(X,∧4V )

and H2(X,∧2V ).

We start, as in the other cases, by obtaining representatives for the cohomologies associated to the

families residing in 10 multiplets. They correspond to the cohomology group H1(X,V ) and can be dealt

with in exactly the same way as the 16 multiplets in the SO(10) case and the 27 multiplets for E6.

Hence, their polynomial representatives are given by Eqs. (3.9) and (3.10).

3.4.1 Polynomial representatives for H1(X,∧2V )

Polynomial representatives for the 5 multiplets in H1(X,∧2V ) may be obtained as for the 10 multiplets

in the SO(10) case, see Section 3.3.1. However, in the present case these particular representatives are

not suitable for a calculation of Yukawa couplings following Eq. (2.10) since they do not square to the

polynomial representatives for H2(X,∧4V ), as determined below. We, therefore, have to follow a slightly

more complicated approach. As usual, we use an exterior power sequence associated to the defining

sequence of the monad. Splitting this sequence up, using the (co)-kernel K4, we obtain the two short

exact sequences

0→ ∧2V → ∧2B → K4 → 0 (3.39)

0→ K4 → B ⊗ C → S2C → 0 .

The corresponding long exact sequences in cohomology contain the parts

. . .→ H0(X,∧2B)
f1

−→ H0(X,K4)→ H1(X,∧2V )→ H1(X,∧2B)→ . . .

0→ H0(X,K4)→ H0(X,B ⊗ C)
f2

−→ H0(X,S2C)→ . . . . (3.40)
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Given that H0(X,K4) ∼= Ker(f2) it follows that f2 ◦ f1 = 0 and with the polynomial representatives

H0(X,∧2B) ∼=
⊕

i>j

Abi+bj
(3.41)

H0(X,B ⊗ C) ∼=
⊕

i,a

Abi+ca
(3.42)

H2(X,S2C) ∼=
⊕

a≥b

Aca+cb
(3.43)

we have the complex
⊕

i>j

Abi+bj

f1

−→
⊕

i,a

Abi+ca

f2

−→
⊕

a≥b

Aca+cb
. (3.44)

On polynomial tensors (Qij) and (qia) the two maps above act as

f1((Qij)) =





∑

j

faiQij



 , f2((qia)) =

(

∑

i

qi(afb)i

)

, (3.45)

which confirms explicitly that f2 ◦ f1 = 0. The desired bundle cohomology H1(X,∧2V ) is now given, if

H1(X,∧2B) = 0, by the cohomology of the above complex, that is,

H1(X,∧2V ) ≃
Ker(f2)

Im(f1)
. (3.46)

3.4.2 Polynomial representatives for H2(X,∧4V )

Let us now obtain an appropriate polynomial description for the 10 multiplets in H2(X,∧4V ) as required

for calculating the 10 55 Yukawa couplings from Eq. (2.10). Consider the exterior power sequence of the

monad exact sequence, split by introducing (co)-kernels K5,K6 and K7.

0→ ∧4V → ∧4B → K5 → 0 (3.47)

0→ K5 → ∧
3B ⊗ C → K6 → 0 (3.48)

0→ K6 → ∧
2B ⊗ S2C → K7 → 0 (3.49)

0→ K7 → B ⊗ S3C → S4C → 0 (3.50)

For our argument we require the following parts of the associated long exact sequences.

. . . → H1(X,∧4B)→ H1(X,K5)→ H2(X,∧4V )→ H2(X,∧4B)→ . . . (3.51)

. . . → H0(X,∧3B ⊗C)
f3

−→ H0(X,K6)→ H1(X,K5)→ H1(X,∧3B ⊗C)→ . . . (3.52)

0 → H0(X,K6)→ H0(X,∧2B ⊗ S2C)
f4

−→ H0(X,K7)→ . . . (3.53)

0 → H0(X,K7)→ H0(X,B ⊗ S3C)→ H0(X,S4C)→ . . . (3.54)

From our vanishing assumptions, which we remind the reader are automatically satisfied by the pos-

itive monads, H1(X,∧4B) = H2(X,∧4B) = 0 and, hence, the first of these sequences implies that
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H2(X,∧4V ) ∼= H1(X,K5). The last two sequences tell us that H0(X,K6) injects into H0(X,∧2B⊗S2C)

and H0(X,K7) injects into H0(X,B ⊗ S3C). Introducing the polynomial representatives

H0(X,∧3B ⊗ C) ∼=
⊕

i>j>k,a

Abi+bj+bk+ca
(3.55)

H0(X,∧2B ⊗ S2C) ∼=
⊕

i>j,a≥b

Abi+bj+ca+cb
(3.56)

H0(X,B ⊗ S3C) ∼=
⊕

i,a≥b≥c

Abi+ca+cb+cc
, (3.57)

we can therefore combine (3.52)–(3.54) to form the complex
⊕

i>j>k,a

Abi+bj+bk+ca

f3

−→
⊕

i>j,a≥b

Abi+bj+ca+cb

f4

−→
⊕

i,a≥b≥c

Abi+ca+cb+cc
. (3.58)

On polynomial tensors (Qijka) and (qijab) the above maps f3 and f4 acts as

f3((Qijka)) =
∑

k

Qijk(afb)k , f4((qijab)) =
∑

j

qij(abfc)j . (3.59)

As before, the desired cohomology H2(X,∧4V ) is given, if H1(X,∧3B ⊗ C) = 0, by the cohomology of

this complex, that is,

H2(X,∧4V ) ∼=
Ker(f4)

Im(f3)
. (3.60)

3.4.3 Polynomial representatives for H2(X,∧2V )

Finally, we require polynomials to represent the 5 multiplets in H2(X,∧2V ), to calculate the 510 10

Yukawa couplings from Eq. (2.9). We once again consider the long exact sequence in cohomology induced

by (3.39). This contains the following pieces:

. . . → H1(X,∧2B)→ H1(X,K4)→ H2(X,∧2V )→ H2(X,∧2B)→ . . . (3.61)

. . . → H0(X,B ⊗C)
f5

−→ H0(X,S2C)→ H1(X,K4)→ H1(X,B ⊗ C)→ . . . (3.62)

Given the vanishing assumptions H1(X,∧2B) = H2(X,∧2B) = H1(X,B ⊗ C) = 0, which are automat-

ically satisfied for positive monads, the first of these sequences implies that H2(X,∧2V ) ∼= H1(X,K4).

Using this in the second sequence leads to

H2(X,∧2V ) ∼=
H0(X,S2C)

f5 (H0(X,B ⊗ C))
. (3.63)

Written in terms of polynomial representatives this means

H2(X,∧2V ) ∼=

⊕

a≥b Aca+cb

f5

(

⊕

i,a Abi+ca

) . (3.64)

On polynomial tensors (qia) the map f5 acts as

f5((qia)) =

(

∑

i

qi(afb)i

)

. (3.65)
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3.4.4 Computing Yukawa couplings

We begin by summarising the polynomial representations for the various multiplets. For the families in

10 multiplets we have a basis of polynomials (P I
a ) with multi-degrees ca, where I, J · · · = 1, . . . , h1(X,V ),

as before. From Eq. (3.64), 5 multiplets are represented by multi-degree ca +cb polynomials (HA
ab), where

A,B, · · · = 1, . . . , h1(X,∧3V ⋆) and (ab) is a symmetric index pair. Eq. (3.46) shows that 5 multiplets can

be represented by polynomials (H̄Ā
ia) of multi-degree bi+ca, where Ā, B̄, · · · = 1, . . . , h1(X,∧2V ). Finally,

from Eq. (3.60) we have an alternative polynomial representation for the families in 10 by multi-degree

bi + bj + ca + cb polynomials (P̃ I
ijab), where (ij) is an anti-symmetric and (ab) a symmetric index pair.

Given these polynomial representatives, the 510 10 Yukawa couplings λAIJ and the 10 55 Yukawa

couplings λIĀB̄ can be computed from

[

(P I
(aP

J
b))
]

=
∑

A

λAIJ

[

(HA
ab)
]

(3.66)

[

(H̄Ā
[i|(aH̄

B̄
|j]b))

]

=
∑

I

λIĀB̄

[

(P̃ I
ijab)

]

. (3.67)

This concludes our general discussion. We now move on to give a comprehensively worked example of

some physical interest in the SO(10) case.

4 An example: One Higgs multiplet and one heavy family

4.1 The model

As in our previous example, in section 3.2.4, we consider the quintic in P
4. The coordinate ring is given

by

A =
C[x0, . . . , x4]

〈p〉
, (4.1)

where (x0, . . . , x4) are the projective coordinates on P
4 and p is the defining quintic polynomial. In this

section, we will consider the following monad on the quintic.

0→ V → OX(1)⊕7 f
−→ OX(2)⊕2 ⊕OX(3)→ 0 . (4.2)

This short exact sequence defines an SU(4) bundle and thus we are discussing an SO(10) GUT theory

as in §3.3. The Yukawa couplings we shall calculate for this model are thus of the form 10 1616. The

monad map f can be written as f = (f1i, f2i, f3i), where i = 1, . . . , 7 runs over the seven OX(1) line

bundles and f1i, f2i are degree one polynomials in A while f3i are degree two polynomials. From the

general discussion in §3.3 it follows that the families in H1(X,V ) can be represented by polynomials as

H1(X,V ) ∼=
A⊕2

2 ⊕A3

f
(

A⊕7
1

) . (4.3)
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Given that dimA2 = 15, dimA3 = 35 and dimA1 = 5, and choosing the map f sufficiently general so it is

injective, it follows that this model has 30 families. From Eq. (3.34), the Higgs multiplets in H1(X,∧2V )

can be represented by

H1(X,∧2V ) ∼=
A⊕3

4 ⊕A⊕2
5 ⊕A6

F
(

A⊕14
3 ⊕A⊕7

4

) , (4.4)

where the map F has been defined in Eq. (3.35). If we write polynomials in the denominator of this

quotient as (q(3)i, q̃(3)i, q(4)i)
T , where i = 1, . . . , 7 and the first index indicates the polynomial degree,

and polynomials in the numerator as (Q(4)1, Q(4)2, Q(5)1, Q(4)3, Q(6), Q(5)2)
T , with the first index again

indicating the polynomial degree, then this map can be explicitly written as

F









q(3)i

q̃(3)i

q(4)i









=

























Q(4)1

Q(4)2

Q(5)1

Q(4)3

Q(6)

Q(5)2

























=

























f1i 0 0
1
2f2i

1
2f1i 0

1
2f3i 0 1

2f1i

0 f2i 0

0 0 f3i

0 1
2f3i

1
2f2i

































q(3)i

q̃(3)i

q(4)i









. (4.5)

We note that this is a 6 × 21 matrix of polynomials. We can use this explicit map to compute the

dimension of the quotient (4.4). For generic choices of the monad map f it turns out that this dimension

is zero, so there are no Higgs multiplets. This confirms the general result, found in references [10, 13],

that h1(X,∧2V ) = 0 at a generic point in bundle moduli space. This generic case is of course of no

interest in our context since Yukawa couplings of the form 1016 16 are not present.

4.2 Engineering Higgs multiplets

To arrive at physically more interesting cases we have to understand how to engineer models with one (or

possibly more than one) Higgs multiplet. This is typically not easy from a technical point of view and it

was a particular challenge in the effort to find the exact MSSM spectrum from heterotic compactifications

based on elliptically-fibered Calabi-Yau manifolds [26, 27]. In the present framework, it is at least

straightforward to state what needs to be done in principle. We need to make special choices for the

polynomials defining the monad map f in such a way that the induced map F in Eq. (4.5) leads to

dimension-one quotient (4.4). At the same time, f still has to be sufficiently general so that V , as defined

by the monad short exact sequence, is indeed a bundle rather than merely a sheaf.

To examine this in detail we can consider F as a map between modules F : A(−3)⊕14⊕A(−4)⊕7 −→

A(−4)⊕3⊕A(−5)⊕2⊕A(−6) and then examine the Hilbert function of Coker(F ) at degree zero. As stated

above, for generic choices of f , that is, at generic points in bundle moduli space, the Hilbert function at

degree zero vanishes. Another way of stating the same fact is that the Hilbert functions of the ideals

〈f1i〉 , 〈f2i, f1i〉 , 〈f3i, f1i〉 , 〈f2i〉 , 〈f3i〉 , 〈f3i, f2i〉 . (4.6)
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of the Calabi-Yau’s coordinate ring, that correspond to the images of the matrix rows in (4.5), are each

individually zero at the appropriate degrees, that is at degrees (4, 4, 5, 4, 6). This suggests a simple way

of engineering one Higgs multiplet. Rather than dealing with the full complication of the map (4.5)

and its associated Hilbert function, we can focus on one row and produce a dimension one entry at the

appropriate degree of the associated ideal, while keeping the dimensions zero for all other ideals. In

particular, we can specialise the polynomials f1i so that the ideal 〈f1i〉 has dimension one at degree 4.

Since all of the other ideals depend on polynomials other than f1i, one finds, upon doing this, that the

Hilbert function for the remaining ideals can be kept zero at the appropriate degrees. As a result, the

dimension of the quotient (4.4) is one and we have engineered an example with one Higgs multiplet.

We still have to check that there exists a choice for f along the above lines that defines a bundle

rather than just a sheaf. To do this we consider the explicit example

f1i = (40x3 + 94x4, 117x3 + 119x4, 449x3 + 464x4 + 266x0 + 195x1 + 173x2,

306x2, 273x3, 259x3 + 291x4, 76x3 + 98x2) , (4.7)

with the remaining polynomials in f being left generic. This choice has been engineered in the way

described above and it can be verified that it indeed leads to precisely one Higgs multiplet. In addition,

one can check that the locus in P
4 where the polynomial matrix f degenerates (that is, where its rank is

not maximal) does not intersect a sufficiently general quintic and, hence, leads to a bundle on the quintic

(although not to a bundle on P
4).

4.3 The mass matrix

We now wish to calculate the Yukawa couplings in this class of examples with one Higgs multiplet. To

do so we first pick 30 family representatives P I = (P I
1 , P I

2 , P I
3 ) ∈ A⊕2

2 ⊕A3 whose associated classes form

a basis of (4.3). Further we choose a Higgs representative H = (H1, . . . ,H6) ∈ A⊕3
4 ⊕ A⊕2

5 ⊕ A6 whose

class spans the one-dimensional space (4.4). The Yukawa couplings then follow from Eq. (3.36) and form

a symmetric matrix λIJ . Given that we do not know the matter field kinetic terms, the only physically

significant property of this matrix is its rank. It turns out, with the map (4.7) this rank is precisely one.

The monad in (4.2) gives rise to one massive family in four dimensions at the point specified

by (4.7) in its bundle moduli space.

In fact, this structure is somewhat more generic. Let us consider, more generally, an SO(10) model with

a basis {PA} of F ≡
⊕

a Aca , such that {PI} ⊂ {PA} is a set of family representatives and a single Higgs

multiplet represented by H ∈ H ≡
⊕

a≥b Aca+cb
. Note that H = S2F , so the symmetric tensor products

{PA ⊗S PB} form a basis of H and we can introduce a hermitian scalar product, 〈 · , · 〉, on H such that

this basis is orthonormal. From Eq. (3.36) it then follows that the Yukawa matrix is given by the scalar

product λIJ ∼ 〈PI ⊗S PJ ,H〉. The Higgs representative H can, of course, always be written as a linear
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combination H =
∑

A,B HABPA ⊗S PB . Inserting this into the above scalar product expression for the

Yukawa couplings one finds that

λIJ ∼ HIJ . (4.8)

This means, in a case where the Higgs representative can be expressed in terms of the family represen-

tatives, so that H =
∑

I,J HIJPI ⊗S PJ , the Yukawa matrix and the matrix representing the Higgs are

proportional. In particular, their rank has to be the same. The method of engineering models with one

Higgs multiplet described above typically leads to a Higgs representative which can be written as the

square of a vector vI , that is H =
∑

I,J vIvJPI ⊗S PJ
4. This can be seen as follows.

Let us choose a Higgs representative by taking a so called “normal form” of a sufficiently generic

linear combination of terms,
∑

A,B cA,BPA ⊗S PB where cA,B are some randomly generated coefficients.

We take this normal form by performing the Buchberger Algorithm [28, 29] on the linear combination

relative to the module generated by the map polynomials defining the one dimensional class (4.4). Given

our method of engineering a single Higgs, as discussed in the previous sub-section, the resulting Higgs

representative will be of the form
(

Q(4)1, 0, 0, 0, 0, 0
)T

. An inspection of the Buchberger algorithm [28, 29]

reveals that Q(4)1 in this expression will be a single monomial. It is in fact the “lagging monomial” of

degree four that is not in the ideal 〈f1i〉. That is, it is the degree four monomial that is lowest according

to the monomial ordering used in the Buchberger algorithm, which does not appear as an element of

〈f1i〉 ⊂ A. If this lagging monomial is a square, then clearly our Higgs representative is the square of a

family representative. This is always the case for the type of example considered in Sections 4.1 and 4.2.

The f1i are all linear polynomials for the monad given in (4.2). Given this, the lagging monomial is some

variable to the fourth power and H = c (x2
i , 0, 0)

T ⊗S (x2
i , 0, 0)

T for some i and some constant c.

As a result, the matrix associated to the Higgs representative and, hence, the Yukawa matrix has

rank one. We see that there is a close relation between our method for engineering one-Higgs models and

obtaining precisely one heavy family. In conclusion we can state the following.

A model in which one Higgs is engineered in the manner described in §4.2 will generically

have one heavy family.

5 Conclusions

In this paper we have introduced a simple algorithm for calculating Yukawa couplings in a wide class

of heterotic models. The compactifications we have considered are on smooth Calabi-Yau spaces and

are not restricted to the standard embedding. The methods can be used to calculate Yukawa couplings

for a large class of bundles on complete-intersection Calabi-Yau manifolds. Such a systematic procedure

for non-standard embedding models has not been presented in the literature before and, we believe,

constitutes substantial advance.

4We would like to thank Tony Pantev for very helpful comments on this point.
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The key to our methodology is to obtain polynomial representatives for family and other relevant

multiplets whose degrees are compatible with one another. In practice, this requires finding polynomial

representatives for various cohomology groups whose degrees are such that our procedure of polynomial

multiplication and reduction to normal form may be carried out. Because of the simple, algebraic, nature

of the resulting algorithm, the calculations can be carried out on a computer and we have done this in

the text for a number of concrete examples.

We should stress again that we have calculated the superpotential contributions to the Yukawa cou-

plings. The Kähler potential for the matter fields remains an unknown quantity in these non-standard

embedding models. Nevertheless we have shown how some physically relevant information can be ex-

tracted from our results by focusing on quantities, such as the rank in the case of a Yukawa matrix, which

are unaffected by the choice of basis in family space.

The final example, presented in section 4, demonstrates the power of these methods. This is an

example of a smooth Calabi-Yau compactification leading to an SO(10) GUT. We have shown how one

may isolate loci in bundle moduli space where the model has precisely one Higgs multiplet, residing in

the 10 representation. Our approach based on polynomial representatives makes this conceptually rather

simple and merely requires making specific choices for the polynomials defining the bundle. In practice,

it is not always straightforward to find these but we have described a simple method to engineer viable

cases.

We have then shown that the structure of this one-Higgs model leads to a Yukawa matrix of rank one,

and so to precisely one massive family. Moreover, the relation between our method of engineering one

Higgs multiplet and obtaining one massive family seems to be more general, an observation which might

be important for building heterotic models with a phenomenologically viable pattern of fermion masses.

While our method of computing Yukawa couplings by multiplying polynomial representatives has

been presented in the context of a particular class of models, the underlying mathematical structure –

the sheaf-module correspondence – is quite general and we expect related methods to work for other

Calabi-Yau and bundle constructions. This work should be of considerable utility in checking conclusions

about the vanishing of Yukawa couplings resulting from the research presented in references [30, 31].

Eventually, one would like to calculate Yukawa couplings in the context of more realistic models, where

the GUT symmetry is broken due to Wilson lines. We expect that the methods described in this paper

can be readily applied to such models, basically by projecting onto the various equivariant sub-spaces of

the cohomology groups involved.
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Appendices

A Koszul Complex and Polynomial Representatives

In this appendix we justify the relation (3.4) between sections of line bundles on a CICY manifold and

its coordinate ring. First let us recall the general set-up and the notation. We work in an ambient space

A = P
n1 × · · · × P

nm with projective coordinates (x(1), . . . ,x(m)). Line bundles on A are denoted by

OA(k) = OPn1 (k1)⊗ · · · ⊗ OPnm (km), where k = (k1, . . . , km). The associated ring

R = C[x(1), . . . ,x(m)] (A.1)

is multi-graded by an m-dimensional grade vector k = (k1, . . . , km) where kr specifies the degree in the

projective coordinates x(r) of P
nr . The multi-degree k part of R is denoted by Rk. Sections H0(X,OA(k))

of the line bundle OA(k) can be represented by polynomials of multi-degree k in R, so we write

H0(X,OA(k)) ∼= Rk . (A.2)

A co-dimension K CICY manifold X ⊂ A is defined as the zero locus of homogeneous polynomials

p1, . . . , pK and we denote the normal bundle of X in A by N . We define line bundles on X by restricting

ambient space line bundles, that is OX(k) ≡ OA(k)|X . Moreover, we assume that the CICY manifold is

“favourable”, that is, all line bundles on X are obtained in this way. The coordinate ring of X is given

by

A =
R

〈p1, . . . , pK〉
, (A.3)

and it inherits the multi-grading from R. We denote by Ak the multi-degree k part of A.

For the purpose of this appendix, we focus on line bundles L = OA(k) and their counterparts L =

OX(k) on X which satisfy the vanishing conditions 5

Hq(∧κN ⋆ ⊗ L) = 0 (A.4)

for q > 0 and κ = 0, . . . ,K. We note that, as a consequence of Kodaira’s vanishing theorem applied to

line bundles L on the ambient space A, all positive line bundles fall into this class. Provided the above

5This can be slightly weakened without changing the result of this appendix. In fact we require the vanishing conditions

stated in Table 4.
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Hq−1(A,∧qN ∗ ⊗ L) = 0 ∀ 2 ≤ q ≤ K − 1 , Hq−2(A,∧qN ∗ ⊗ L) = 0 ∀ 3 ≤ q ≤ K − 1 ,

Hq(A,∧qN ∗ ⊗ L) = 0 ∀ 2 ≤ q ≤ K − 2 , Hq−1(A,∧qN ∗ ⊗ L) = 0 ∀ 3 ≤ q ≤ K − 2 ,

HK−1(A,∧KN ∗ ⊗L) = 0 , HK−2(A,∧KN ∗ ⊗ L) = 0 ,

Hq(A,∧qN ∗ ⊗ L) = 0 ∀ 1 ≤ q ≤ K − 1 ,

Hq+1(A,∧qN ∗ ⊗ L) = 0 ∀ 1 ≤ q ≤ K − 2 ,

HK(A,∧KN ∗ ⊗ L) = 0 .

Table 4: The cohomology conditions that must be satisfied in order for the conclusions of Appendix A to hold.

vanishing conditions are satisfied we want to show that

H0(X,L) ∼= Ak . (A.5)

It is instructive to first do this for co-dimension one CICY manifolds, that is, for K = 1, before

embarking on the general case. For K = 1 the Koszul resolution of L is given by the short exact sequence

0→ N ⋆ ⊗ L
·p
−→ L → L→ 0 , (A.6)

where ·p denotes multiplication by the defining polynomial p of X. This leads to the long exact sequence

0 → H0(A,N ⋆ ⊗ L)
p
−→ H0(A,L)→ H0(X,L)

→ H1(A,N ⋆ ⊗ L) −→ . . . . (A.7)

Since H1(A,N ⋆ ⊗ L) = 0 from the above vanishing assumptions one concludes that

H0(X,L) ∼=
H0(A,L)

p (H0(A,N ⋆ ⊗ L))
. (A.8)

Combining this with Eq. (A.2) the desired statement (A.5) follows immediately.

We now proceed to the case of general co-dimension K. While the basic structure of the argument

remains unchanged from the K = 1 case a technical complication arises because the Koszul sequence

0→ ∧KN ⋆ ⊗ L → ∧K−1N ⋆ ⊗ L → · · · → ∧κN ⋆ ⊗ L → · · · → N ⋆ ⊗ L → L → L→ 0 (A.9)

is no longer short. A simple way of dealing with this is to break the sequence up into short exact sequences

0 → ∧KN ⋆ ⊗ L → ∧K−1N ⋆ ⊗ L → CK−1 → 0
...

0 → Cκ+1 → ∧κN ⋆ ⊗ L → Cκ → 0
...

0 → C1 → L → L → 0 ,

(A.10)
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introducing co-kernels C1, . . . , CK−1. Here, we have κ = 1, . . . ,K − 2 in the middle sequence. From our

vanishing condition, the first of these sequences implies that Hq(A, CK−1) = 0 for all q > 0. Further,

from the long exacts sequence associated to the middle sequence above and the vanishing conditions it

follows that Hq−1(A, Cκ) ∼= Hq(A, Cκ+1) for κ = 1, . . . ,K − 2 and q = 2, . . . K + 3. Together, this means

that H1(A, Cκ) = 0 for κ = 1, . . . ,K − 1 and, hence, the long exact sequences associated to (A.10) all

break after three terms. This leads to the recursion relations

H0(X,L) ∼=
H0(A,L)

H0(A, C1)
(A.11)

H0(A, Cκ) ∼=
H0(∧κN ⋆ ⊗ L)

H0(A, Cκ+1)
(A.12)

H0(A, CK−1) ∼=
H0(A,∧KN ⋆ ⊗ L)

H0(A ∧K−1 N ⋆ ⊗ L)
, (A.13)

where κ = 1, . . . ,K − 2, which allow one to express H0(X,L) as a “chain of quotients”. However, since

0→ H0(A,∧KN ⋆ ⊗ L)→ H0(A,∧K−1N ⋆ ⊗ L)→ · · · → H0(A,N ⋆ ⊗ L)→ H0(A,L)→ H0(X,L)→ 0

(A.14)

is a complex it is sufficient to keep the first quotient in this chain. Hence, we have

H0(X,L) ∼=
H0(A,L)

p (H0(A,N ⋆ ⊗ L))
(A.15)

where p is the map induced by the defining polynomials p1, . . . , pK of the CICY manifold. Using the

polynomial representatives (A.2) for sections of line bundles in the ambient space this implies the desired

Eq. (A.5).

B Proof of Equivalence of Formulations

In this Appendix, as promised in the text, we give a formal mathematical proof of why calculating the

Yukawa couplings using (2.2) is equivalent to the maps in cohomology as given in Section 2.1.

B.1 Chain complexes and bicomplexes

The standard way to convert a bicomplex6 C = C·· (with horizontal differential d′ : Cp,q → Cp−1,q and

vertical differential d′′ : Cp,q → Cp,q−1 that commute) to a chain complex is to define the total complex

Tot C by setting (Tot C)n =
⊕

p+q=n Cp,q and setting the differential d : Tot C → Tot C of degree −1 to

be x 7→ d′(x) + (−1)pd′′(x) for x ∈ Cp,q. This is in accordance with the principle of signs [33] if C is the

tensor product of two chain complexes and we identify the symbols d, d′, and d′′.

6Warning: the standard definition of double complex in [35, p. 60] (see also [34, p. 174, Exer. 11] and [39, p. 8]) uses a

sign convention different from the one we use here, namely d′d′′ = −d′′d′.
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Given m ∈ Z and a chain complex B define the shifted chain complex B[m] by setting B[m]p = Bm+p;

use the same differential, with no change in sign7. Similarly, given m,n ∈ Z and a bicomplex C define

the shifted bicomplex C[m,n] by setting C[m,n]p,q = Cm+p,n+q.

The formula for the differential in Tot C involves p but not q, so there is a simple isomorphism

Tot(C[0, n]) ∼= (Tot C)[n] involving just direct sums of identity maps, with no minus signs involved.

Thus, if we think of a bicomplex C as being assembled from its rows C·,q for q ∈ Z, reindexing the rows

results in shifting the total complex. If the bicomplex is zero outside the range 0 ≤ q ≤ N we will use the

pictorial notation C = [C·,0 ← C·,1 ← . . .← C·,N ] to indicate its assembly from its rows. No minus signs

are to be used when assembling a bicomplex from chain complexes and maps between them in this way.

In general, an isomorphism of chain complexes γ : Tot(C[m,n])
∼=
−→ (Tot(C))[m + n] can be defined

as (−1)mq times the identity map on the component (C[m,n])p,q = Cp+m,q+n. We omit the computation

that γ is a chain map. A careful eye can discern something of degree m moving past something of degree

q, in accordance with the principle of signs [33].

Given a map f : B → C of chain complexes we define the mapping cone8 by setting Cone f =

Cone(C ← B) = Tot[C ← B]. There are isomorphisms Cone(C ← 0) ∼= C and Cone(0 ← B) ∼= B[−1],

and the exact sequence 0 → [C ← 0] → [C ← B] → [0 ← B] → 0 of bicomplexes leads to an exact

sequence 0 → C → Cone f → B[−1] → 0 of chain complexes. Given c ∈ Cp and b ∈ Bp−1 the element

(c, b) ∈ (Cone f)p satisfies d(c, b) = (dc + (−1)p−1fb, db).

A fundamental lemma in homological algebra states that a map C → D of first quadrant bicomplexes

that is a quasi-isomorphism in each row induces a quasi-isomorphism on total complexes. The same

statement applies to a map of third quadrant bicomplexes, or when rows are replaced by columns. A

slightly stronger version, for filtered complexes, is proved in [32, Lemma 3.2]. This result is presented as

the acyclic assembly lemma in [39].

Given a short exact sequence E : 0 → A
f
−→ B

g
−→ C → 0 of chain complexes, the corresponding

map [0 ← A] → [C ← B] of bicomplexes is a quasi-isomorphism in each column, hence, according

to the lemma, A[−1] → Cone(C ← B) is a quasi-isomorphism. Its inverse in the derived category

composed with the map C → Cone(C ← B) gives a map ρ = ρE : C → A[−1] in the derived category.

We would like to compare the induced map ρ : HpC → Hp−1A with the connecting homomorphism

∂ = ∂E : HpC → Hp−1A that appears in the long exact homology sequence. Given cycles c ∈ Cp and

a ∈ Ap−1, ∂[c] = [a] means that there is an element b ∈ Bp such that gb = c and fa = db. The element

(0, b) ∈ Cone(C ← B)p+1 satisfies d(0, b) = ((−1)pgb, db) = ((−1)pc, fa), so ((−1)p−1c, 0) and (0, fa) are

homologous elements of Cone(C ← B)p, which tells us that ρ[c] = (−1)p−1[a], and thus ρ = (−1)p−1∂ on

7Warning: this sign convention differs from the standard one implied by [35, p. 72, Exercise 1] and explicitly presented

in [39, p. 9]. There the differential on B[m] is equal to (−1)m times the differential on B. Better notation for that concept,

compatible with the principle of signs [33], would be [m]B. An isomorphism [m]B
∼=
−→ B[m], also compatible with the

principle of signs, can be defined by x 7→ (−1)mpx for x ∈ Bp.
8Our definition of the mapping cone is not the usual one, see [39, p. 18, 20].
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HpC.

Now we consider longer extensions in the sense of Yoneda. Suppose we have an exact sequence

E : 0→ A→ Bn → · · · → B2 → B1 → C → 0 of chain complexes. The commutative diagram

· · · 0

��

oo 0

��

oo 0

��

oo · · ·oo 0

��

oo A

��

oo 0

��

oo · · ·oo

· · · 0oo Coo B1
oo · · ·oo Bn−1

oo Bn
oo 0oo · · ·oo

of chain complexes can be regarded as a map of chain complexes of chain complexes. The corresponding

map [0 ← . . . ← A] → [C ← B1 ← . . . ← Bn] of bicomplexes is a quasi-isomorphism in each column (by

exactness of E), hence the map A[−n] → Tot[C ← B1 ← . . . ← Bn] is a quasi-isomorphism. Its inverse

composed with the map C → Tot[C ← B1 ← . . .← Bn] gives a map ρ = ρE : C → A[−n] in the derived

category.

Suppose we have another exact sequence F : 0 → C → Pm → · · · → P2 → P1 → Q → 0 of chain

complexes, and consider the associated map ρF : Q→ C[−m]. Let E ∗ F : 0 → A→ Bn → · · · → B2 →

B1 → Pm → · · · → P2 → P1 → Q → 0 be the exact sequence obtained by splicing E to F along C;

the differential in the middle is the composite map B1 → C → Pm. The following commutative diagram

of bicomplexes, in which quasi-isomorphisms are indicated by ∼, shows that ρE∗F = ρE [−m] ◦ ρF ; the

simplicity of this formula and the absence of signs in it is a consequence of our choices above.

A[−m− n]

∼

��
C[−m]

∼

��

// [C ← B1 ← . . .← Bn][−m]

∼

��
Q // [Q← P1 ← . . .← Pm] // [Q← P1 ← . . .← Pm ← B1 ← . . .← Bn]

Now let’s decompose our original sequence E by writing it as E = E1 ∗ · · · ∗ En, where Ei : 0 →

Di → Bi → Di−1 → 0, and Dn = A, D0 = C, and Di = im(Bi+1 → Bi) for 0 < i < n. Then

ρE = ρE1
[−(n−1)]◦· · · ◦ρEn−1

[−1]◦ρEn . The resulting map Hp(ρE) : HpC → Hp−nA is thus a composite

of connecting homomorphisms, up to sign. More precisely, Hp(ρE) = Hp(ρE1
[−(n− 1)] ◦ · · · ◦ ρEn−1

[−1] ◦

ρEn) = Hp(ρE1
[−(n− 1)])◦ · · · ◦Hp(ρEn−1

[−1])◦Hp(ρEn) = Hp−n+1(ρE1
) ◦ · · · ◦Hp−1(ρEn−1

) ◦Hp(ρEn) =

((−1)p−n∂E1
) ◦ · · · ◦ ((−1)p−2∂En−1

) ◦ ((−1)p−1∂En) = (−1)(p−n)+···+(p−2)+(p−1)∂E1
◦ · · · ◦ ∂En−1

◦ ∂En =

(−1)pn+n(n+1)/2∂E1
◦· · ·◦∂En−1

◦∂En . (This result was proved in [35, Chap. V, Prop. 7.1, p. 92]. See also the

application in [35, Chap. V, Exer. 8, p. 105].) In particular, H0(ρE) = (−1)n(n+1)/2∂E1
◦ · · · ◦∂En−1

◦∂En .

Now suppose our chain complexes are bounded above and have their components drawn from an

abelian category C with enough injectives, and suppose we are studying the right derived functors RpF of a

left exact additive functor F : C → V, where V is an abelian category. A chain complex B with Bp injective

for each p is called injective. If E : · · · → C2 → C1 → C0 → . . . is a chain complex of such complexes

29



(each bounded above), then it maps (injectively) to a chain complex E′ : · · · → C ′
2 → C ′

1 → C ′
0 → . . . of

injective chain complexes (each bound above), so that for each p the map Cp → C ′
p is a quasi-isomorphism;

moreover, if E is exact, then E′ may be chosen to be exact; also, E′ may be chosen so that C ′
p = 0 for

all p with Cp = 0.9

In particular, a chain complex C maps via an injective quasi-isomorphism to an injective chain complex

C ′ (an injective resolution). We set RF (C) = F (C ′) and RpF (C) = Hp(F (C ′)), thereby extending the

usual definition of RF for objects (cohomology) of our category to chain complexes (hypercohomology).

The usual arguments that show this definition is independent of the choice of injective resolution can

be extended to cover this case. See [35, Chap. XVII] for a detailed discussion of hyperhomology and

hypercohomology. See also [34, p. 183, Exer. 17] for a discussion of resolutions of complexes.

When working with chain complexes of sheaves of abelian groups on a space X, we will use the same

notation for sheaf cohomology and for sheaf hypercohomology, writing Hp(X,C) whether C is a sheaf or

a complex of sheaves (bounded above). In this context, one may use the flasque resolution C → G(C)

constructed by Godement in [36, Chap. II, Sect. 4.3, p. 167]. The construction gives an exact functor

from sheaves to flasque resolutions of them, hence, by applying it to each sheaf in a chain complex and

then taking the total complex, it gives an exact functor from chain complexes to injective resolutions of

them.

Whether we use injective resolutions or flasque resolutions, the formula above for H0(ρE) leads to

an analogous formula on sheaf cohomology for H0(X, ρE) : H0(X,C) → Hn(X,A) as a composite of

connecting homomorphisms with a sign.

B.2 Cup products in hypercohomology of sheaves

In this section, the tensor product B ⊗ C of sheaves B and C on X may denote either: tensor product

of sheaves of abelian groups; tensor product of sheaves of R-modules, where R is a commutative ring; or

tensor product of sheaves of O-Modules, where O is a sheaf of rings on X. It is an additive functor in

each variable.

Godement’s canonical flasque resolution G(C) of a sheaf C in [36, Chap. II, Sect. 4.3, p. 167] begins

with the map η : C → G0(C) =
∏

x∈X(ix)∗Cx, where ix : {x} → X is the inclusion map. The stalk of η

at any point y ∈ X can be split by projecting onto the factor corresponding to y in the product, and that

shows η is injective. Moreover, if B is another sheaf, then B⊗ η is an injective map, for the same reason.

The second step in Godement’s construction is G1(C) = G0(coker η), and the pattern continues. Because

tensor product is always right exact, it follows that B⊗C → B⊗G(C) is a quasi-isomorphism, and that is

9We only sketch the proof. As in the construction of a Cartan-Eilenberg resolution of a chain complex, one writes the

chain complex in terms of short exact sequences with maps from the tail end of one to the start of the next. Then one

modifies the proof that the modules in a short exact sequence have injective resolutions that fit into a short exact sequence

by replacing cokernels by pushouts at a certain point. In any case, for our intended application to sheaves on a topological

space, we don’t really need this abstract formulation, because of the canonical Godement flasque resolution.
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also true when C is a chain complex of sheaves. This fact, which we may call (universal exactness), makes

cup product operations possible, as we shall now see. (Our approach differs slightly from Godement’s

original approach to cup products in [36, Chap. II, Sect. 6.1, p. 238], in that he emphasized the role of

external tensor product sheaves on X ×X. For a thorough and modern approach, see [38].)

If B and C are chain complexes, the bicomplex B ⊗ C is defined by setting (B ⊗ C)p,q = Bp ⊗ Cq.

The vertical and horizontal differentials come from those of B and C, with no signs introduced, contrary

to the standard convention [35, Chap. 4, Sect. 5].

By universal exactness of the Godement resolution, the map Tot(B ⊗ C) → Tot(G(B) ⊗G(C)) is a

quasi-isomorphism, hence the identity map on Tot(B⊗C) can be lifted to a map from Tot(G(B)⊗G(C))

to an injective resolution of Tot(B ⊗ C), unique up to homotopy. The resulting pairing Hp(X,B) ⊗

Hq(X,C) → Hp+q(X,Tot(B ⊗ C)) is the cup product in hypercohomology. If a map Tot(B ⊗ C) → D

is given, the resulting composite pairing Hp(X,B) ⊗Hq(X,C) → Hp+q(X,D) may also be called a cup

product pairing. We may also assemble these maps into a single map H∗(X,B)⊗H∗(X,C)→ H∗(X,D)

of graded groups.

Let’s examine compatibility of cup products with shifting. Composition with the map γ introduced

above gives a map Tot(B[m] ⊗ C[n]) → D[m + n] that leads to a cup product pairing Hp(X,B[m]) ⊗

Hq(X,C[n]) → Hp+q(X,D[m + n]). Identity maps can be used to compare this with the original cup

product pairing Hp−m(X,B) ⊗ Hq−n(X,C) → Hp+q−m−n(X,D), and the resulting discrepancy is the

factor (−1)mq appearing in the definition of γ.

B.3 Symmetric and exterior powers of complexes

Suppose k ≥ 0 and C is a chain complex. Let C⊗k denote the tensor product C ⊗ · · · ⊗ C of k copies of

C. The symmetric group Σk acts on C⊗k by permuting the factors, but a sign must be inserted to get an

action on Tot C⊗k, in accordance with the principle of signs [33]. Transposing adjacent factors involves a

minus sign exactly when the two factors are both of odd degree, and the total sign can be determined by

writing an arbitrary permutation as a product of adjacent transpositions. Another way of saying it that

one excises the factors of even degree, collapsing to a possibly shorter tensor product, and then takes the

sign of the residual permutation on the factors of odd degree.

To see that that works, it suffices to consider the case k = 2. Let τ : Cp ⊗ Cq → Cq ⊗ Cp denote the

(signed) transposition map defined by x ⊗ y 7→ (−1)pqy ⊗ x. If x ∈ Cp and y ∈ Cq, then τ(d(x ⊗ y)) =

τ(dx ⊗ y + (−1)px ⊗ dy) = (−1)(p+1)qy ⊗ dx + (−1)p+p(q+1)dy ⊗ x = (−1)pqdy ⊗ x + (−1)pq+qy ⊗ dx =

d((−1)pqy ⊗ x) = d(τ(x⊗ y)).

Assume for the rest of the section that we are working with coherent sheaves on a variety X over a

field of characteristic 0, and that the tensor product B⊗C of sheaves denotes tensor product of sheaves of

OX -Modules. Assume that B is a locally free finitely generated O-Module (vector bundle). Then B⊗C is

an exact functor of the sheaf C. Hence, if C is an acyclic chain complex, so is B⊗C. If C → D is a quasi-
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isomorphism, then so is B ⊗ C → B ⊗D (because being a quasi-isomorphism is determined by whether

the mapping cone is acyclic, and formation of the mapping cone commutes with tensor product by B).

Alternatively, assume that B is a chain complex of locally free sheaves, and that all our chain complexes

are bounded above. Then if C → D is a quasi-isomorphism, then so is Tot(B⊗C)→ Tot(B⊗D). Finally,

if C → D is a quasi-isomorphism of chain complexes of locally free sheaves, then Tot C⊗k → Tot D⊗k is

a quasi-isomorphism.

Now let C be a chain complex, let SkC denote the part of Tot C⊗k upon which Σk acts trivially, and

let ∧kC denote the part of Tot C⊗k upon which Σk acts by the sign of permutations. The projection

operators (1/k!)
∑

σ∈Σk
σ and (1/k!)

∑

σ∈Σk
(−1)σσ show that SkC and ∧kC appear functorially as direct

summands of Tot C⊗k. Moreover, if C → D is a quasi-isomorphism, then so are the induced maps

SkC → SkD and ∧kC → ∧kD.

Let’s compute symmetric and exterior powers of complexes of length 0 and length 1 in terms of

symmetric and exterior powers of sheaves. Suppose C is a sheaf. When suggested by the notation, we

convert C to a chain complex of length 0 by putting it in degree 0 and putting zeroes in the other positions;

thus C[m] will denote the chain complex of length 0 with C in position −m and zeroes in the other

positions. With this notation, we see that Sk(C[m]) = (SkC)[km] if m is even and Sk(C[m]) = (∧kC)[km]

if m is odd, and ∧k(C[m]) = (∧kC)[km] if m is even and ∧k(C[m]) = (SkC)[km] if m is odd. Suppose now

that C = [A
d
←− B] is a complex of length 1; recall that this notation puts A in degree 0 and B in degree

1. We wish to compute (SkC)q and (∧kC)q for q ∈ Z; for this purpose we may assume d = 0, so that

C ∼= A⊕B[−1]. Then SkC ∼= Sk(A⊕B[−1]) ∼=
⊕

p+q=k SpA⊗Sq(B[−1]) ∼=
⊕

p+q=k SpA⊗ (∧qB)[−q] ∼=
⊕

p+q=k(S
pA⊗∧qB)[−q]. The general conclusion is that (SkC)q = Sk−qA⊗∧qB, and a similar argument

shows that (∧kC)q = ∧k−qA⊗ SqB.

Suppose E : 0 → V → B → C → 0 is a short exact sequence of vector bundles. Then the map

V → [C ← B][1] is a quasi-isomorphism, and hence so are the maps SkV → Sk([C ← B][1]) and

∧kV → ∧k([C ← B][1]). In other words, we have long exact sequences

SkE : 0→ SkV → SkB → Sk−1B ⊗ C → · · · → Sk−pB ⊗ ∧pC → · · · → ∧kC → 0

and

∧kE : 0→ ∧kV → ∧kB → ∧k−1B ⊗ C → · · · → ∧k−pB ⊗ SpC → · · · → SkC → 0.

(Suppose alternatively that 0 → A → B → V → 0 is an exact sequence of vector bundles. Then we

have long exact sequences

0→ SkA→ Sk−1A⊗B → · · · → Sk−pA⊗ ∧pB → · · · → ∧kB → ∧kV → 0

and

0→ ∧kA→ ∧k−1A⊗B → · · · → ∧k−pA⊗ SpB → · · · → SkB → SkV → 0.)

For an alternative presentation of the portion of these results that hold in any characteristic, see [37,

Sect. 2]. For the case where V = 0 see the exposition in [34, p. 151, Ex. 1].
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Our goal now is to relate ρE to ρSkE. We have a commutative diagram

(H1(X,V ))⊗k //

∼=
��

Hk(X,SkV )

∼=
��

(H1(X, [C ← B][1]))⊗k // Hk(X,Sk([C ← B][1]))

(H1(X,C[1]))⊗k //

OO

Hk(X,Sk(C[1]))

OO

where the horizontal maps are obtained by iterating the cup product pairings. Let Ek = Sk if k is even,

and Ek = ∧k if k is odd. Shifting the bottom row of the diagram above yields the following diagram. The

vertical maps arise from identity maps, and the diagram commutes up to sign of (−1)((k−1)+(k−2)+···+1) =

(−1)k(k−1)/2, using our earlier computation.

(H1(X,C[1]))⊗k // Hk(X,Sk(C[1]))

(H0(X,C))⊗k //

∼=

OO

H0(X,EkC)

∼=

OO

Splicing the two diagrams together and retaining only the top and bottom rows yields the following

diagram, which commutes up to a sign of (−1)k(k−1)/2.

(H1(X,V ))⊗k // Hk(X,SkV )

(H0(X,C))⊗k //

(ρE)⊗k

OO

H0(X,EkC)

ρ
SkE

OO

The vertical maps can also be expressed in terms of connecting homomorphisms, as we have seen before.
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