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Abstract 
 

In this paper the adaptive chirplet decomposition combined with the Wigner-Ville 

transform and the empirical mode decomposition combined with the Hilbert transform 

are employed to process various nonstationary signals (strong ground motions and 

structural responses). The efficacy of these two adaptive techniques for capturing the 

temporal evolution of the frequency content of specific seismic signals is assessed. In this 

respect, two near- field and two far- field seismic accelerograms are analyzed. Further, a 

similar analysis is performed for records pertaining to the response of a 20-story steel 

frame benchmark building excited by one of the four accelerograms scaled by appropriate 

factors to simulate undamaged and severely damaged conditions for the structure. It is 

shown that the derived joint time- frequency representations of the response time 
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histories capture quite effectively the influence of nonlinearity on the variation of the 

effective natural frequencies of a structural system during the evolution of a seismic 

event; in this context, tracing the mean instantaneous frequency of records of critical 

structural responses is adopted.  

The study suggests, overall, that the aforementioned techniques are quite viable 

tools for detecting and monitoring damage to constructed facilities exposed to seismic 

excitations.  

 

Keywords: time-frequency representation; chirplets; empirical mode decomposition; 

intrinsic modes; accelerograms; nonlinear structural response; damage detection 

 

1. Introduction 
 

Transient signals encountered in earthquake engineering and structural dynamics 

are inherently nonstationary in the sense that both their frequency content and amplitude 

vary with time. Typical earthquake accelerograms exhibit a time-evolving frequency 

composition due to the dispersion of the propagating seismic waves, and a time-decaying 

intensity after a short initial period of development. Structural systems are characterized 

by their natural frequencies and modes of vibration, rendering their response to strong 

ground motions a relative resonance phenomenon. Thus, capturing the time-varying 

dominant frequencies present in a seismic accelerogram facilitates the assessment of its 

structural damage potential. Furthermore, the time histories tracing certain structural 

response quantities, such as floor displacements and inter-story drifts of a building under 

seismic excitation, are also amenable to treatment as nonstationary signals. Their 
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evolving frequency content provides valuable information about the possible level of 

global structural damage caused by the ground motion. Signals of this kind require a joint 

time- frequency analysis. 

Ordinary Fourier analysis has been used for several decades in earthquake 

engineering for representing the frequency content of seismic events. In this regard there 

are obvious limitations, since the Fourier transform can only provide an “average” 

spectral decomposition of a signal. The availability of more powerful computers, 

advances in applied mathematics [1-8], and the development of fast algorithms [7-12] 

have facilitated the application of time-frequency analysis techniques in various 

engineering fields over the past years. These techniques can be loosely divided into 

adaptive and non-adaptive. It is the intention of this paper to exploit certain adaptive 

methods for capturing the temporal variation of the frequency content of earthquake 

accelerograms and of seismic structural response signals. However, it is emphasized that 

techniques belonging to both the above categories constitute viable tools for the purpose.  

To ensure completeness and to enhance the readability of the manuscript a 

conspectus of the commonly used non-adaptive methods is first provided before focusing 

on the adaptive methods that the present study considers.    

Introduced by Gabor [13], the first and most widely used method for joint time-

frequency representation of non-stationary signals utilizes the so-called short-time 

Fourier transform (STFT) to project a signal onto a family of appropriately shifted 

(translated in time domain), and modulated (translated in frequency domain), copies of a 

constant width window function. Then the spectrogram defined by the modulus of the 

STFT squared can be interpreted as a distribution of the signal energy on the time-
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frequency plane. This gives rise to a non- adaptive analysis procedure with significant 

time- frequency resolution limitations; once the window function is chosen, the frequency 

and time resolutions are fixed for all frequency bands and all times [1,7].  

A more flexible representation of a signal with non-constant windowing can be 

achieved by the wavelet transform (WT) [2,3], which incorporates a family of oscillatory 

functions generated by appropriately shifting and scaling a single “mother wavelet” 

function of certain frequency content and of localized energy in time.  The flexibility of 

the WT stems from the scaling operation and the wave-like form of the mother wavelet: 

dilating and contracting the support of a wavelet (scaling) allows the adjustment of its 

time duration, while narrows and expands the bandwidth, respectively. The scalogram 

defined in a similar way from the WT as the spectrogram from STFT yields enhanced 

time resolution representations for short-lived high-frequency phenomena, and frequency 

resolution for long-lasting low-frequency phenomena.  

Obviously, the WT is a potent tool for analyzing and representing nonstationary 

signals in the time-frequency domain. In a recent review article by Spanos and Failla [14] 

an extensive reference list is provided citing numerous publications incorporating the 

wavelet analysis for various structural engineering and vibration applications. 

Alternatively, adaptive signal processing techniques can be adopted for 

effectively capturing local variations of a much wider variety of signals and for the 

efficient representation of signals by much fewer terms than the classic non-adaptive 

methods. In this context, the matching pursuit (MP) algorithm [9-11] for the 

decomposition of the signal on a Gaussian chirplet set of functions (Gaussian chirplet 

dictionary), and the empirical mode decomposition (EMD) which provides a case-
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specific data-driven decomposition of a signal into non predefined functions [6] are 

exclusively used in the present work. 

Chirplets can be construed as generalized wavelets, containing more “degrees of 

freedom” than a wavelet since a chirplet waveform can be induced to “shear” and 

“rotation” in the time-frequency plane, apart from translation and scaling [4,5]. In this 

case, the adaptive character of the method stems from the fact that a Gaussian chirplet set 

of functions is redundant (over-determined); not all functions of the set are necessary for 

the representation of a particular signal and thus different subsets of chirplets is chosen 

for the representation of different signals. The MP algorithm seeks the optimal unfolding 

of any signal in the time-frequency plane. More importantly, the Wigner-Ville 

distribution (WVD) of a signal decomposed by Gaussian chirplet functions [5] posses all 

the attractive mathematical properties of the WVD [1] and yields a non-negative and 

cross-term free bilinear distribution on the time-frequency plane of exceptional resolution 

[7]. Further, the WVD lends itself to mathematical manipulations that lead to important 

concepts like the mean instantaneous frequency (MIF) [7,14].  

As far as the EMD is concerned, it decomposes any signal into several 

monocomponent signals [1] extracted from the initial signal itself in the form of intrinsic 

mode functions (IMFs) [5], for which the instantaneous frequency (IF) [1,15] has 

physical meaning. Then, the MIF and the Hilbert spectrum of all IMFs can be computed 

to reach an alternative time-frequency representation of the initial multicomponent signal. 

The algorithm for the EMD is simple, iterative, and computationally demanding in the 

case of long duration signals. Flandrin et al. [16] have used EMD in stochastic analysis to 

show that it exhibits several properties which are common with the WT, as self-
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similarity, quasi-decorrelation, and variance progression. However, there is no theoretical 

definition of the decomposition in terms of analytic expressions for the IMFs which 

depend on the settings of the EMD algorithm. 

  Wang et al. [17] considered the analysis of recorded earthquake accelerograms 

via the adaptive chirplet decomposition to define a physically meaningful time and 

frequency dependent envelop function in the context of defining appropriately an 

evolutionary power spectrum. Hilbert spectra representations using IMFs have been used 

to capture the spectral characteristics of earthquake accelerograms [18-21], in structural 

damage detection [22-24], and in soil dynamics problems [25]. Many researchers have 

compared the results of the EMD versus the traditional Fourier analysis and/or non-

adaptive methods for time-frequency representation such as the WT in the light of the 

aforementioned and other applications in engineering [18,22,23,25-27].  

Since the EMD is a purely numerical semi-empirical method it seems more 

appropriate to evaluate its effectiveness for joint time-frequency representation of signals 

by comparison with numerical results obtained from other adaptive methods, like the 

adaptive chirplet decomposition. Herein, a detailed study of strong ground motions is 

conducted by means of the adaptive chirplet decomposition and the EMD, to explore 

their time-frequency representation capabilities, investigate their needed level of 

sophistication, assess their comparative efficiency and extract information related to the 

MIF as computed by both techniques. In this regard, joint time- frequency representations 

are provided in the form of the WVD and Hilbert spectra respectively for two near- field, 

and two far- field recorded seismic data [28,29], together with time-histories of the MIF. 

Furthermore, the same adaptive methods are used to extend early works such as that of 
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Roesset [30], to capture the influence of nonlinearity on the variation of the effective 

natural frequencies of a structural system during the evolution of a seismic event. For this 

purpose nonlinear, step-by-step in time, analysis is performed for a benchmark 20- story 

steel frame [28,29], excited by one of the above mentioned strong ground motions scaled 

by various factors. Appropriate numerical results for certain structural response time 

histories processed by the previously mentioned adaptive methods are given for 

undamaged and severely damaged conditions, showing that the MIF can be considered as 

a promising global structural damage detection tool.  

 

2. Mean instantaneous frequency via the adaptive chirplet decomposition  

In this section, closed formulas for the mean instantaneous frequency (MIF) and 

for the adaptive periodogram (AP) are derived by application of the Wigner- Ville 

distribution (WVD) on the decomposed signal. For the signal decomposition, Gaussian 

chirplets and the Matching Pursue (MP) algorithm are utilized.  

 

2.1 Signal decomposition: The Matching Pursue algorithm 

Consider the Gaussian function  

( )
21

24
1 t

g t e
π

⎧ ⎫−⎨ ⎬
⎩ ⎭=      (1) 

The Gaussian chirplet ( )kh t  is a four- parametered function described by the equation 

( )
( ) ( ) ( ){ }

2 2

2 24
k k

k k
k k

a t t i t t i t tk
k

ah t e e e
β

ω

π

⎧ ⎫ ⎧ ⎫− − −⎨ ⎬ ⎨ ⎬ −⎩ ⎭ ⎩ ⎭=    (2) 

This function involves scaling by the parameter αk, shifting in time and in frequency by tk 

and ωk, respectively, and linear frequency modulation by chirprate βk [4]. Note that Eq. 

(2) is deliberately given in a non-compact form, for better visualization of the four 
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successive transformations imposed on the Gaussian function. If there is no frequency 

modulation, that is βk= 0, the Gaussian chirplet becomes a Gabor atom.  

Consider a signal ( )x t  of finite energy in the time domain ( ) 2
x t  satisfying the 

condition 

( ) 2
E x t dt

∞

−∞

= < ∞∫ ,     (3) 

where E is the total energy of the signal. 

Traditional Fourier analysis utilizes the Fourier Transform (FT), defined by 

( ) ( ) i tX x t e dtωω
∞

−

−∞

= ∫ ,    (4) 

to project the signal ( )x t  onto the basis of the trigonometric (sinusoid) functions 

{ }i t

R
e ω

ω∈
. By Parseval’s theorem, the FT preserves the signal energy, and thus the 

modulus of the FT squared ( ) 2
X ω , commonly called as the energy density spectrum, 

can be viewed as a distribution of the energy of ( )x t  in the frequency domain [1]. 

Sinusoids correspond to delta functions in the frequency domain, yielding the best 

possible spectral resolution. However, they possess no localization capabilities in the 

time domain, being functions of infinite support. Thus, the energy density spectrum 

depicts the overall frequency content of a signal with the highest possible resolution, but 

provides no information about the time that each frequency component was present in the 

signal. 

Developed independently by Mallat and Zhang [9], and Qian and Chen [10], the 

matching pursue (MP) algorithm, allows the decomposition of any signal satisfying Eq. 
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(3) into a linear combination of any set of analyzing functions (dictionary) [8]. Note that 

Gaussian chirplets attain finite effective support both in the time and in frequency 

domain. They are capable of capturing the local characteristics of a signal in both 

domains and, thus, are suited for the decomposition of highly nonstationary signals. 

Employing a set (dictionary) comprising Gaussian chirplets, the MP yields the 

following decomposition of the signal ( )x t :  

( ) ( )k k
k

x t A h t=∑      (5) 

The expansion coefficients Ak are determined sequentially via successive approximations 

of the signal by orthogonal projections (inner products), on the elements of the 

dictionary. This is equivalent to the solution of the optimization problem 

( ) ( ) ( ) ( )
2

22 max , max
k k

k k k k kh h
A x t h t x t h t dt

∞

−∞

= = ∫    (6) 

First, the original signal ( ) ( )kx t x t= for k = 0 is projected on all the functions of the 

dictionary and the coefficient A0 is determined from Eq. (6). Then, the residual ( )1kx t+  is 

determined  

( ) ( ) ( )1k k k kx t x t A h t+ = −     (7) 

This procedure, described above for the original signal, is repeated for the residual 

iteratively, and the algorithm terminates when the energy of the residual reaches a desired 

predefined level that obviously characterizes the quality of the approximation.  

Note that the MP algorithm imposes no restrictions on the analyzing functions. 

Consider next unit energy functions as those of Eq. (2). That is require that 
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( ) ( )2 2
1k kh t h t dt

∞

−∞

= =∫     (8) 

Then it can be readily proved that the energy of the signal can be expressed as [14] 

( ) 2 2

0
k

k
x t A

∞

=

=∑      (9) 

showing that the previously described decomposition preserves the signal energy. 

The algorithm that was outlined by Eqs. (5)-(7) is based on a predetermined 

dictionary, whose size influences the accuracy of the signal representation. More accurate 

representations require larger dictionaries, and thus excessive computations. The efficient 

and accurate numerical implementation of the MP algorithm is an open research area. In 

the present study a refinement scheme introduced by Yin et al. [11], is adopted, which 

allows the use of a coarse chirplet dictionary for a first estimate, and then refinement of 

the analysis by a curve fitting process. 

 

2.2 Wigner-Ville distribution of the decomposed signal 

Upon expressing the signal ( )x t  as a weighted sum of chirplet functions, a 

suitable representation on the time-frequency plane must be established. In the present 

work the bilinear Wigner-Ville distribution (WVD), is chosen. The WVD of a signal 

( )x t   is defined by the equation [1] 

( ) 1 1 1, *
2 2 2

i
xWVD t x t x t e dωτω τ τ τ

π

∞
−

−∞

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ,   (10) 

and has finite support both in the time and frequency domains. In terms of the STFT, the 

signal is analyzed in this case by using a modulated and appropriately shifted window 

which coincides with the signal itself after being time-reversed at each time instant t. 

Although this interpretation is neither mathematically helpful nor what inspired the 
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inventors of the WVD, it does provide an intuitive perspective on the formulation of the 

distribution, and reveals its self-adaptive character.  

For any finite energy signal ( )x t  the WVD satisfies always the so-called marginal 

distributions of the signal [1]. That is, 

( ) ( ) ( ) ( )2 21 , ,
2 x xWVD t d x t and WVD t dt Xω ω ω ω
π

∞ ∞

−∞ −∞

= =∫ ∫ .  (11) 

From Eq. (11) it is deduced that the WVD preserves the energy of the signal.  

Further, ( )x t can be expressed in the polar form 

( ) ( ) ( )Re i tx t C t e ϕ⎡ ⎤= ⎣ ⎦ ,    (12) 

where ( )C t and ( )tϕ are the magnitude and phase, respectively. Then the first order 

conditional moment of time is expressed by the equation 

( )

( ) ( )
( ) ( )2

1 ,
2 1 ,

1 2,
2

x

xt

x

WVD t d
WVD t d t

x tWVD t d

ω ω ω
π

ω ω ω ω ϕ
πω ω

π

∞

∞
−∞
∞

−∞

−∞

= = =
∫

∫
∫

, (13) 

and defines the mean instantaneous frequency (MIF) of ( )x t , if ( )x t  is a 

multicomponent signal; and the instantaneous frequency (IF) of ( )x t , if ( )x t  is a 

monocomponent signal [1,7,15]. In Eq. (13) and hereafter the dot over a symbol denotes 

differentiation with respect to time.  

The concept of the IF is interwoven with the study of non-stationary signals; it 

serves as a tool to quantify the frequencies present in a signal at each time instant t. The 

definition of the optimal mathematical measure of the temporal change of the frequency 

content of a signal is still an open issue for the case of multicomponent signals, even 
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though it is an intuitive concept. However, in the case of monocomponent signals, the IF 

as defined in Eq. (13) is considered quite appropriate.  

Besides the aforementioned attractive mathematical properties, the WVD exhibits 

two general drawbacks.  

The first drawback is that it often attains negative values in certain regions of the 

time-frequency plane [1] rendering the physical interpretation problematic. This feature is 

inherent in every bilinear distribution satisfying the marginal distributions, as expressed 

by Eq. (11). Note however, that the Gaussian chirplet defined by Eq. (2) has the WVD  

( ) ( ){ } ( ) ( ) 2
2 1

, 2
k k kk k k

k

i t ta t t a
hWVD t e e

ω ω β

ω
⎧ ⎫⎪ ⎪⎡ ⎤− − − −⎨ ⎬⎣ ⎦− − ⎪ ⎪⎩ ⎭= ,  (14) 

which is non-negative everywhere; in this case the WVD leads to a valid time-frequency 

density function of the signal.  

The second main drawback of the WVD that in general limits its use in favor of 

the spectrogram, is the so-called cross-term interference [1,7]. It is caused by the fact that 

the WVD is non-additive. Indeed, application of the WVD in both sides of Eq. (5) yields 

( ) ( ) ( )2, , ,
k k qx k h k q h h

k k q

WVD t A WVD t A A WVD tω ω ω
≠

= +∑ ∑ ,  (15) 

where the first summation corresponds to the auto-WVD terms of the analyzing chirplet 

functions, and the second summation corresponds to their cross-WVD terms. In many 

practical cases, the latter terms, inherent in all multicomponent signals, corrupt the time-

frequency representation severely and induce poor resolution in the WVD. It is clear that 

the extent of the cross-term interference depend on the decomposition of the signal. It can 

be readily shown using the energy preservation properties of the MP and of the WVD 

that the energy of the cross-WVD terms in the above equation is zero [7]. That is,  
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( ), 0
k qk q h h

k q

A A WVD t ω
≠

=∑ .    (16) 

Thus, the cross-term free adaptive spectrogram (AS) of the decomposed signal 

( )x t  using the MP is defined as [10] 

( ) ( ) ( ){ } ( ) ( ) 2
2 1

2 2, , 2
k k kk k k

k

t ta t t a
x k h k

k k
AS t A WVD t A e e

ω ω β

ω ω
⎧ ⎫⎪ ⎪⎡ ⎤− − − −⎨ ⎬⎣ ⎦− − ⎪ ⎪⎩ ⎭= =∑ ∑  (17) 

Obviously, AS is always positive and preserves the energy of the original signal. Clearly, 

it serves as a quite effective tool of representing any signal in the joint time-frequency 

domain incorporating all the advantages of the WVD and none of its drawbacks. 

 

2.3 Mean instantaneous frequency and adaptive periodogram 

The adaptive periodogram (AP) of the analyzed signal ( )x t  can be obtained in a 

closed form using Eqs. (11) and (17). That is, 

( ) ( )
( )2

2 2
2, 2 ;

k

k k k
x x k k

k k k

aAP AS t dt A e
a

ω ω
γ βπω ω γ

γ

⎧ ⎫−⎪ ⎪∞ −⎨ ⎬
⎪ ⎪⎩ ⎭

−∞

+
= = =∑∫ .  (18) 

The MIF can be obtained as the conditional average of the WVD for a particular time t by 

combining Eqs. (11), (13) and (15). Specifically, after some algebraic manipulation one 

finds that 

( )

( )

( )( ) ( ){ }

( ){ }

2

2

2

2

1 , 22
1 ,

2

k k

k k

a t t
x k k k k k

k
t a t t

k kx
k

WVD t d A a t t e
MIF

A a eWVD t d

ω ω ω π ω βπ
ω

πω ω
π

∞
− −

−∞
∞ − −

−∞

+ −
= = =

∑∫

∑∫
.(19) 

The analytical expressions derived herein for the AP (Eq. (18)), and the MIF (Eq. (19)) 

allow for their robust computation independently of the AS. In this manner, if these are 
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indeed the only quantities of interest, the computationally-demanding determination of 

the AS can be circumvented. 

 

3. Hilbert spectrum and mean instantaneous frequency via the Empirical Mode 

Decomposition 

The Empirical Mode Decomposition (EMD) is a numerical data-driven 

algorithmic procedure for the decomposition of nonstationary signals into a finite number 

of non predefined case-specific functions, the Intrinsic Mode functions (IMFs) [6]. An 

IMF is defined in Huang et al [6] as a function which satisfies the following two 

conditions: (a) the number of the zero crossings and the number of extrema must be 

either equal or differ by one and (b) the mean value of the local minima envelope and the 

local maxima envelopes of the function must be zero. Let a signal be heuristically 

construed as a superposition of “fast” oscillations on top of “slower” oscillations. Then, 

the EMD identifies locally the fastest oscillating IMF by an iterative “sifting” procedure, 

subtracts it from the signal, and iterates on the residual [6,12,16]. Assuming that the 

energy of the final residue is negligible, the EMD yields the following decomposition of 

a finite energy signal ( )x t : 

( ) ( )
1

N

j
j

x t b t
=

=∑ ,     (20) 

where bj(t) is the jth  IMF. Associated with each IMF is the analytic signal written in 

polar form as 

( ) ( ) ( )ji t
j jz t a t e ϕ= ,     (21) 
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where ( ) ( ) ( )2 2
j j ja t b t b t= +  is the magnitude,  ( ) ( )

( )
arctan j

j
j

b t
t

b t
ϕ =  is the phase, and 

( )jb t denotes the Hilbert transform of the jth IMF [1], given by the equation 

 ( ) ( )1 j
j

b s
b t ds

t sπ
=

−∫ .     (22) 

The salient property of the IMFs is that they are monocomponent signals and 

therefore, the IF of the jth IMF at time t is appropriately defined as the derivative of the 

phase of its analytic signal [15]  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )2 2

j j j j
j j

j j

b t b t b t b t
t t

b t b t
ω ϕ

−
= =

+
.   (23) 

 By making use of Eqs. (20) and (21) the analytic signal ( )x̂ t  of the original signal 

( )x t  equals the sum of the analytic signals ( )jz t of the IMF components ( )jb t . That is 

( ) ( ) ( ) ( )

1 1

ˆ j
N N i t dt

j j
j j

x t z t a t e
ω

= =

∫= =∑ ∑ .   (24) 

Then the Hilbert spectrum of ( )x̂ t  defined as 

( )( ) ( ) ( )( )
1 1

( , ) ,
N N

x j j j j
j j

H t a t t a t tω ω δ ω ω
= =

= = −∑ ∑ ,  (25) 

constitutes a time-frequency representation of the signal ( )x t  and is an amalgamation of 

the individual Hilbert spectra of each of the analytic IMFs. 

In this case, it is natural to define the MIF as the weighted average of the IFs  

( )
ji tω  of the individual IMFs: 
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( ) ( )

( )

2

1

2

1

N

j j
j

Nt

j
j

a t t
MIF

a t

ω
ω =

=

= =
∑

∑
    (26) 

For discrete signals, a straightforward computation of the IF using Eq. (23) is 

numerically sensitive since it requires the calculation of two additional derivatives. 

Moreover, for noisy signals this approach yields IF of high variance which are not readily 

amenable to physical interpretation. Better results can be obtained by using a numerical 

differentiation method directly on the phase as given by Eq. (21), after applying a low-

pass filter to the analytic signal [31]. In this context, a fourth- order estimation  

[ ] [ ] [ ] [ ] [ ] [ ]( )1 2 8 1 8 1 2
12j j j j j jn n n n n nω ϕ ϕ ϕ ϕ ϕ= = − − − + + − +   (26) 

of the IF is adopted in the present study, and at the end-points the five- point formula 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )1 25 48 1 36 2 16 3 3 4
12j j j j j j jn n n n n n nω ϕ ϕ ϕ ϕ ϕ ϕ= = ± − + ± − ± + ± − ± (27) 

is used, following Olhede and Walden [32]. 

It is emphasized that the IMFs are obtained by the application of an empirical algorithmic 

procedure and, thus, cannot be analytically expressed. Their form depends primarily on 

the settings and assumptions adopted, that is, intermittency frequency, interpolation 

method, and stopping criteria, during the sifting operations that the EMD incorporates for 

the extraction of the IMFs from the signal [26]. Besides the original algorithm introduced 

by Huang et al. [6], there exist several other approaches in the literature regarding the 

interpolation procedure and the stopping criteria [12,16,26]. In practice, a trial and error 

procedure for the fine- tuning of these settings may not be feasible since the EMD is quite 

demanding in terms of computational power, especially for long data sequences. 
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Recently, Yan and Miyamoto [23] incorporated entropy concepts to obtain rational case- 

specific values for the stopping criteria and various thresholds featured in the EMD 

algorithm, instead of using the default values proposed by Rilling et al [12]. This 

approach increases further the computational time by an amount that in many cases is 

disproportional to the additional improvement achieved.  

The EMD algorithm and the default stopping criteria proposed in [12], were 

adopted for all the ensuing numerical analyses. Further numerical experimentation on the 

EMD would considerably increase the requisite computations to the extent of rendering 

the two methods incomparable.  

 

4. Historic accelerograms and the benchmark structural system description 

Four historic earthquake records are studied to assess the appropriateness of the 

adaptive chirplet decomposition and the EMD to provide information about the time-

frequency characteristics of ground acceleration records pertaining to major earthquake 

events. The El Centro (N-S component recorded at the Imperial Valley Irrigation District 

substation in El Centro, California, during the Imperial Valley, California earthquake of 

May 18, 1940), and the Hachinohe (N-S component recorded at Hachinohe City during 

the Takochi-oki earthquake of May 16, 1968), earthquakes have been selected as far-field 

examples. The Northridge (N-S component recorded at Sylmar County Hospital parking 

lot in Sylmar, California, during the Northridge, California earthquake of January 17, 

1994), and the Kobe (N-S component recorded at the Kobe Japanese Meteorological 

Agency (JMA) station during the Hyogo-ken Nanbu earthquake of January 17, 1995), 
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earthquakes have been chosen as near-field examples [28,29]. Fig. (1) shows the 

accelerograms of these strong ground motions. 

The potential of the adaptive chirplet decomposition and the HHT for capturing 

localized frequency content of nonlinear structural seismic responses is also examined. 

To this end, the nonlinear dynamic response of a benchmark 20-story steel frame [28,29] 

to the above accelerograms is considered. It was designed by Brandow & Johnston 

Associates for the SAC Phase II Steel Project and is part of a typical mid- to high-rise 

building which meets the seismic code for the Los Angeles, California region.  

The structural system consists of moment- resisting frames (MRFs), at the 

perimeter to engage lateral loads, and simple framing in the interior. The columns are 345 

MPa steel and the floors are composite with 248 MPa steel beams and concrete. The 

model of the building along with information regarding various structural parameters is 

shown in Fig. (2). The floors are assumed to be rigid in the horizontal plane and thus 

diaphragmatic action holds. The inertia forces are assumed to be evenly distributed on the 

two moment resistant frames. Symmetry allows an in-plane 2-D analysis of half of the 

entire building and thus only one MRF along the weak N-S direction is considered. The 

mathematic model described in Ohtori et al [28] is followed for the boundary conditions 

and the discretization of the elastic and inertia properties of the frame. The first five 

natural frequencies of the frame are 0.261, 0.753, 1.30, 1.83 and 2.40 Hz. A trilinear 

hysteresis model for structural member bending, as the one shown in Fig. (3), is adopted. 

More details on the trilinear model values considered for each member can be found in 

Ohtori et al [28]. 
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5. Numerical results: Adaptive Chirplet Spectrograms and Hilbert Spectra 

5.1 Seismic Accelerograms 

Both the MP algorithm utilizing a Gaussian chirplet dictionary, and the EMD 

algorithm have been employed to analyze the four accelerograms presented in Fig. (1). 

Adequate representations of the earthquake signals were made possible by relatively 

small numbers of terms: of order of fifty chirplet functions, and of less than ten intrinsic 

modes, in all of the cases. Further, due to the adaptive nature of the decomposition 

algorithms, the significant time-frequency characteristics of the earthquake signals were 

captured by the very first few terms. Regarding the level of sophistication of the adaptive 

chirplet decomposition, it is worth noting that the frequency modulation rate βk of the 

chirplets hk was found to be negligible, as it has been reported before [23]. Thus, a 

simpler dictionary of the three parametered Gabor atoms, instead of the four parametered 

Gaussian chirplets, can be used yielding practically the same signal expansion. This 

observation also suggests that the generation mechanisms of seismic events, the 

propagation of seismic waves through the geological formations and the potential 

influences of the surface soil layers do not produce signals whose complexity would 

justify the use of Gaussian chirplets as analyzing functions.  

Upon expanding the accelerograms into a series of chirplet functions, the WVD is 

applied to yield the desired representation of these signals on the time-frequency plane. 

Certain plots summarizing appropriate numerical results are provided in Figs. (4), (6), (8) 

and (10), corresponding to the El Centro, Hachinohe, Northridge and Kobe earthquake 

records, respectively. In the (a) plot of each figure the standard Fourier amplitude 

spectrum is given. The (b) plots display the three-dimensional cross-term free adaptive 
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chirplet spectrograms as computed by Eq. (17). In the (c) part of the aforementioned 

figures contour plots of the adaptive spectrograms are presented to provide a more 

efficient and practically useful joint time- frequency signal representation. The mean 

instantaneous frequency (MIF) is superimposed, as obtained by the newly derived Eq. 

(19), and the time histories of the accelerograms (d) are included, as well, to facilitate the 

physical interpretation.  

All surfaces shown in the (b) plots are exceptionally smooth throughout the time-

frequency plane and manifest the capacity of the Gaussian chirplets to represent the 

signals considered with adequate resolution at all frequency bands of interest. By 

comparing the corresponding (a) and (c) plots, it is obvious that the overall frequency 

content provided by the Fourier amplitude spectra can equivalently be deduced by the 

adaptive spectrograms. However, the latter capture, additionally, the evolution of the 

frequencies present at every time instant of the records which illustrates the superiority of 

a joint time-frequency analysis over the traditional Fourier analysis for earthquake 

accelerograms. As expected, the higher frequencies prevail during the “growth phase” of 

the accelerograms and then decay following a rate that is influenced by many parameters 

whose consideration is beyond the scope of the present study.  

In implementing the EMD, the basic algorithm and assumptions proposed by 

Rilling et al [12], were adopted to balance precision versus computational cost, as it has 

already been mentioned. The IMFs thus obtained yielded quite oscillating Hilbert spectra. 

Low-pass filtering of the unwrapped phase of the IMFs and their associated amplitudes 

by means of spline fitting was proved to be a necessity to achieve smoother results 

amenable to physical interpretation. In Figs. (5), (7), (9), (11), representative Hilbert 
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spectra (Eq. (24)) and estimates of the MIF (Eq. (25)) based on the intrinsic mode 

expansion are provided for the El Centro, Hachinohe, Northridge and Kobe earthquake 

records, respectively.  

As discussed earlier, the adaptive chirplet spectrogram enjoys a solid 

mathematical background, which is not the case for the Hilbert spectrum based on the 

IMFs. Evaluation of the performance of the EMD algorithm and of the smoothing 

procedure of the IMFs is attempted by a qualitative comparison of the Hilbert spectra and 

the MIF obtained by the IMFs with the corresponding adaptive spectrograms and the MIF 

obtained by the Gaussian chirplets, for the four accelerograms considered. Specifically, it 

can be seen from the figures provided, the two different types of time-frequency spectra 

are consistent in the sense that the highest spectral values are attained at almost the same 

time intervals and frequency levels. Furthermore, the trends of the temporal change of the 

MIF exhibit a close similarity, even though the IMFs yield more oscillatory MIF time-

histories.   

 

5.2 Structural response  

Inelastic time-history dynamic analysis was performed for the 20- story steel 

frame of Fig. (2) using as input the El Centro ground acceleration of Fig. (1) multiplied 

by various factors. The standard β-Newmark algorithm with the assumption of constant 

acceleration at each time step (values β=1/4, γ=1/2), was employed for the numerical 

integration in time. In this manner, the non linear behavior of the frame stemming from 

the adopted trilinear hysteresis model is properly taken into account, as described 

extensively in Ohtori et al [28].  
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The same decomposition algorithms used to analyze the seismic accelerograms 

were next applied to the lateral displacement response signals of the first floor of the 

frame under consideration as obtained by the above dynamic analysis. Herein, the 

objective was to assess the potential of both methods for providing valid joint time-

frequency representations of non linear structural responses, for capturing the influence 

of nonlinearity on the evolution of the effective natural frequencies of yielding structural 

systems during a strong ground motion, and for demonstrating the effectiveness of the 

MIF for global damage detection.  

In the case of the adaptive chirplet expansion it has been observed that a 

significantly smaller number of chirplets is required to fully describe the response signals 

than in the case of the seismic accelerograms. This is due to the fact that structural 

systems exhibit highly “resonant” transfer functions which filter the relatively broadband 

earthquake signal inputs yielding response signals characterized by the structural natural 

frequencies. Consequently, the MP algorithm readily locates the narrowband dominant 

components present in the structural response signals by assigning appropriate weights to 

the most similar analyzing functions to match efficiently these components. A Gabor 

atoms dictionary yields practically the same decomposition of the structural response 

signals as the one obtained by using Gaussian chirplets in the same way as it was noted in 

the case of the analysis of the earthquake records.  

To demonstrate the potential of the MIF as analytical damage detection tool two 

extreme cases are shown in Figs. (12) and (13) where the plots included are of the same 

kind and order as in Fig. (10). In Fig. (12) the imposed excitation is the El Centro 

accelerogram reduced by a factor of 0.5 so that the frame remains in the elastic region. In 
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Fig. (13) the El Centro accelerogram scaled by 2.50 is used as input and the frame suffers 

structural damage witnessed by permanent deformation and a large offset component in 

the Fourier spectrum. For reference purposes the first five natural frequencies of the 

elastic frame are shown on the plots.  

It is well known that structural systems forced to exhibit inelastic behavior are 

characterized by gradually reduced effective natural frequencies, due to stiffness 

degradation. Obviously, the variation in the “effective” natural frequencies of non linear 

systems is reflected on the time-dependent transfer functions they attain and thus on the 

output-response signals. In this context, the concentration of the energy of the response 

signal about the natural frequencies of the frame which decrease when the frame 

undergoes inelastic deformations can be readily seen in Figs. (12) and (13) in the 

traditional Fourier spectrum plots (a), and in the adaptive spectrograms (b), (c). 

Apparently, the joint time- frequency representation gives additional time localization 

information about the effective frequencies of the response signals and adequately 

captures their evolution in time.  

More importantly, in this case the MIF can be interpreted as a global structural 

damage indicator. The fundamental theorem of linear systems states that the spectrum of 

the output signal is equal to the product of the Fourier transform of the input signal times 

the transfer function of the system. Intuitively, for any particular effective temporal 

segment defined such that the transfer function of the structure is assumed constant, the 

MIF of the response averages this product over the frequency domain. Note that during 

the first 25 seconds of both of the response signals examined in Figures (12c) and (13c) 

the MIF oscillates about, roughly, the same mean value. It is clear that in this case the 
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MIF averages the product of the effective transfer function of the structure with the 

spectrum of the excitation. Subsequently, the 30th second approximately marks the 

effective duration of this particular input; practically the rest of the output signals 

correspond to free vibration responses. As expected, after this time instant, the MIF 

significantly decreases and remains in much lower levels for the scaled by 2.50 El Centro 

input where the frame undergoes plastic deformations. However, in the elastic case, it 

converges to a value similar to that attained at the beginning of the seismic event, since 

the dynamic characteristics of the structure remain the same.  

Prior to the application of the EMD, the response signals considered in this 

analysis were limited to a bandwidth of approximately 0-5 Hz. The same algorithm was 

applied as before and yielded again eight to ten IMFs for signal durations of 60 sec 

sampled at the Nyquist frequency. Apparently, the number of the IMFs and the 

computational cost of the EMD algorithm depend primarily on the length of the data and 

not on the frequency content of the data which was the case for the MP algorithm and 

adaptive chirplet decomposition, as was reported above. 

In Figs. (14) and (15), the Hilbert spectra of the decomposed lateral displacement 

response of the first floor for the El Centro accelerogram input scaled by 0.50 and 2.50 

are shown, respectively. The natural frequencies of the linear elastic system and the MIF 

are also superimposed. The results show that the obtained IMFs are capable of capturing 

the evolution of the natural frequencies of the structural system under consideration. 

Nevertheless, the Hilbert spectra and the temporal variation of the MIF are not as smooth, 

and amenable to physical interpretation compared to the corresponding adaptive 

spectrograms of the chirplet analysis. There is an apparent mode mixing in the sense that 
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some IMFs are “attracted” by different natural frequencies during various time intervals.  

This phenomenon can be reduced by introducing restrictions on the time interval between 

successive extreme points attained by the IMFs based on the natural frequencies of the 

analyzed system. Furthermore, additional low-pass filtering of the unwrapped phase and 

amplitude of the IMFs can be used to yield less oscillating Hilbert spectra, at the expense 

of poorer resolution. However, the later improvements require increased user/analyst 

interaction in the form of parameter adjustments, rendering often the method less 

appealing for practical purposes [27].  

 
6. Concluding remarks 

The present article has focused on the appropriateness, level of sophistication, and 

comparative efficiency of certain adaptive signal analysis techniques for time-frequency 

representation of non-stationary signals encountered in earthquake engineering problems. 

In this regard, the adaptive chirplet transform (incorporating the MP algorithm), and the 

EMD have been employed to analyze historic earthquake accelerograms and inelastic 

structural response time histories to seismic signal inputs. Signals of this nature are 

inherently non stationary as their intensity and frequency content varies with time and 

thus require a joint time- frequency representation.   

In this context, four ground acceleration records pertaining to two near-field and 

two far- field major earthquake events have been decomposed into chirplet functions and 

IMFs, and the WVD and Hilbert spectra of the decomposed signals have been obtained 

respectively. A relatively small number of analyzing functions has been found to be 

sufficient for the adequate approximation of the signals, while their main patterns and 

energy content have been captured by the very few first terms. In addition, it has been 
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found that a much simpler dictionary comprising Gabor atoms instead of Gaussian 

chirplets yields an almost identical unfolding of the seismic signals in the time-frequency 

domain and thus can be adopted to reduce the computational cost. The appropriateness of 

the time-frequency representation to capture the evolving frequency content in time, 

unlike the traditional Fourier amplitude spectrum, has been pointed out. Indeed, both 

representations can be used as stand-alone time-frequency analysis tools. Note however 

that despite the qualitative similarity of the two mathematically different representations, 

the WVD is smoother and lends itself to easier physical interpretation compared to the 

Hilbert spectrum.  

Furthermore, both adaptive methods have been applied to the lateral displacement 

response of the first floor of a 20-story steel frame exposed to one of the four 

accelerograms scaled by appropriate factors to simulate undamaged and severely 

damaged conditions for the structure. It has been found that significantly less chirplet 

functions were sufficient to fully describe the response signals, than in the case of the 

strong ground motion accelerograms, while the number of the required IMFs remained 

practically the same, suggesting that the adaptive chirplet transform is much more 

economical in terms of computational time. This observation can be attributed to the 

highly resonant filtering effect of structural systems to broadband strong ground 

excitations which facilitates the approximation of the response via chirp- type functions. 

Furthermore, this concentration of the frequency content of the response signals about the 

natural frequencies of the structure caused a characteristic mode-mixing in the IMFs 

which obscures the physical interpretation of the Hilbert spectrum. This difficulty can be 

moderated by imposing appropriate restrictions when identifying the extreme points 
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during the EMD of the signal and by further smoothing the unwrapped phase and 

amplitude of the resulting IMFs. Clearly, these measures require increased user/analyst 

interaction in the form of parameter adjustments, and may render the adaptive chirplet 

decomposition more attractive in practice vis-à-vis the EMD. 

The potential of time-frequency representations of structural response signals as a 

detection tool for global structural damage has been also pointed out. Specifically, 

attention has been focused on the temporal evolution of the mean instantaneous 

frequency. Indeed, if the structure is forced to exhibit inelastic behavior, the mean 

instantaneous frequency reduces significantly reflecting the overall decrease of the 

effective frequencies which is due to the structural stiffness degradation.  

In conclusion, the findings of the present study show that both the adaptive 

chirplet decomposition and the intrinsic modes decomposition are viable options for joint 

time-frequency analyses of seismic signals. Furthermore, considering collectively these 

two decompositions and the competing wavelet based decomposition, it is perhaps 

premature to dispute any of the three as clearly the most advantageous for earthquake 

engineering applications. 
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Figure (1): Earthquake accelerograms considered 
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Figure (2): Benchmark 20-story steel frame used in the analysis of typical mid- to high-

rise building’s response to earthquake excitations (after Spencer et al. [29]) 
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Figure (3): Trilinear hysteresis model for structural member bending 
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Figure (4): Joint time-frequency analysis of the El Centro accelerogram record via 

adaptive Gaussian chirplet expansion in conjunction with the Wigner-Ville distribution 
 

 
Figure (5): Hilbert spectrum and mean instantaneous frequency of the El Centro 

accelerogram record via Intrinsic Mode Functions 
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Figure (6): Joint time-frequency analysis of the Hachinohe accelerogram record via 

adaptive Gaussian chirplet expansion in conjunction with the Wigner-Ville distribution 
 

 
Figure (7): Hilbert spectrum and mean instantaneous frequency of the Hachinohe 

accelerogram record via Intrinsic Mode Functions 
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Figure (8): Joint time-frequency analysis of the Northridge accelerogram record via 

adaptive Gaussian chirplet expansion in conjunction with the Wigner-Ville distribution 
 

 
Figure (9): Hilbert spectrum and mean instantaneous frequency of the Northridge 

accelerogram record via Intrinsic Mode Functions 
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Figure (10): Joint time-frequency analysis of the Kobe N-S accelerogram record via 

adaptive Gaussian chirplet expansion in conjunction with the Wigner-Ville distribution 
 

 
Figure (11): Hilbert spectrum and mean instantaneous frequency of the Kobe 

accelerogram record via Intrinsic Mode Functions 
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Figure (12): Adaptive chirplet spectrogram of the first floor lateral displacement response 

to 0.50· El Centro ground acceleration input 

 
Figure (13): Adaptive chirplet spectrogram of the first floor lateral displacement response 

to 2.50· El Centro ground acceleration input 
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Figure (14): Hilbert spectra via Intrinsic Mode Functions of the first floor lateral 

displacement response to 0.50· El Centro ground acceleration input 
 

 
Figure (15): Hilbert spectra via Intrinsic Mode Functions of the first floor lateral 

displacement response to 2.50· El Centro ground acceleration input 
 


