
              

City, University of London Institutional Repository

Citation: Faria, C. F. D. M., Fring, A. & Schrader, R. (1999). Stabilization not for certain 

and the usefulness of bounds. AIP Conference Proceedings, 525, pp. 150-161. doi: 
10.1063/1.1291934 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/945/

Link to published version: https://doi.org/10.1063/1.1291934

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ar
X

iv
:p

hy
si

cs
/9

91
20

32
v1

  [
ph

ys
ic

s.
at

om
-p

h]
  1

6 
D

ec
 1

99
9

Stabilization not for certain and the
usefulness of bounds

C. Figueira de Morisson Faria,∗ A. Fring† and R. Schrader†

∗Max-Planck-Institut für Physik komplexer Systeme,

Nöthnitzer Str. 38, D-01187 Dresden, Germany
†Institut für Theoretische Physik,

Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

Abstract. Stabilization is still a somewhat controversial issue concerning its very
existence and also the precise conditions for its occurrence. The key quantity to set-
tle these questions is the ionization probability, for which hitherto no computational
method exists which is entirely agreed upon. It is therefore very useful to provide var-
ious consistency criteria which have to be satisfied by this quantity, whose discussion
is the main objective of this contribution. We show how the scaling behaviour of the
space leads to a symmetry in the ionization probability, which can be exploited in the
mentioned sense. Furthermore, we discuss how upper and lower bounds may be used for
the same purpose. Rather than concentrating on particular analytical expressions we
obtained elsewhere for these bounds, we focus in our discussion on the general princi-
ples of this method. We illustrate the precise working of this procedure, its advantages,
shortcomings and range of applicability. We show that besides constraining possible
values for the ionization probability these bounds, like the scaling behaviour, also lead
to definite statements concerning the physical outcome. The pulse shape properties
which have to be satitisfied for the existence of asymptotical stabilization is the van-
ishing of the total classical momentum transfer and the total classical displacement
and not smoothly switched on and off pulses. Alternatively we support our results by
general considerations in the Gordon-Volkov perturbation theory and explicit studies
of various pulse shapes and potentials including in particular the Coulomb- and the
delta potential.

INTRODUCTION

There is considerable interest in the high intensity regime (intensities larger
than 3.5×Wcm−2 for typical frequencies), because since the early nineties it may be
realized experimentally. The perturbative description, which was a very successful
approach in the low intensity regime, breaks down for such high intensities. Thus,
this regime constitutes a new challenge to theorists. Comparing the status of
the understanding and clarity of the description of the two regimes one certainly
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observes a clear mismatch and should probably conclude that the challenge has not
been entirely met so far. One also observes a clear imbalance between numerical
calculations and analytical descriptions.

In particular, the issue of stabilization has led to several controversies and there
are still several recent computations which are in clear contradiction to each other.
Since it is not very constructive simply to count the numbers of numerical results
which agree and those which do not1, our investigations aim at analytical descrip-
tions which unravel the physical assumptions and might serve to pinpoint possible
errors.

In view of the panel discussion at this meeting the main purpose of this con-
tribution is to summarize our findings [1-6] and in particular explain the working
and limitations of our method in the hope to dispel a few misunderstandings and
misconceptions which have occurred.

FRAMEWORK AND PHYSICAL PROPERTIES

We start by stating our physical assumptions. We consider an atom with poten-
tial V (~x) in the presence of a sufficiently intense laser field, such that it may be
described in the non-relativistic regime by the time-dependent Schrödinger equa-
tion in the dipole approximation

i
∂ψ(~x, t)

∂t
=

(
−∆

2
+ V (~x) + ~x · ~E (t)

)
ψ(~x, t) = H (~x, t)ψ(~x, t). (1)

We will use atomic units throughout this article. We take the pulse to be of the
general form

~E(t) = ~E0f(t) (2)

where f(t) is assumed to be a function whose integral over t is well behaved with
f(t) = 0 unless 0 ≤ t ≤ τ . This means τ constitutes the pulse duration, f(t)
the pulse shape function and E0 the amplitude of the pulse, which we take to be
positive without loss of generality.

Important quantities for our discussion are the total classical momentum transfer
~b(τ), the classical displacement ~c(τ) and the classical energy transfer a(τ) defined
through the relations

~b(t) =

∫ t

0

ds ~E(s), ~c(t) =

∫ t

0

ds~b(s), a (t) =
1

2

∫ t

0

ds b2 (s) . (3)

The quantity of interest, which one aims to compute, is the ionization probability
P (ϕ) defined as

1) Panel discussion at this meeting.



P (ϕ) = ‖(1 − P )U (τ, 0)ϕ‖2 = 1 − ‖PU (τ, 0)ϕ‖2 . (4)

Here P denotes the orthogonal projection in the space L2(R3) of square integrable
wave functions onto the subspace spanned by the bound states ϕ of H (~x, t = 0),
‖·‖ is the usual Hilbert space norm and the time evolution operator is defined by

U
(
t, t

′

)
≡ T [Exp(−i

∫ t

t′
H(~x, s)ds)] , (5)

with T denoting the time ordering. The question one is interested in is: How does
P(ϕ) behave as a function of E0? In particular is it possible that P(ϕ) decreases
when the field amplitude E0 increases, in other words does stabilization exist?
Quantitatively this means we should find a behaviour of the form

dP (ϕ) (E0)

dE0

≤ 0 for P (ϕ) 6= 1 (6)

with 0 ≤ E0 ≤ ∞ on a finite interval for E0. We refer to a behaviour in (6) for
the equal sign as weak stabilization and for strict inequality we call this strong
stabilization.

We stress once more that this description is entirely non-relativistic. The rel-
ativistic regime surely poses a new challenge and a full quantum field theoretical
treatment is desirable, but it should be possible to settle the question just raised
within the framework outlined above, since stabilization is not claimed to be a
relativistic effect. In particular it is not clear which consequences on the physics
in this regime one expects from a description in the form of the Klein-Gordon
equation2. Furthermore, appealing to a more formal description3 in terms of scat-
tering matrices4 instead of the time evolution operator U

(
t, t

′
)

will not shed any
new light on the question raised, unless one deals with non-trivial asymptotics.

The time-ordering in (5) poses the main obstacle for the explicit computations of
P (ϕ). To get a handle on the issue, one can first resort to general arguments which
provide analytical expressions constraining the outcome. The least such arguments
are good for is to serve as consistency checks for results obtained by other means.
This is especially useful when one has a controversy as in the case at hand. In
addition we will demonstrate that they also allow some definite statements and
explain several types of physical behaviour without knowing the exact expression
of the quantities which describe them.

CONSTRAINTS FROM SCALING PROPERTIES

More details concerning the arguments of this section may be found in [5]. Denot-
ing by λ > 0 the dilatation factor and by η the scaling dimension of the eigenfunc-

2) See contribution to the panel discussion at this meeting by F.H.M. Faisal.
3) See contributions to the panel discussion at this meeting by F.H.M. Faisal and H. Reiss.
4) For pulses of the form (2) the scattering matrix S = limt±→±∞ exp(it+H+) · U(t+, t−) ·
exp(−it−H−) and U(τ, 0) coincide in the weak sense. (see e.g. [1] for a more detailed discussion)



tion ϕ(~x) := ψ(~x, t = 0) of the Hamiltonian H (~x, t = 0), we consider the following
scale transformations5

~x→ ~x′ = λ~x and ϕ(~x) → ϕ′(~x′) = λ−ηϕ(~x) . (7)

As the only two physical assumptions we now demand that the Hilbert space norm,
i.e. ‖ϕ(~x)‖ = ‖ϕ′(~x′)‖, remains invariant and that the scaling of the wavefunction
is preserved for all times. From the first assumption we deduce immediately that
the scaling dimension has to be η = d/2 with d being the dimension of the space.

The scaling behaviour (7) may usually be realized by scaling the coupling con-
stant. Considering for instance the wavefunction ϕ(x) =

√
α exp(−α|x|) of the

only bound state when the potential in (1) is taken to be the one-dimensional
delta-potential V (x) = αδ(x), equation (7) imposes that the coupling constant has
to scale as α → α′ = λ−1α. Choosing instead the Coulomb potential in the form
V (~x) = α/r requires the same scaling behaviour of the coupling constant for (7) to
be valid. This is exhibited directly by the explicit expressions of the corresponding
wavefunctions ϕnlm(~x) ∼ α3/2(αr)l exp(−αr/n)L2l+1

n+l (2αr/n).
From the second assumption we conclude

ψ(~x, t) → ψ′(~x′, t′) = U ′(t′, 0)ϕ′(~x′) = λ−d/2ψ(~x, t) = λ−d/2U(t, 0)ϕ(~x) . (8)

Consequently this means that the time evolution operator should be an invariant
quantity under these transformations

U(t1, t0) = T
(
e−i

∫ t1
t0

H(~x,s)ds
)
→ U ′(t′1, t

′

0) = T

(
e
−i

∫ λ2t1
λ2t0

H′(~x,s)ds
)

= U(t1, t0) . (9)

Equation (9) then suggests that the scaling of the time has to be compensated by
the scaling of the Hamiltonian in order to achieve invariance. Scaling therefore the
time as

t→ t′ = ληtt , (10)

equation (9) only holds if the Stark Hamiltonian of equation (1) scales as

H (~x, t) → H ′ (~x′, t′) = ληHH (~x, t) with ηH = −ηt . (11)

The properties (10) and (11) could also be obtained by demanding the invariance of
the Schrödinger equation (1). The overall scaling behaviour of H (~x, t) is governed
by the scaling of the Laplacian, such that we obtain the further constraint

ηH = −2 . (12)

5) More formally we could also carry out all our computations by using unitary dilatation opera-
tors U(λ), such that the transformation of the eigenfunction is described by U(λ)ϕ(~x) = ληϕ′(λ~x)
and operators O acting on ϕ(~x) transform as U(λ)OU(λ)−1 = O′.



As a consequence we can read off the scaling properties of the potential as

V (~x) → V ′ (~x′) = λ−2V (~x) . (13)

Considering for instance the one-dimensional delta-potential and the Coulomb po-
tential in the forms specified above, equation (13) imposes that the coupling con-
stant has to scale as α → α′ = λ−1α in both cases. This behaviour of the coupling
constant is in agreement with our earlier observations for the corresponding wave-
functions.
We will now discuss the constraint resulting from equation (11) on the scaling
behaviour of the pulse. We directly observe that

~E (t) → ~E ′ (t′) = λ−3 ~E (t) . (14)

This equation is not quite as restrictive as the one for the potential, since in the
latter case we could determine the behaviour of the coupling whereas now a certain
ambiguity remains in the sense that we can only deduce

~E0 → ~E
′

0 = ληEo ~E0 , f (t) → f ′ (t′) = ληf f (t) , with ηE0 + ηf = −3 . (15)

Thus, under the assumptions we have made, it is not possible to disentangle the
contribution coming from the scaling of the amplitude or the pulse shape function.
However, there might be pulse shape functions for which ηf has to be 0, since
no suitable parameter, analogously to the coupling constant for the potential, is
available in its explicit form to achieve the expected scaling.

Finally, we come to the scaling behaviour of the ionization probability. Noting
that the projection operator has to be a scale invariant quantity, i.e. P → P ′ = P ,
we obtain together with (7) and (9) that the ionization probability remains an
invariant quantity under the scaling transformation

P (ϕ) = ‖(1 − P )U (τ, 0)ϕ‖2 → P ′ (ϕ′) = P (ϕ) . (16)

We have therefore established that transforming the length scale corresponds to
a symmetry in the ionization probability P (ϕ). This symmetry can be exploited
as a consistency check in various approximation methods in numerical or analytical
form as outlined in [5]. In this sense the arguments of this section are similar in
spirit to those of the next section. Nonetheless, scaling properties may also be used
to explain directly certain types of physical behaviour, as for instance the behaviour
of P (ϕ) as a function of the coupling constant (see [5]).

CONSTRAINTS FROM BOUNDS

In this section we wish to comment on the method of computing bounds which
is alternative to computing P(ϕ) exactly. This means we estimate expressions of
the form



‖(1 − P )U(τ, 0)ϕ‖2 ≤ Pu(ϕ) and ‖PU(τ, 0)ϕ‖2 ≤ 1 −Pl(ϕ) (17)

such that

Pl(ϕ) ≤ P(ϕ) ≤ Pu(ϕ) . (18)

How does this work? We can not go into all the technical details, but we would
like to illustrate the general principle of the computational steps involved. First
one should note that from a mathematical point of view there are seldom general
principles for deriving such inequalities, except for a few elementary theorems (see
e.g. [7]). Therefore the steps in the derivations very often do not always appear
entirely compelling. In mathematics, absolute inequalities, i.e. those which hold for
all real numbers, are important in analysis especially in connection with techniques
to prove convergence or error estimates, and in physics they have turned out to be
extremely powerful for instance in proving the stability of matter [8] or to establish
properties of the entropy [9].

The basic ingredients which are always exploited are the Minkowski and Hölder
inequalities

‖ψ + ψ′‖ ≤ ‖ψ‖ + ‖ψ′‖, ‖ψψ′‖ ≤ ‖ψ‖ · ‖ψ′‖, (19)

used in the form

‖ψ − ψ′ +X −X‖ ≤ ‖ψ −X‖ + ‖X − ψ′‖, (20)

‖ψX X−1 ψ′‖ ≤ ‖ψX‖ · ‖X−1ψ′‖ , (21)

where ψ and ψ′ are meant to be formal objects. The aim and sometimes the art of
all considerations is now to choose X such that the loss in accuracy is minimized.
One should resort here to as much physical inspiration as possible, for instance if
there is a conjecture or a result from other sources which suggests a dynamics one
can compare with. There exist also more sophisticated possibilities to estimate the
norm, as for instance to relate the Hilbert space norm to different types of norms,
e.g. the operator norm6 or the Hilbert-Schmidt norm7

‖Aψ‖ ≤ ‖A‖op‖ψ‖ ≤ ‖A‖H.S.‖ψ‖ . (22)

Where do we start? In fact, the starting point is identical to the one of perturba-
tion theory, that is the Du Hamel formula involving the time evolution operator
associated to two different Hamiltonians H1(t) and H2(t)

U1(t, t
′

) = U2(t, t
′

) − i

∫ t

t′
ds U1 (t, s) (H1(s) −H2(s))U2(s, t

′

) . (23)

6) The operator norm is defined as ‖A‖op =supϕ:‖ϕ‖=1 ‖Aϕ‖.
7) Denoting by α1 ≥ α2 ≥ . . . the positive eigenvalues of the operator T = (A∗A)1/2 the Hilbert-
Schmidt norm of the operator A is defined as ‖A‖H.S. = (

∑∞
n=1 α2

n)1/2.



For instance, identifying the Stark Hamiltonian in (1) with H1(s), one chooses

H2(s) = −∆/2 + ~x · ~E (t) or H2(s) = −∆/2 + V (~x) in the high- or low intensity
regime, respectively. Instead of iterating (23) and ending up with a power series in
V in the former or a power series in E0 in the second case one inserts (23) into (17)
and commences with the estimation of the norm in the way just outlined. Most
conveniently these considerations are carried out in a different gauge, for the high
intensity regime in the Kramers-Henneberger gauge.
Where do we stop? The whole procedure may be terminated when one arrives at
expressions which may be computed explicitly.
When can we apply bounds? In general in all circumstances. In particular problems
occurring in the context of perturbative considerations, like the convergence, are
avoided completely. Especially when the strength of the potential and the field are
comparable, e.g. in the turn-on and off region, this method is not limited in its
applicability, as is for instance the case for the Gordon-Volkov series.
What can we deduce? Ideally Pl(ϕ) and Pu(ϕ) are very close to each other, in
which case we are in the position of someone solving the problem numerically
with Pl(ϕ) and Pu(ϕ) related to the numerical errors. If the lower bound tends
to 1 for an increasing finite realistic value of E0 there will be little room left for
P (ϕ) to decrease and one may deduce that stabilization is absent (see figure 9 in
[2]). Furthermore, we can always make statements about the extreme limits. For
instance for the extreme frequency limit we obtain

d

dE0

(
lim

ω→∞

P (ϕ)
)

= 0 . (24)

This relates our discussion to the seminal paper on the stabilization issue by Gavrila
and Kaminski [10]. For the extreme field amplitude limit we found

lim
E0→∞

P (ϕ) = 1 − |〈ϕ, ψGV (τ)〉|2 for b(τ) = c(τ) = 0 (25)

lim
E0→∞

P (ϕ) = 1 otherwise , (26)

where ψGV (τ) = UGV (τ, 0)ϕ is the Gordon-Volkov wave function. For the definition
of UGV see (39). We would like to stress that this limit is not merely of mathematical
interest8. The result (25) is a clear indication of weak stabilization, though it is
still desirable to find the precise onset of this behaviour. It is also clear that as a
consequence of (25) a value of P (ϕ) which is equal or larger than the r.h.s. of (25)
for any finite and experimentally realisable value of E0 immediately implies the
existence of strong stabilization.
What are the shortcomings? For realistic values of the parameters involved the
expressions sometimes yield

Pl(ϕ) = 0 or Pu(ϕ) = 1 (27)

8) See contribution to the panel discussion at this meeting by F.H.M. Faisal.



in which case the constraint is of course not very powerful. In that situation
it simply means that we have lost too much accuracy in the derivation for that
particular parameter setting. One should note, however, there is no need to give
up in that situation since as is evident the expressions for the bounds are by

no means unique. It should then be quite clear that one can not deduce9 that the

bound is useless if one encounters the situation (27). Even more such a conclusion
seems very much astray in the light of [1,2,4,6], where we presented numerous
examples for which the bounds are well beyond the values in (27). Sometimes this
could, however, only be achieved for extremely short pulses. As we pointed out in
[2] this can be overcome at the cost of having to deal with higher Rydberg states10,
which is a direct consequence of the scaling behaviour outlined in the previous
section.

How do typical expressions look like? In [1] we derived for instance the expression

P l(ϕ) = 1 −
{ ∫ τ

0

‖(V (~x− c(t)ez) − V (~x))ϕ‖dt+

2

2E + b(τ)2
‖(V (~x− c(τ)ez) − V (~x))ϕ‖ +

2|b(τ)|
2E + b(τ)2

‖pzϕ‖
}2

(28)

for a lower bound. For given potentials and pulse shapes terms involved in (28)

may be computed at ease. As stated in [1], it is important to pay attention to
the fact that (28) is derived for the condition b(τ)2/2 > −E ≡ binding energy11.
Such restrictions which at first emerge as technical requirements in the derivations
usually indicate at some physical implications. In this case it points at the different
physical situation we encounter when the total momentum transfer is vanishing (see
also (25)).

What still needs to be done? Probably it is unrealistic to expect to find a bound
which is universally applicable and restrictive at the same time, rather one should
optimize the bounds for particular situations. For instance it would be highly
desirable to find more powerful bounds for the situations b(τ) = 0, c(τ) 6= 0 and
b(τ) = c(τ) = 0. For the latter case we expect in hindsight from (25) that the
loss in the estimations may be minimized if in (23) we chose to compare the Stark

Hamiltonian with the free Hamiltonian −∆/2 instead of H = −∆/2 + ~x · ~E (t) as
was done in [1].

9) As was done by J.H. Eberly at the panel discussion at this meeting.
10) This should not lead to the conclusion that bounds in general are exclusively applicable to
higher Rydberg states, see contribution to the panel discussion at this meeting by M. Gavrila.
11) During the panel discussion at this meeting J.H. Eberly exhibited a plot of our result for
Pl(ϕ) involving a pulse which did not satisfy this condition. As he confirmed to a question from
the audience his pulse satisfied b(τ) = 0. The conclusions drawn by J.H. Eberly concerning the
usefulness of bounds based on this plot are therefore meaningless. (See also footnote 9.)



IMPORTANCE OF PULSE SHAPES

From our previous discussion it is evident that the physical outcome differs for
different pulse shapes. However, the fact that a pulse is adiabatically switched
on or off is not very important, rather the precise values of b(τ) and c(τ) are the
determining quantities. In particular the case

b(τ) = c(τ) = 0 (29)

is very special, since then asymptotically weak stabilization is certain to exist. An
adiabatically switched on or off pulse sometimes satisfies (29), but this condition
is by no means identical to it. We found no evidence for stabilization for an adi-
abatically switched on field when b(τ) 6= 0. To our knowledge the importance of
(29) was first pointed out by Grobe and Fedorov [11], using intuitive arguments,
who employed a trapezoidal enveloping function with symmetrical turn-on and
turn-off time T , which has the nice feature that for T and τ being integer cycles
b(τ) = c(τ) = 0 and for T half τ being integer cycles b(τ) = 0, c(τ) 6= 0. There-
after, this observation seems to have been widely ignored in the literature since
many authors still employ pulses which do not have this property, trading (29)
for the condition of an adiabatic smooth turn-on or/and turn-off12. For instance
a sine-squared switch on and off with T and τ being integer cycles has b(τ) = 0,
c(τ) 6= 0, an entire sine-squared envelope for τ being integer cycles satisfies b(τ) = 0,
c(τ) 6= 0. Using gaußian envelopes or gaußian switch on and no switch off usually
yields b(τ) 6= 0, c(τ) 6= 0. A pulse which has the nice features that it allows a
theoretical investigation of all possible cases for the values of b(τ) and c(τ) is the
triple δ-kick in the form

f(t) = δ(t) + β1δ(t− τ/2) + β2δ(t− τ) , (30)

which we employed in [6]. This pulse obviously satisfies

b(τ) = E0(1 + β1 + β2/2) and c(τ) = E0(1 + β1/2) (31)

such that by tuning the constants β1, β2 we may realise any desired value of b(τ)
and c(τ).
How do real pulses look like13? The quantity which is experimentally accessible is
the Fourier transform of the pulse (2)

Ẽ(ω) =

∫
∞

−∞

E(t)eiωtdt =

∞∑

n=0

αnω
n . (32)

12) As may be supported by numerous publications, this observation appears not to have become
common knowledge as claimed by M. Gavrila in the introduction to the panel discussion at this
meeting.
13) We acknowledge that the following argument was initiated, though not agreed upon in this
form, by an e-mail communication with H.G. Muller.



with αn being constants. For finite pulses this quantity coincides with the total
momentum transfer for vanishing frequency ω

Ẽ(ω = 0) =

∫
∞

−∞

E(t)dt =

∫ τ

0

E(t)dt = b(τ) . (33)

Provided that α0 = b(τ) = 0, the Fourier transform of the momentum transfer

b̃(ω) =

∫
∞

−∞

b(t)eiωtdt (34)

is on the other hand related to the total displacement for vanishing frequency

b̃(ω = 0) =

∫
∞

−∞

b(t)dt =

∫ τ

0

b(t)dt = c(τ) (35)

such that

Ẽ(ω) = b(t)eiωt|∞
−∞

− iωb̃(ω) ∼ −iωc(τ) + O(ω2) . (36)

This means that when the experimental outcome is

Ẽ(ω) = α2ω
2 + α3ω

3 + α4ω
4 + . . . (37)

the total momentum transfer and the total displacement are zero. Experimentally,
the observed fall off is expected to be even stronger [12].

COMPARISON WITH GV-PERTURBATION THEORY

It is instructive to compare our findings with other standard methods as for
instance the Gordon-Volkov (GV) perturbation theory. Using now in (23) for H2

the Hamiltonian just involving the field and the free particle Hamiltonian in the
Kramers-Henneberger frame subsequent iteration yields

U1(t, t
′

) = UGV (t, t
′

) − i

∫ t

t′
ds UGV (t, s)V UGV (s, t

′

)

−
∫ t

t′
ds

∫ t

s

ds′ UGV (t, s′)V UGV (s′, s)V UGV (s, t
′

) + . . . (38)

where UGV corresponds to the free-particle evolution operator in the KH frame

UGV (t, t
′

) = e−ia(t)e−ib(t)zeic(t)pze−i(t−t′)p2

2 e−ic(t′)pzeib(t′)zeia(t′). (39)

As was explained in [4] we may use these expressions together with the Riemann-
Lebesgue theorem in order to obtain the extreme frequency and intensity limit,
finding (24), (25) and (26). For these arguments to be valid we have to assume



that the Gordon-Volkov series makes sense, so in particular we have to assume its
convergence.

The latter assumption may be made more rigorous when considering the one-
dimensional delta potential V (x) = −α δ (x) which is well known to possess only
one bound state. In that case the problem of computing ionization probabilities is
reduced to the evaluation of

P (ϕ) = 1 − |〈ϕ, ψGV (τ)〉 + 〈ϕ,Ψ(τ)〉|2 (40)

with

〈ϕ, ψGV (τ)〉 =
2

π
e−ia(τ)

∫
∞

−∞

dp
exp

(
−iτα2 p2

2
− ic (τ)αp

)

(
1 + (p+ b (τ) /α)2) (1 + p2)

(41)

〈ϕ,Ψ(τ)〉 = ie−ia(τ)

√
α5

2π3

∫ τ

0

∫
∞

−∞

ψI (s)
ei(c(τ)−c(s))pe−

i
2
p2(τ−s)dsdp

(α2 + (p+ b(τ))2)
. (42)

Here the only unknown is the function ψI (t) which can be obtained as a solution

of the Volterra equation

ψI (t) =

∫
∞

−∞

dp ψGV (p, t) + α

√
i

2π

∫ t

0

dsψI (s)
ei

(c(t)−c(s))2

2(t−s)

√
t− s

. (43)

Iteration of this equation is a well controllable procedure and in [6] we found that
the series converges for all values of α. The results obtained from the analysis of
this equation match the results obtained from bounds.

CONCLUSIONS

The main outcome of our investigations is that the classical momentum trans-

fer and displacement caused by a laser pulse on an electron are the essential
parameters determining the existence of weak asymptotic stabilization. In fact, we
obtained evidence for stabilization only for pulses for which these two quantities
vanish at the end of the pulse, i.e., with b(τ) = 0 and c(τ) = 0.

Using purely analytical methods, we have shown that, for a wide range of po-
tentials, namely Kato and one- and three-dimensional delta potentials, we always
have limE0→∞P(ψ) = 1 unless b(τ) = 0 and c(τ) = 0, in which case the ionization
probability tends to the lowest order in GV-perturbation theory, which corresponds
simply to the free particle Green’s function (39). Furthermore, for infinite frequen-
cies, the high-frequency condition of [10] is a way to obtain b(t) = 0 and c(t) = 0
for all times.



Clearly, smooth pulses in general do not necessarily fullfil the above conditions,
and therefore will not provide a mechanism for stabilization, but just prolong the
onset of ionization. In fact, we have observed no stabilization for adiabatically
switched on and off pulses of several shapes, for which analytic expressions for
lower bounds of ionization probabilities lead to conclusive statements concerning
the existence or absence of stabilization.

Therefore, as an overall conclusion: Bounds are useful indeed, also in the

context of high intensity laser physics!
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