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Abstract

In a space-time of two dimensions the overall effect of the collision of

two solitons is a time delay (or advance) of their final trajectories relative

to their initial trajectories. For the solitons of affine Toda field theories, the

space-time displacement of the trajectories is proportional to the logarithm

of a number X depending only on the species of the colliding solitons and

their rapidity difference. X is the factor arising in the normal ordering of

the product of the two vertex operators associated with the solitons. X is

shown to take real values between 0 and 1. This means that, whenever the

solitons are distinguishable, so that transmission rather than reflection is the

only possible interpretation of the classical scattering process, the time delay

is negative and so an indication of attractive forces between the solitons.
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1 Introduction

Affine Toda field theories [1] are relativistically invariant field theories which are

integrable in a space-time of two dimensions and possess a natural interpretation as

special deformations of conformally invariant theories [2, 3, 4]. When the coupling

is imaginary so that there are degenerate vacua, the equations support solutions

describing any number of solitons interpolating the vacua. A number of authors

have worked out examples on a case by case basis [5, 6, 7, 8]. On the other hand,

a general formalism for these solutions has recently been found [9, 10] exploiting a

basis of the underlying affine Kac-Moody algebra in which the principal Heisenberg

subalgebra plays a significant rôle. This subalgebra is isomorphic to the algebra

of conserved charges or “energies” and can be thought of as an infinite Poincaré

algebra appropriate to an integrable theory. The simplest such theory, namely that

associated with affine su(2), is very familiar as sine-Gordon theory [11, 12].

In the formalism, the individual solitons are “created” by group elements ob-

tained by exponentiating quantities F̂ 1, F̂ 2, . . . , F̂ r which ad-diagonalise the “en-

ergies” generating the Heisenberg subalgebra. Each exponential series terminates

with the highest non-vanishing power of F̂ i being expressible as a vertex opera-

tor obtained by exponentiating and normal ordering an element of the Heisenberg

subalgebra [10, 13] when the affine Kac-Moody algebra is untwisted and simply

laced (and also when it is twisted [14]). This result is sufficient to show that these

solutions correctly interpolate degenerate vacua.

In this paper we show that these vertex operators determine yet more detail of

the asymptotic behaviour of the soliton solutions. In these solutions the energy-

momentum vector of a specific soliton is unchanged by collision but the trajectory

may sustain a lateral displacement in space-time as discussed in section 2. Tradi-

tionally this is parametrised by the time delay in the centre of momentum frame.

After a review of the vertex operator formalism in section 3, our first result, in sec-
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tion 4, is that this lateral displacement can be expressed straightforwardly in terms

of the logarithms of the numbers Xik(θi − θk) arising in the procedure of normal

ordering the product of two vertex operators mentioned above as being associated

with solitons i and k.

In section 5 the overall lateral displacement of the soliton trajectories due to the

scattering with several other solitons is determined and shown to be independent

of the temporal order in which the collisions take place. This is because the dis-

placement is simply additive. The result constitutes the classical analogue of the

Yang-Baxter equation [15] and bootstrap equations [16] for the quantum scatter-

ing matrix featuring the factorisation property of the n particle S-matrix into two

particle S-matrices.

In section 6 various properties of the number Xik(θi−θk) are established, includ-

ing symmetry and crossing properties. In particular it is verified that it is real when

the rapidity difference is real, as the physical interpretation demands. Furthermore

it is shown to take values restricted to lie between 0 and 1, so that the associated

time delay (in the centre of momentum frame) is always negative. Suppose two

distinguishable solitons are considered in the sense that they carry different species

or different topological charges. In this case the solution describing the scattering

has to be regarded as a transmission rather than a reflection. If the solitons are in-

distinguishable either interpretation is possible. With this understanding our result

indicates that the forces between two distinguishable solitons are always attractive

because of the time advance.

In the concluding section 7, we mention the well known connection between

the time delay and the semi-classical approximation to the S-matrix as well as

the intriguing similarity of the structure of Xik(θi − θk) with the known scattering

matrices in affine Toda field theories [17, 18].
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2 Kinematics of scattering of two particles in two

dimensions

In an integrable theory in two dimensions, when two particles collide the outcome

consists of two particles with the same masses as the original particles. If the two

masses differ, the corresponding energy-momentum vectors are unchanged. If the

two masses are equal, even though the particles are distinct, it is kinematically

possible for the energy-momentum vectors to interchange.

Classically the particles describe trajectories in space-time which are straight

except near the collision. The collision may displace the trajectories laterally but

as the energy-momentum is unchanged, the final direction coincides with the initial

direction. We now consider alternative descriptions of the displacements of the

trajectories and show how the conservation laws correlate the displacement of the

trajectories of the two colliding particles.

Consider first a single particle with velocity v, energy E, and hence momentum

vE. Before collision the equation of the trajectory in space-time is

x = vt+ x(I), (2.1)

whereas afterwards it is

x = vt+ x(F ), (2.2)

as the velocity is unchanged. Only the intercept with the x-axis changes. So

∆(x) = x(F ) − x(I) (2.3)

measures the lateral displacement at fixed time. This is not Lorentz invariant but

the combination E∆(x) is. Since E is always positive it follows that ∆(x) has the

same sign in all Lorentz frames of reference, even though its magnitude varies. The

intercepts of the trajectories (2.1) and (2.2) with the time axis are given by

t(I) = −x(I)
v

, t(F ) = −x(F )

v
. (2.4)
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Then, we define the “time delay”

∆(t) = t(F ) − t(I) = −∆(x)

v
. (2.5)

Again

E∆(x) = −p∆(t) (2.6)

is Lorentz invariant. As the sign of p can be changed by a Lorentz transformation

so can that of ∆(t).

Now consider both particles participating in the collision, labelling them 1 and

2. Consider the “centre of energy” coordinate

X =
E1x1 + E2x2

E1 + E2
.

Then
dX

dt
=

p1 + p2

E1 + E2

is constant throughout time so that

X =
p1 + p2

E1 + E2

t+X0.

Now compare the results of inserting the trajectories (2.1) before the collision with

the result of inserting (2.2) after the collision. As the results must agree

E1

(

x1(F ) − x1(I)
)

+ E2

(

x2(F ) − x2(I)
)

= 0

or, denoting ∆12(x) = x1(F ) − x1(I) and similarly for ∆21(x)

E1∆12(x) + E2∆21(x) = 0. (2.7)

Thus the spatial displacement of the two trajectories must have opposite signs. By

(2.6) we have, equally,

p1∆12(t) + p2∆21(t) = 0, (2.8)
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where ∆12(t) = t1(F )− t1(I) is the time delay sustained by particle 1 colliding with

particle 2. Notice that, in the centre of momentum frame p1 + p2 = 0, the two time

delays are equal:

∆12(t) = ∆21(t). (2.9)

We see from (2.6), (2.7) and (2.8) that if particle 1 moves faster than particle

2, then the three quantities (2.9), ∆21(x) and −∆12(x) all have the same sign.

This common sign has a physical interpretation. Suppose the force between the

particles is attractive. Then particle 1 will accelerate as it approaches particle 2

and afterwards decelerate. As a result ∆12(x) will be positive and the common sign

negative. Thus an attractive force implies a negative time delay, in other words a

time advance, in the centre of momentum frame. A repulsive force implies a time

delay, if there is transmission. There is also the additional possibility of a reflection

with either a delay or advance if the two masses are equal.

The preceding discussion of relativistic particles colliding classically applies also

to relativistic solitons and, in particular, to the solitons of affine Toda field theory.

In the subsequent sections we shall show that when soliton 1 collides with soliton 2

the resultant displacements are given by

E1∆12(x) = −p1∆12(t) = −sign(p1 − p2)
2h

|β|2 lnX12(θ1 − θ2) (2.10)

where h is the Coxeter number associated with the theory and |β| the magnitude

of the imaginary coupling constant β. The quantity X12(θ1 − θ2) depending on the

rapidity difference θ = θ1 − θ2 of the two solitons has been met before. It occurs

when the product of the two vertex operators associated with the solitons 1 and 2

are normal ordered [10]. Equation (2.10) generalises the well known result for the

time delay in sine-Gordon theory [19, 20] when

X12(θ) = tanh2

(

θ

2

)

.

Thus X12(θ) has acquired a new physical interpretation whose viability requires

it to possess various properties not hitherto apparent. For example we shall show
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that X12(θ) is real when θ is real and that it satisfies the symmetry property

X12(θ) = X21(θ)

demanded by (2.7). Furthermore it takes values between 0 and 1. Hence, in the

centre of momentum frame, the time delay is always negative by (2.10) whatever

the velocities concerned. As explained, this suggests that affine Toda solitons exert

attractive forces on each other. The only possible exception to this is when two

identical solitons are considered, with the same species and topological quantum

number. Then it is possible to interpret the scattering as a reflection rather than

a transmission. In this case it is possible for the force to be repulsive. This is the

accepted point of view in sine-Gordon theory which furnishes a special case of our

result (2.10) [21].

3 Soliton solutions and vertex operators

Here we shall recall the general formalism for soliton solutions in affine Toda field

theory and the rôle played by vertex operators, at least when the associated affine

Kac-Moody algebra is untwisted and simply laced. The extension to the twisted

case is straightforward in view of the work of [14] and to the untwisted non simply

laced case only slightly more complicated.

When the coupling constant β is purely imaginary the affine Toda field theories

possess classical solutions describing any number, N , say of solitons which may

be composed of any of the r = rank g species (where ĝ is the associated affine

Kac-Moody algebra). The solution takes the form

e−βλj .φ =
〈Λj|g(t)|Λj〉

〈Λ0|g(t)|Λ0〉mj
. (3.1)

φ(x, t) is the r component affine Toda field. λj is the jth fundamental weight of the

finite dimensional Lie algebra g, while Λj is the corresponding weight of ĝ, following
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the notation of [22]. |Λj〉 is the highest weight of the corresponding “highest weight”

representation whose level is mj . Λ0 denotes the zero-th fundamental weight of ĝ.

|Λ0〉 can be regarded as the vacuum state at level m0 = 1. The Kac-Moody group

element g(t) in (3.1) contains the soliton data: it factorises into N factors, each one

characteristic of each individual soliton

g(t) = gN(t)gN−1(t) · · · g1(t) (3.2)

where

gm(t) = eQmWi(m)(θm)F̂ i(m)(θm) (3.3)

are the factors in (3.2) and ordered according to the rapidities θm. The real functions

Wi(m)(θm) carry the dependence on the space, x, and time, t, variables:

Wi(m)(θm) = eµi(m)(x cosh θm−t sinh θm). (3.4)

The mth soliton has “species” i(m) and rapidity θm. When quantised, the affine

Toda field φ creates r species of particles whose masses are h̄µ1, h̄µ2, . . . , h̄µm. Thus

(3.4) provides a precise correspondence between the r species of solitons and the r

species of field excitation particle. When g is simply laced so that all roots can be

taken to have length
√

2, the ratios of the masses of corresponding soliton and field

excitation particle are independent of the species i. It has been shown [5, 9] that

the mass of the i’th species of soliton

Mi =
2hµi
|β|2 . (3.5)

A similar result holds for the twisted theories[14]. The quantities F̂ i(θ) are gener-

ators of ĝ which ad-diagonalise the principal Heisenberg subalgebra

[

ÊM , F̂
i(θ)

]

= γi · q([M ])(zi)
M F̂ i(θ) (3.6)

in the notation of [9]. The elements of the principal Heisenberg subalgebra are

graded by d′ = T 3 − hL0, the “principal” grade:

[

ÊM , ÊN
]

= xMδM+N,0 ,
[

d′, ÊM
]

= MÊM . (3.7)
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Here x is the level of the representation considered and it is understood that the

M can only equal an exponent of ĝ that is an exponent of g modulo its Coxeter

number h. The complex number zi(m) in (3.6) is related to the rapidity θm by

zi(m) = ie−θme−iπ
(1+c(i))

2h (3.8)

where the phase ensures that Wi(m) is real. The complex number Qm can be

parametrised as

Qm = eiψme−µi(m)x
0
m cosh θm (3.9)

where x0
m relates to the space coordinate of the m′th soliton at t = 0 in a way that

will be clarified later. The phase ψm relates to the topological quantum number

defined as the difference between the values the affine Toda field takes at large

distances. Certain discrete values are forbidden by the requirement that the solution

(3.1) should not develop singularities as x varies over space.

These soliton solutions exhibit a number of important features. Despite the

imaginary nature of β, the energy and momentum of the solution (3.1) has been

evaluated and shown to be real and finite (with positive energy) [9]. Moreover the

resulting form is characteristic of N solitons moving with the stated rapidities and

masses (3.5). That the affine Toda field interpolates degenerate vacua at large dis-

tances can be confirmed explicitly (when ĝ is simply laced [13]) using the generalised

vertex operator construction [10, 13] which we now explain in more detail.

Consider the single exponential factor (3.3) creating the m′th soliton. Since

F̂ i(θ) is a generator of ĝ, we must check that the exponential indeed makes sense

as a finite operator in representations of the highest weight considered in (3.1).

Expanding the exponential as a series, we find that powers of F̂ i(θ) higher than

the level vanish identically if ĝ is simply laced [10]. Furthermore, the highest non

vanishing power, namely the level, is given by a vertex operator obtained by normal

ordering an exponential expression of the principal Heisenberg subalgebra [13]:
(

F̂ i(θ)
)mj

(mj)!
= e−2πiλi·λjY i

−Y
i
+ (3.10)
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where

Y i
± = exp

{

∑

M>0

γi · q(∓[M ])z∓M

∓M Ê±M

}

, (3.11)

and z is related to the rapidity θ as in (3.8). It follows that

eQWi(θ)F̂ i(θ) = 1 + . . .+ (QWi(θ))
mj e−2πiλi·λjY i

−Y
i
+. (3.12)

The coefficient of the intermediate powers of QWi are not determined by the argu-

ment, even though finite, and so are denoted by the dots in (3.12). It will emerge

that the asymptotic properties of solitons that we seek do not depend on these

undetermined quantities. If Wi tends to zero, (3.12) is dominated by the first term,

unity, and if Wi tends to plus infinity, (3.12) is dominated by the last term, given

by the vertex operator.

In particular, for the single soliton solution (3.1) in which g(t) is given by a single

factor (3.3), we see that the limits as x tends to ±∞ are respectively e−2πiλi·λj and

1. This result assures that the affine Toda field φ does interpolate degenerate vacua

at x = ±∞, with the topological charge, ∆φ satisfying

− β

2πi
∆φ = λi + ΛR(g), (3.13)

where we recall that i labels the relevant soliton species. Similar results apply to

solutions describing any number of solitons.

In this paper we shall address more refined questions concerning the asymptotic

behaviour of the N-soliton solution (3.1) and in particular determine the lateral

displacement of the soliton trajectories arising from the collisions as described in

section 2. We shall find that the limited information outlined above is quite sufficient

for this purpose, as the unknown coefficients in (3.12) are irrelevant. What is

important is the number Xik(zi, zk) arising when the product of two of the vertex

operators (3.10) is normal ordered [10, 13]

Y i
−(zi)Y

i
+(zi)Y

k
−(zk)Y

k
+(zk) = (Xik(zi, zk))

x Y i
−(zi)Y

k
−(zk)Y

i
+(zi)Y

k
+(zk) (3.14)
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where x is the level of the representation considered. It was shown in [10] that

Xik(zi, zk) =
h
∏

p=1

(

zi − e
2πip

h zk
)γi·σ

pγk

, |zi| > |zk|, (3.15)

where the quantities σ, γi, γk are defined there.

By the commutation relations (3.6) we also find [13]

Y i
+(zi)F̂

k(zk) = Xik(zi, zk)F̂
k(zk)Y

i
+(zi), (3.16)

F̂ k(zk)Y
i
−(zi) = Y i

−(zi)F̂
k(zk)Xik(zi, zk). (3.17)

We shall show in the next section that the quantity Xik appears in the time

delay result (2.10) and that when (3.8) is inserted it enjoys the properties required

of this physical interpretation (section 6).

4 Space-time trajectories of two colliding soli-

tons

First we consider solutions with two solitons and want to determine the asymptotic

form of their trajectories in space-time and hence the lateral displacements defined

in section 2. In the next section we consider collisions of more solitons, finding that

the two-soliton result is the fundamental block, as expected in an integrable theory.

The appropriate group element (3.2) contains only two factors

g(t) = eQ2Wi(2)(θ2)F̂ i(2)(θ2)eQ1Wi(1)(θ1)F̂ i(1)(θ1), (4.1)

where θ1 > θ2 by (3.8) and (3.15). This inequality means that soliton 1, of species

i(1), moves faster than soliton 2, of species i(2). It must therefore start to the left

of soliton 2 and eventually overtake it, causing a collision whose outcome we wish

to study.

We shall do this by “tracking” each soliton in time. By tracking the faster soliton

1 we mean that we hold Wi(1)(θ1) fixed as time varies. As

Wi(1)(θ1) = eµi(1) cosh θ1(x−v1t), (4.2)
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where v1 = tanh θ1 is the velocity of soliton 1, this means that, as t varies, x varies

so as to hold Wi(1) fixed, thereby remaining in the vicinity of the soliton, which is

near x = v1t + x0
1. While Wi(1)(θ1) is held fixed, that is x − v1t is fixed, the time

dependence of Wi(2)(θ2) is given by

Wi(2)(θ2) = eµi(2) cosh θ2(x−v2t) = const eµi(2) cosh θ2(v1−v2)t . (4.3)

Hence, in the past, t→ −∞, Wi(2)(θ2) tends to 0 as v1 > v2. So, by (3.12)

eQ2Wi(2)(θ2)F̂ i(2)(θ2) → 1 . (4.4)

Thus, by (3.1), in the past

e−βλj ·φ → 〈Λj| eQ1Wi(1)(θ1)F̂ i(1)(θ1) |Λj〉
〈Λ0| eQ1Wi(1)(θ1)F̂ i(1)(θ1) |Λ0〉mj

(4.5)

which we recognise as a single soliton solution of species i(1), velocity v1 and phase

ψ1. For comparision, let us track soliton 1 in the two soliton solution into the future,

so t → ∞, with Wi(1) fixed, so that Wi(2) tends to plus infinity. Now by (3.12) the

exponential is dominated by the highest non-vanishing power. In the numerator of

(3.10) which has level mj this yields

eQ2Wi(2)(θ2)F̂ i(2)(θ2) → e−2πiλi(2) ·λj(Q2Wi(2))
mjY

i(2)
− Y

i(2)
+ . (4.6)

The factor Y
i(2)
− annihilates to unity on the highest weight state 〈Λj| leaving the

factor Y
i(2)
+ , which would likewise annihilate to unity on the right were it not for the

intervening factor eQ1Wi(1)(θ1)F̂ i(1)(θ1). By (3.16) these factors can be interchanged if

Q1 is replaced by Q1Xi(1)i(2)(θ12). Similar operations can be applied to eliminate

the vertex operator from the denominator. The large factors (Q2Wi(2))
mj cancel

between numerator and denominator, leaving in the future, t→ ∞,

e−βλj ·φ → e−2πiλi(1)·λj
〈Λj| eQ1Wi(1)(θ1)Xi(1)i(2)(θ12)F̂ i(1)(θ1) |Λj〉

〈Λ0| eQ1Wi(1)(θ1)Xi(1)i(2)(θ12)F̂ i(1)(θ1) |Λ0〉mj

. (4.7)

Again we recognise a single soliton solution of species i(1), rapidity θ1 and phase

ψ1. The phase factor preceding (4.7) is innocuous, representing a translation of φ
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by 2πi
β
λi(1), a symmetry of the theory. The other difference between (4.6) and (4.7)

is significant. Since Xi(1)i(2)(θ12) is real and positive, it means that Q1 has acquired

a factor Xi(1)i(2)(θ12) which changes its modulus (but not the phase), and hence x0
1

(see (3.9) ) in the evolution from the past to the future. The effect is that

µi(1) cosh θ1(x− v1t) → µi(1) cosh θ1(x− v1t) + lnXi(1)i(2)(θ12) (4.8)

so that the solution (4.7) differs from (4.6) by a translation in space-time. In

particular the trajectories in space-time of the outgoing soliton is translated with

respect to the ingoing soliton. Comparing with (2.3) and the subsequent discussion

we see

E1∆12(x) = −Mi(1)

µi(1)
lnXi(1)i(2)(θ12) (4.9)

as the energy of the soliton is E1 = µi(1) cosh θ1. Employing the mass formula (3.5),

this equals

E1∆12(x) = − 2h

|β2| lnXi(1)i(2)(θ12) (4.10)

which is the announced result (2.10) for the faster soliton.

Now let us derive the corresponding result for the slower soliton 2, by tracking

it. As Wi(2) is now held fixed

Wi(1)(θ1) = const eµi(1) cosh θ1(v2−v1)t . (4.11)

tends to ∞ and 0 in the past and future, respectively. Thus, in the past,

e−βλj ·φ → e−2πiλj ·λi(1)
〈Λj| eQ2Wi(2)(θ2)Xi(1)i(2)(θ12)F̂ i(2)(θ2) |Λj〉

〈Λ0| eQ2Wi(2)(θ2)Xi(1)i(2)(θ12)F̂ i(2)(θ2) |Λ0〉mj

. (4.12)

using (3.16) with (3.17), whereas in the future

e−βλj ·φ → 〈Λj| eQ2Wi(2)(θ2)F̂ i(2)(θ2) |Λj〉
〈Λ0| eQ2Wi(2)(θ2)F̂ i(2)(θ2) |Λ0〉mj

. (4.13)

So Q2Xi(1)i(2)(θ12) → Q2 during the evolution and

E2∆21(x) = +
2h

|β2| lnXi(1)i(2)(θ12), (4.14)
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thereby confirming (2.10) for the slower soliton.

Notice that the solution considered describes only a transmission and not a

reflection of solitons. The only possible exception is when the species i(1) and i(2)

coincide as do the phases ψ1 and ψ2. Then we cannot tell whether the scattering is

transmissive or reflective.

It is interesting to repeat the calculation with the order of the two factors in

(4.1) reversed. The reader will find that the asymptotic results (4.5), (4.7), (4.12)

and (4.13) are unchanged, as is therefore the spatial displacement.

5 Space-time trajectories of any number of col-

liding solitons

It is not difficult to extend the preceding argument from the collision of two solitons

to the collision of any number of various species. The interesting result is that the

total displacement of the space-time trajectories of any chosen soliton is precisely

the sum of the contributions previously found for the collision of the chosen soliton

with each of the others. This sum is independent of the ordered sequence in which

the chosen soliton collides with the others. Hence this result is the classical analogue

of the Yang-Baxter [15] and bootstrap relations [16] governing quantum scattering

in integrable theories.

The solution (3.1) and (3.2) describes N solitons. We shall choose to track one

of these, say soliton m, by remaining close to its trajectory in space-time as the

past evolves into the future. So Wi(m), (3.4) , is held fixed and the other functions

Wi(n) behave as

Wi(n) = const eµi(n) cosh θ2(vm−vn)t . (5.1)

Thus if soliton n is slower than soliton m, Wi(n) tends to 0 in the past and ∞ in the

future. If soliton m is faster than soliton n, then the limits are reversed. Repeating
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the arguments of the preceding section we find that in the past

e−βλj ·φ → exp

(

−2πi
∑

vk<vm

λj · λi(k)
)

〈Λj| eQm(I)Wi(m)(θm)F̂ i(m)(θm) |Λj〉
〈Λ0| eQm(I)Wi(m)(θm)F̂ i(m)(θm) |Λ0〉mj

(5.2)

where Qm(I) = Qm

∏

vk<vm

Xi(m)i(k).

In the future

e−βλj ·φ → exp

(

−2πi
∑

vk>vm

λj · λi(k)
)

〈Λj| eQm(F )Wi(m)(θm)F̂ i(m)(θm) |Λj〉
〈Λ0| eQm(F )Wi(m)(θm)F̂ i(m)(θm) |Λ0〉mj

(5.3)

where Qm(F ) = Qm

∏

vk>vm

Xi(m)i(k). This immediately yields the announced results:

Em∆m(x) = −pm∆m(t) =
2h

|β2|

(

∑

vk>vm

lnXi(m)i(k) −
∑

vk<vm

lnXi(m)i(k)

)

(5.4)

where ∆m(x),∆m(t) denote the displacement (2.3) and (2.5) for the mth soliton.

Notice that this result (5.4) does not depend on the values of the Qi(n), but

only on the rapidities of the solitons. Hence the temporal order of the scattering

can be altered without changing the rapidities of the solitons. Thus the overall

displacement of the trajectories of soliton m, (5.4) is independent of the order in

which the collisions occurred.

The same procedure can be applied to each of the other (N−1) solitons. In this

way we see how the N soliton solution asymptotically contains the N single soliton

solutions in both the past and future. The only alterations in time are the lateral

displacement of the trajectories specified by our result (5.4).

6 Properties of the function Xik(θ)

The factor

Xik(zi, zk) =
h
∏

p=1

(

zi − e
2πip

h zk
)γi·σ

pγk

(6.1)

arose [10, 13] in the normal ordering of the product of the two vertex operators,

(3.14),

(F̂ i(zi))
mj

mj !
and

(F̂ k(zk))
mj

mj !
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The exponents, γi · σpγk, being scalar products of roots of a simply laced Lie

algebra, can only take the values 0,±1,±2. Thus Xik(zi, zk) can be analytically

extended to a meromorphic function of the complex variables zi and zk. Xik only

possesses a double pole if i = k̄, while the occurrence of simple poles is governed

by Dorey’s fusing rule [23, 10, 24].

Using the first, (6.2), of the two facts that

h
∑

p=1

σpγk = 0 (6.2)

and
h
∑

p=1

pγi · σpγk ∈ hZZ, (6.3)

we can rewrite (6.1) as
h
∏

p=1

(ziz
−1
k − e

2πip

h )γi·σ
pγk (6.4)

which means that Xik(zi, zk) depends on zi and zk only through the ratio ziz
−1
k .

Furthermore using both (6.2) and (6.3) we find that it exhibits the symmetry prop-

erty

Xik(zi, zk) = Xki(zk, zi), (6.5)

which means that the vertex operators (3.10) braid trivially. This appears to be

the explanation of our earlier observations that the order of the soliton factors in

(3.2) is irrelevant. Introducing the soliton rapidity θk via (3.8),

zk = ie−θke−
iπ
2h

(1+c(k))

we find that Xik can be expressed as a function of the rapidity difference θ = θi−θk:

Xik(zi, zk) =
h
∏

p=1

(

e−θ − e
πi
h

(2p+
c(i)−c(k)

2
)
)γi·σ

pγk

= Xik(θ). (6.6)

Thus Xik(θ) is Lorentz invariant since the relative rapidity is. This is in accord

with our result (2.10).
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The result (2.10) which was established in the preceding sections means that

Xik(θ) has a space-time interpretation in terms of the scattering of solitons. As a

consequence it ought to be a real number (when θ is real) and exhibit some further

symmetry properties.

We shall now check these properties explicitly, showing that Xik(θ) has period

2πi,

Xik(θ + 2πi) = Xik(θ), (6.7)

is symmetric in the sense

Xik(θ) = Xki(θ), (6.8)

is even in θ

Xik(θ) = Xik(−θ), (6.9)

takes values in the unit interval when θ is real

0 ≤ Xik(θ) < 1, θ ∈ IR, (6.10)

and obeys the “crossing” property

Xı̄k(θ) = (Xik(θ + iπ))−1 (6.11)

where ı̄ denotes the anti-species of i.

Notice that the periodic property (6.7) is already evident from (6.6). The sym-

metry property (6.8) follows using the identity

γi · σpγk = γk · σp
′

γi,

where

2p+
c(i) − c(k)

2
= 2p′ +

c(k) − c(i)

2
.

To prove the evenness property (6.9) note that

Xik(−θ) =
h
∏

p=1

(

eθ − e
πi
h

(2p+
c(i)−c(k)

2
)
)γi·σ

pγk

=
h
∏

p=1

(

e−θ − e
−πi

h
(2p+

c(i)−c(k)
2

)
)γi·σ

pγk
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by (6.2) and (6.3). Now use γi · σpγk = γk · σ−pγi to recognize, on changing the

dummy label p→ −p, Xki(θ) which equals Xik(θ) by the symmetry property (6.8).

To prove the reality property first note that

Xik(θ
∗)∗ =

h
∏

p=1

(

e−θ − e
−πi

h
(2p+

c(i)−c(k)
2

)
)γi·σ

pγk

,

which equals Xik(−θ) by (6.2) and (6.3) and hence Xik(θ) by evenness. Thus Xik(θ)

is real when θ is.

Now let us consider the possibility that Xik(θ) has zeroes or poles when θ is real.

This is only possible when a factor vanishes, so that both

θ = 0, and p+
1

4
(c(i) − c(k)) = 0 mod h.

The second condition implies that c(i) = c(k) and that p = h. When c(i) = c(k),

γi · σhγk = γi · γk vanishes unless i = k when it equals 2. So for real θ, Xik(θ) has

no poles and the only zero occurs when i = k and θ = 0. We already knew that

Xii(0) had to be zero as it implies the nilpotency condition (F̂ i(θ))2 = 0 at level 1.

Now let us prove that Xik(θ) takes values in the unit interval. The argument is

intriguingly similar to that of section (4.5) of [18] concerned with positivity prop-

erties of the affine Toda particle scattering matrix.

Using the relation

γi · σpγk = λi · σ−p+
c(k)−1

2 γk − λi · σ−p+
c(k)+1

2 γk,

we can rewrite (6.6) as

Xik(θ) =

h
∏

p=1

(

e−θ − e
πi
h

(2p+
c(i)−c(k)

2
)

)−λi·σ
−p+

c(k)+1
2 γk

h
∏

p=1

(

e−θ − e
πi
h

(2p+
c(i)−c(k)

2
)

)−λi·σ
−p+

c(k)−1
2 γk

=
h
∏

p=1

[

sinh 1
2
(θ − πi

h
(2p− c(i)+c(k)

2
− 1))

sinh 1
2
(θ − πi

h
(2p− c(i)+c(k)

2
+ 1))

]−λi·σ
pγk

17



on relabelling the dummy index in order to gather the factors under a common

exponent. The factors can be further paired using the fact [18] that

λi · σpγk = −λi · σp
′

γk,

where

p′ = h+
c(i) + c(k)

2
− p.

Using this we can rewrite Xik(θ) as

Xik(θ) =
b
∏

p=a

[

cosh(θ) − cos π
h
(2p− c(i)+c(k)

2
− 1)

cosh(θ) − cos π
h
(2p− c(i)+c(k)

2
+ 1)

]−λi·σ
pγk

(6.12)

where a = 1+c(k)
2

and b = h−1
2

+ c(k)+c(k̄)
4

. The significance of the reduced range of p

is that, in it,

λi · σpγk ≤ 0.

Thus all the exponents in (6.12) are positive. Thus in order to prove (6.10) it would

be sufficient to show that each factor in (6.12) individually lies between 0 and 1.

Because cosh θ ≥ 1 this is ensured provided

1 ≥ cos
π

h

(

2p− c(i) + c(k)

2
− 1

)

> cos
π

h

(

2p− c(i) + c(k)

2
+ 1

)

> −1, (6.13)

which follows from the fact that cosφ is monotonically decreasing from 1 to −1 in

the interval 0 < φ < π, providing

0 ≤ 2p− c(i) + c(k)

2
− 1 < 2p− c(i) + c(k)

2
+ 1 < h.

The smallest value of 2p − (c(i) + c(k))/2 − 1 occurs when p = a = (1 + c(k))/2

which is (c(k) − c(i))/2. This can only be negative when c(k) = −1 = −c(i), so

that p = 0. In this case the exponent λi · σpγk = λi · γk = 0, as i 6= k, and the

factor contributes unity. A similar discussion applies to the upper limit b. Notice

that expression (6.12) is explicitly real and even in θ.

Finally, using the relation [18],

γi = −σ−h
2
−

c(i)−c(ı̄)
4 γı̄,
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we obtain the “crossing” property (6.11)

Xik(θ + iπ) =
h
∏

p=1

(

e−θ − e
πi
h

(2p−h+
c(i)−c(k)

2
)
)γi·σ

pγk

=
h
∏

p=1

(

e−θ − e
πi
h

(2p+
c(ı̄)−c(i)

2
)
)γı̄·σ

pγk

= (Xı̄k(θ))
−1.

Notice that, in agreement with the results of [13], the crossing property involves the

analytic continuation θ → θ + iπ rather than θ → iπ − θ for the reasons explained

by Coleman [25], namely that the semiclassical approximation breaks down on the

imaginary rapidity axis.

It is further worth noting that by similar manipulations one can show that

Xij(θ) additionally satisfies the bootstrap equation [17, 18] and thereby enhances

the remarkable similarity in structure between Xij(θ) and the scattering matrix.

7 Conclusions

There are two main conclusions to our work and a number of comments. The

first result we have established is the intimate connection between the space-time

properties of the affine Toda solitons and the vertex operators associated with them

through the numerical function Xik(θ) arising when the product of the two vertex

operators is normal ordered. This connection is remarkable in view of the fact that

these vertex operators do not provide complete information concerning the solitons

as they do not completely determine the Kac-Moody group element (3.3) but merely

yield (3.12).

There is a well known result of Eisenbud and Wigner [26, 27] relating the time

delay to the quantum mechanical scattering matrix in the semi-classical approxi-

mation. The phase shift is obtained by integrating the time delay with respect to

energy, introducing a constant of integration proportional to the number of bound
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states, presumably breathers in our context. This result has been exploited in

sine-Gordon theory [21, 11] but the breather spectrum for general affine Toda field

theory requires further study.

These results would presumably shed light on the intriguing similarity in struc-

ture between Xik(θ) and properties of particle scattering matrix elements in affine

Toda field theories [17, 18] as well as the ideas of Corrigan and Dorey [28] for

obtaining the S-matrices from the braiding of vertex operators representing the

Faddeev-Zamolodchikov operators [16, 29] .

Our second main result is that, since Xik(θ) takes values between 0 and 1, it

follows that the time delay experienced by any soliton in collision with any other

in their centre of momentum frame is negative. This strongly suggests that the

forces between any two solitons is always attractive. This further suggests that

bound states (breathers) will form, though as far as we know, this can only occur

when the two solitons have equal mass and are anti-species of each other. The

only exception to the statement that forces are attractive is when the two solitons

involved are indistinguishable. Then we can no longer recognize from the explicit

solution that the scattering is only a transmission as it could be reflective in this

case. If the scattering is considered to be reflective, the time advance can be ascribed

to a repulsive core. This is the accepted picture in sine-Gordon theory [21] where

independent arguments imply that the forces between indistinguishable solitons are

repulsive.

We should like to mention a delicate point here. We can distinguish the outgoing

solitons if they have different species or, if not, possess different phases in Q. It is

believed that the phase in Q, (3.9), is related to the topological quantum number

of the soliton, (3.13). Unfortunately this connection has not been established in a

satisfactorily general way and the correspondence is not one to one. As mentioned

above, certain discrete phases are forbidden in order that the soliton solutions be

nonsingular. The danger concerns possible zeros of the expectation values of g(t),
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(3.1), or τ -functions, as x varies over space. This leaves disconnected allowed ranges

for the phase which seem to correspond to specific values of the topological quan-

tum number (3.13). The topological quantum number automatically takes discrete

values and is a continuous function of Q except for discontinuities occurring across

the forbidden boundaries but the exact details are only understood in the su(n)

case considered by McGhee [30]. This remains an outstanding issue. We should

like to be able to say that two solitons of the same species are distinguishable only if

they carry different topological quantum numbers and not just different phases, so

two solitons could be indistinguishable if they have the same topological quantum

number but different phases but this is not yet understood.

A second intriguing point concerns the repulsive core just mentioned for indis-

tinguishable solitons. This partly tallies with the fact that it is impossible for two

solitons of the same species to have the same rapidities. This is because

lim
θ1,θ2→θ

eQ1W1F̂
i(θ1)eQ2W2F̂

i(θ2) = e(Q1+Q2)WF̂ i(θ)

which creates a single soliton rather than two. This phenomenon is familiar in sine-

Gordon theory where it is well known that, in the quantum theory, the solitons are

the fermions in the massive Thirring model [31, 32, 33]. It appears that something

like the exclusion principle is operating at the classical level. The two results,

repulsive core and exclusion principle, suggest that the affine Toda solitons may

also have a fermionic nature, but again much more needs to be understood.

Finally we mention further remaining questions such as the extension to non

simply laced theories, and the question of time delays for the scattering of breathers,

once their spectrum is understood.
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