City Research Online

Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries

Wu, F., Qian, J., Wu, W. , Ye, Y., Sun, Z., Xu, B., Yang, X., Xu, Y., Zhang, J. & Chen, R. (2017). Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries. Nano Research, 10(2), pp. 426-436. doi: 10.1007/s12274-016-1303-7


In this study, a boron-doped microporous carbon (BMC)/sulfur nanocomposite is synthesized and applied as a novel cathode material for advanced Li-S batteries. The cell with this cathode exhibits an ultrahigh cycling stability and rate capability. After activation, a capacity of 749.5 mAh/g was obtained on the 54th cycle at a discharge current of 3.2 A/g. After 500 cycles, capacity of 561.8 mAh/g remained (74.96% retention), with only a very small average capacity decay of 0.056%. The excellent reversibility and stability of the novel sulfur cathode can be attributed to the ability of the boron-doped microporous carbon host to both physically confine polysulfides and chemically bind these species on the host surface. Theoretical calculations confirm that boron-doped carbon is capable of significantly stronger interactions with the polysulfide species than undoped carbon, most likely as a result of the lower electronegativity of boron. We believe that this doping strategy can be extended to other metal-air batteries and fuel cells, and that it has promising potential for many different applications.

Publication Type: Article
Additional Information: The final publication is available at Springer via
Publisher Keywords: boron-doping, microporous carbon, binding energy, Li-S batteries
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Departments: School of Science & Technology > Engineering
SWORD Depositor:
[thumbnail of 1303.pdf]
Text - Accepted Version
Download (1MB) | Preview


Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login