City Research Online

Towards design rules for rectangular silo filling pressures

Rotter, J. M., Goodey, R.J. ORCID: 0000-0002-9166-8393 & Brown, C. J. (2019). Towards design rules for rectangular silo filling pressures. Engineering Structures, 198, article number 109547. doi: 10.1016/j.engstruct.2019.109547


An experimentally validated finite element model of filling pressures in rectangular silos with flexible walls is used to predict the stress regime in the stored solid in squat and intermediate aspect ratio silos. The model predicts the state of stress in the stored solid and the pressures imposed on the flexible walls of the silo. The non-uniform horizontal pressure distributions at each depth at the end of filling are explored. It is known that an empirical relation for the horizontal pressure variation on each straight wall derived from experimental observations in an earlier study closely matches the computational predictions. The coefficients of this relation are found to vary with depth below the stored solid surface, and depend on the relative stiffness of stored solid and the silo wall. Following many calculations involving different solids, an empirical relationship is derived that is suitable for practical design for a range of different stored solids for which relevant properties are known. The resulting expression is well suited to the practical determination of filling pressures in rectangular silos, and provides a silo design pressure proposal that is based on theoretical, rather than empirical findings.

Publication Type: Article
Additional Information: © Elsevier 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Publisher Keywords: Pressures, Silos, Square silos, Rectangular silos, Design rules, Filling, Flexible wall, Horizontal distribution
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Departments: School of Science & Technology > Engineering
SWORD Depositor:
[thumbnail of desrules_resubmitted_final.pdf]
Text - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (802kB) | Preview


Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login