City Research Online

Efficient valuation of exotic derivatives with path-dependence and early exercise features

Kyriakou, I. ORCID: 0000-0001-9592-596X (2010). Efficient valuation of exotic derivatives with path-dependence and early exercise features. (Unpublished Doctoral thesis, City University London)


The main objective of this thesis is to provide effective means for the valuation of popular financial derivative contracts with path-dependence and/or early-exercisable provisions. Starting from the risk-neutral valuation formula, the approach we propose is to sequentially compute convolutions of the value function of the contract at a monitoring date with the transition density between two dates, to provide the value function at the previous monitoring date, until the present date. A rigorous computational algorithm for the convolutions is then developed based on transformations to the Fourier domain. In the first part of the thesis, we deal with arithmetic Asian options, which, due to the growing popularity they enjoy in the financial marketplace, have been researched signicantly over the last two decades. Although few remarkable approaches have been proposed so far, these are restricted to the market assumptions imposed by the standard Black-Scholes-Merton paradigm. Others, although in theory applicable to Lévy models, are shown to suffer a non-monotone convergence when implemented numerically. To solve the Asian option pricing problem, we initially propose a flexible framework for independently distributed log-returns on the underlying asset. This allows us to generalize firstly in calculating the price sensitivities. Secondly, we consider an extension to non-Lévy stochastic volatility models. We highlight the benefits of the new scheme and, where relevant, benchmark its performance against an analytical approximation, control variate Monte Carlo strategies and existing forward convolution algorithms for the recovery of the density of the underlying average price. In the second part of the thesis, we carry out an analysis on the rapidly growing market of convertible bonds (CBs). Despite the vast amount of research which has been undertaken yet. This is due to the need for proper modelling of the CBs composite payout structure and the multi factor modelling arising in the CB valuation. Given the dimensional capacity of the convolution algorithm, we are now able to introduce a new jump diffusion structural approach in the CB literature, towards more realistic modelling of the default risk, and further include correlated stochastic interest rates. This aims at fixing dimensionality and convergence limitations which previously have been restricting the range of applicability of popular grid- based, lattice and Monte Carlo methods. The convolution scheme further permits flexible handling of real-world CB specications; this allows us to properly model the call policy and investigate its impact on the computed CB prices. We illustrate the performance of the numerical scheme and highlight the effects originated by the inclusion of jumps.

Publication Type: Thesis (Doctoral)
Subjects: H Social Sciences > HB Economic Theory
Departments: Bayes Business School > Actuarial Science & Insurance
Doctoral Theses
Bayes Business School > Bayes Business School Doctoral Theses
Text - Accepted Version
Download (945kB) | Preview



Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login