City Research Online

Optimizing the depth and the direction of prospective planning using information values

Sezener, C. E., Dezfouli, A. & Keramati, M. ORCID: 0000-0002-1120-5867 (2019). Optimizing the depth and the direction of prospective planning using information values. PLOS Computational Biology, 15(3), article number e1006827. doi: 10.1371/journal.pcbi.1006827


Evaluating the future consequences of actions is achievable by simulating a mental search tree into the future. Expanding deep trees, however, is computationally taxing. Therefore, machines and humans use a plan-until-habit scheme that simulates the environment up to a limited depth and then exploits habitual values as proxies for consequences that may arise in the future. Two outstanding questions in this scheme are “in which directions the search tree should be expanded?”, and “when should the expansion stop?”. Here we propose a principled solution to these questions based on a speed/accuracy tradeoff: deeper expansion in the appropriate directions leads to more accurate planning, but at the cost of slower decision-making. Our simulation results show how this algorithm expands the search tree effectively and efficiently in a grid-world environment. We further show that our algorithm can explain several behavioral patterns in animals and humans, namely the effect of time-pressure on the depth of planning, the effect of reward magnitudes on the direction of planning, and the gradual shift from goal-directed to habitual behavior over the course of training. The algorithm also provides several predictions testable in animal/human experiments.

Publication Type: Article
Subjects: B Philosophy. Psychology. Religion > BF Psychology
R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Departments: School of Health & Psychological Sciences > Psychology
SWORD Depositor:
[thumbnail of journal.pcbi.1006827.pdf]
Text - Published Version
Available under License Creative Commons: Attribution International Public License 4.0.

Download (1MB) | Preview


Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login