City Research Online

Design and Analysis of a Continuous and Non-Invasive Multi-Wavelength Optical Sensor for Measurement of Dermal Water Content

Mamouei, M. H., Chatterjee, S. ORCID: 0000-0002-7735-6123, Razban, M., Qassem, M. ORCID: 0000-0003-0730-3189 and Kyriacou, P. A. ORCID: 0000-0002-2868-485X (2021). Design and Analysis of a Continuous and Non-Invasive Multi-Wavelength Optical Sensor for Measurement of Dermal Water Content. Sensors, 21(6), pp. 4353-4356. doi: 10.3390/s21062162

Abstract

Dermal water content is an important biophysical parameter in preserving skin integrity and preventing skin damage. Traditional electrical-based and open-chamber evaporimeters have several well-known limitations. In particular, such devices are costly, sizeable, and only provide arbitrary outputs. They also do not permit continuous and non-invasive monitoring of dermal water content, which can be beneficial for various consumer, clinical, and cosmetic purposes. We report here on the design and development of a digital multi-wavelength optical sensor that performs continuous and non-invasive measurement of dermal water content. In silico investigation on porcine skin was carried out using the Monte Carlo modeling strategy to evaluate the feasibility and characterize the sensor. Subsequently, an in vitro experiment was carried out to evaluate the performance of the sensor and benchmark its accuracy against a high-end, broad band spectrophotometer. Reference measurements were made against gravimetric analysis. The results demonstrate that the developed sensor can deliver accurate, continuous, and non-invasive measurement of skin hydration through measurement of dermal water content. Remarkably, the novel design of the sensor exceeded the performance of the high-end spectrophotometer due to the important denoising effects of temporal averaging. The authors believe, in addition to wellbeing and skin health monitoring, the designed sensor can particularly facilitate disease management in patients presenting diabetes mellitus, hypothyroidism, malnutrition, and atopic dermatitis.

Publication Type: Article
Additional Information: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Publisher Keywords: skin hydration; optical sensor; near infrared spectroscopy; Monte Carlo simulation
Subjects: Q Science > QC Physics
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Departments: School of Mathematics, Computer Science & Engineering > Engineering > Electrical & Electronic Engineering
Date available in CRO: 23 Apr 2021 11:38
Date deposited: 23 April 2021
Date of acceptance: 16 March 2021
Date of first online publication: 19 March 2021
URI: https://openaccess.city.ac.uk/id/eprint/25961
[img]
Preview
Text - Published Version
Available under License Creative Commons: Attribution International Public License 4.0.

Download (2MB) | Preview

Export

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login