City Research Online

Electrical performance of efficient quad-crescent-shaped Si nanowire solar cell

El-Bashar, R., Hussein, M., Hegazy, S. F. , Badr, Y., Rahman, B. M. ORCID: 0000-0001-6384-0961, Grattan, K. T. V. ORCID: 0000-0003-2250-3832, Hameed, M. F. O. & Obayya, S. S. A. (2022). Electrical performance of efficient quad-crescent-shaped Si nanowire solar cell. Scientific Reports, 12(1), 48. doi: 10.1038/s41598-021-03597-x

Abstract

The electrical characteristics of quad-crescent-shaped silicon nanowire (NW) solar cells (SCs) are numerically analyzed and as a result their performance optimized. The structure discussed consists of four crescents, forming a cavity that permits multiple light scattering with high trapping between the NWs. Additionally, new modes strongly coupled to the incident light are generated along the NWs. As a result, the optical absorption has been increased over a large portion of light wavelengths and hence the power conversion efficiency (PCE) has been improved. The electron–hole (e–h) generation rate in the design reported has been calculated using the 3D finite difference time domain method. Further, the electrical performance of the SC reported has been investigated through the finite element method, using the Lumerical charge software package. In this investigation, the axial and core–shell junctions were analyzed looking at the reported crescent and, as well, conventional NW designs. Additionally, the doping concentration and NW-junction position were studied in this design proposed, as well as the carrier-recombination-and-lifetime effects. This study has revealed that the high back surface field layer used improves the conversion efficiency by ∼ 80%. Moreover, conserving the NW radial shell as a low thickness layer can efficiently reduce the NW sidewall recombination effect. The PCE and short circuit current were determined to be equal to 18.5% and 33.8 mA/ cm 2 for the axial junction proposed. However, the core–shell junction shows figures of 19% and 34.9 mA/ cm 2. The suggested crescent design offers an enhancement of 23% compared to the conventional NW, for both junctions. For a practical surface recombination velocity of 10 2 cm/s, the PCE of the proposed design, in the axial junction, has been reduced to 16.6%, with a reduction of 11%. However, the core–shell junction achieves PCE of 18.7%, with a slight reduction of 1.6%. Therefore, the optoelectronic performance of the core–shell junction was marginally affected by the NW surface recombination, compared to the axial junction.

Publication Type: Article
Additional Information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Publisher Keywords: Energy science and technolog, Optics and photonics
Subjects: Q Science > QC Physics
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Departments: School of Mathematics, Computer Science & Engineering > Engineering > Electrical & Electronic Engineering
[img]
Preview
Text - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Export

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login