City Research Online

Luminance Contrast Drives Interactions between Perception and Working Memory

Kosilo, M., Martinovic, J. & Haenschel, C. ORCID: 0000-0001-7855-2735 (2022). Luminance Contrast Drives Interactions between Perception and Working Memory. Journal of Cognitive Neuroscience, 34(7), pp. 1128-1147. doi: 10.1162/jocn_a_01852


Visual working memory (WM) enables the use of past sensory experience in guiding behavior. Yet, laboratory tasks commonly evaluate WM in a way that separates it from its sensory bottleneck. To understand how perception interacts with visual memory, we used a delayed shape recognition task to probe how WM may differ for stimuli that bias processing toward different visual pathways. Luminance compared with chromatic signals are more efficient in driving the processing of shapes and may thus also lead to better WM encoding, maintenance, and memory recognition. To evaluate this prediction, we conducted two experiments. In the first psychophysical experiment, we measured contrast thresholds for different WM loads. Luminance contrast was encoded into WM more efficiently than chromatic contrast, even when both sets of stimuli were equated for discriminability. In the second experiment, which also equated stimuli for discriminability, early sensory responses in the EEG that are specific to luminance pathways were modulated by WM load and thus likely reflect the neural substrate of the increased efficiency. Our results cannot be accounted for by simple saliency differences between luminance and color. Rather, they provide evidence for a direct connection between low-level perceptual mechanisms and WM by showing a crucial role of luminance for forming WM representations of shape.

Publication Type: Article
Additional Information: This article has been published in Journal of Cognitive Neuroscience by MIT Press.
Publisher Keywords: EEG, Psychophysics, Visual Perception, Visual Working Memory, luminance, colour, shape perception
Subjects: B Philosophy. Psychology. Religion > BF Psychology
R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Departments: School of Health & Psychological Sciences > Psychology
SWORD Depositor:
[thumbnail of Kosilo et al accepted JoCN2022.pdf]
Text - Accepted Version
Download (1MB) | Preview


Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login