City Research Online

A fiber Bragg grating-based inclinometer probe with enhanced sensitivity for a higher slope profiling resolution

Sa’ad, M. S. M., Ahmad, H., Samion, M. Z. , Alias, M. A., Zaini, M. K. A., Sing, L. K., Grattan, K. T. V. ORCID: 0000-0003-2250-3832, Rahman, B. M. ORCID: 0000-0001-6384-0961, Brambilla, G., Harun, S. W. & Ismail, M. F. (2023). A fiber Bragg grating-based inclinometer probe with enhanced sensitivity for a higher slope profiling resolution. Sensors and Actuators A: Physical, 364, article number 114804. doi: 10.1016/j.sna.2023.114804

Abstract

A fiber Bragg grating (FBG)-based inclinometer probe with enhanced sensitivity has been developed for slope or ground movement monitoring. The inclinometer probe utilized six FBGs for the tilt measurement and a strain-free FBG that provided the temperature compensation factor. The inclinometer probe was fabricated entirely using a 3D printer and can fit into the standard inclinometer casing, which can be placed into the boreholes. The dimension of the probe is similar to the conventional inclinometer probe, with a total length of 70 cm. Additionally, this design was equipped with three highly compact tilt sensors within the same probe length, providing a better resolution of the inclination profile. Each tilt sensor possesses a flexible middle shaft fabricated using thermoplastic polyurethane (TPU) and was equipped with two FBGs for bi-directional tilt angle measurement (+x and -x). Initially, the tilt sensor was calibrated in the laboratory, which yielded a sensitivity value of 0.0215 nm/°. This value is higher than most previous designs by a factor of two because of the middle shaft's elasticity, which can induce a more significant strain on the FBG. The horizontal displacement of a conventional inclinometer casing could be observed during the field test, which proves the device's functionality. The results have indicated that the inclinometer can be applied in several geotechnical applications, particularly ground movement monitoring.

Publication Type: Article
Additional Information: © 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Keywords: Fiber Bragg grating, inclinometer, tilt sensor, 3D-print, Polylactic Acid, Thermoplastic Polyurethane
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Departments: School of Science & Technology > Engineering
SWORD Depositor:
[thumbnail of 1112 Inclinometer 1-s2.0-S0924424723006532-main.pdf] Text - Accepted Version
This document is not freely accessible until 7 November 2024 due to copyright restrictions.

To request a copy, please use the button below.

Request a copy

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login