City Research Online

Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

Dey, S., Fring, A. & Mathanaranjan, T. (2014). Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra. Annals of Physics, 346, pp. 28-41. doi: 10.1016/j.aop.2014.04.002

Abstract

We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schr\"{o}dinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.

Publication Type: Article
Publisher Keywords: PT-symmetric non-Hermitian systems, Euclidean algebras, Mathieu equations, Optical lattices
Subjects: Q Science > QA Mathematics
Departments: School of Science & Technology > Mathematics
SWORD Depositor:
[thumbnail of Euclidean.pdf]
Preview
PDF
Download (434kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login