City Research Online

An adaptive recurrent neural-network controller using a stabilization matrix and predictive inputs to solve a tracking problem under disturbances

Fairbank, M., Li, S., Fu, X. , Alonso, E. & Wunsch, D. C. (2014). An adaptive recurrent neural-network controller using a stabilization matrix and predictive inputs to solve a tracking problem under disturbances. Neural Networks, 49, pp. 74-86. doi: 10.1016/j.neunet.2013.09.010


We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding gradients, and we propose a solution to this in the case of tracking problems, by introducing a stabilization matrix and by using carefully constrained context units. This solution allows us to achieve consistently lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing tracking targets.

The case study we use is a renewable-energy generator application; that of producing an efficient controller for a three-phase grid-connected converter. The controller we produce can cope with the random variation of system parameters and fluctuating grid voltages. It produces tracking control with almost instantaneous response to changing reference states, and virtually zero oscillation. This compares very favorably to the classical proportional integrator (PI) controllers, which we show produce a much slower response and settling time. In addition, the RNN we propose exhibits better learning stability and convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic designs.

Publication Type: Article
Additional Information: NOTICE: this is the author’s version of a work that was accepted for publication in Neural Networks. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neural Networks, Volume 49, January 2014, Pages 74–86,
Publisher Keywords: Tracking problem; Stabilization matrix; Recurrent neural networks; Exploding gradients; Vector control
Subjects: B Philosophy. Psychology. Religion > BF Psychology
Q Science > QA Mathematics > QA75 Electronic computers. Computer science
R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Departments: School of Science & Technology > Computer Science
Related URLs:
PDF - Accepted Version
Download (588kB) | Preview



Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login