City Research Online

A version of alperin's weight conjecture for finite category algebras

Linckelmann, M. (2013). A version of alperin's weight conjecture for finite category algebras. Journal of Algebra, 398, pp. 386-395. doi: 10.1016/j.jalgebra.2013.02.010


Let p be a prime and k an algebraically closed field of characteristic p. We construct a functor C→OC on the category of finite categories with the property that if G=C is a finite group, then OC is the orbit category of p-subgroups of G. This leads to an extension of Alperin's weight conjecture to any finite category C, stating that the number of isomorphism classes of simple kC-modules should be equal to that of the weight algebra W(kOC) of OC. We show that the versions of Alperin's weight conjecture for finite groups and for finite categories are in fact equivalent. © 2013 Elsevier Inc.

Publication Type: Article
Publisher Keywords: Category algebra; Weight conjecture
Subjects: Q Science > QA Mathematics
Departments: School of Science & Technology > Mathematics
[thumbnail of cat-AWC.pdf]
Text - Accepted Version
Download (167kB) | Preview


Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login