Items where Author is "Christou, D."
Article
Christou, D., Karcanias, N. & Mitrouli, M. (2016). Approximate least common multiple of several polynomials using the ERES division algorithm. Linear Algebra and Its Applications, 511, pp. 141-175. doi: 10.1016/j.laa.2016.09.010
Christou, D., Karcanias, N. & Mitrouli, M. (2014). Matrix representation of the shifting operation and numerical properties of the ERES method for computing the greatest common divisor of sets of many polynomials. Journal of Computational and Applied Mathematics, 260, pp. 54-67. doi: 10.1016/j.cam.2013.09.021
Fatouros, S., Karcanias, N., Christou, D. & Papadopoulos, P. (2013). Approximate greatest common divisor of many polynomials and pseudo-spectrum. System, Structure and Control, 46(2), pp. 623-628. doi: 10.3182/20130204-3-fr-2033.00113
Christou, D., Karcanias, N., Mitrouli, M. & Triantafyllou, D. (2011). Numerical and Symbolical Methods for the GCD of Several Polynomials. Lecture Notes in Electrical Engineering, 80 LNE, pp. 123-144. doi: 10.1007/978-94-007-0602-6_7
Christou, D., Karcanias, N. & Mitrouli, M. (2010). The ERES method for computing the approximate GCD of several polynomials. Applied Numerical Mathematics, 60(1-2), pp. 94-114. doi: 10.1016/j.apnum.2009.10.002
Conference or Workshop Item
Christou, D., Karcanias, N. & Mitrouli, M. (2008). The Euclidean Division as an Iterative ERES-based Process. In: Akrivis, G, Gallopoulos, E, Hadjidimos, A , Kotsireas, IS, Noutsos, D & Vrahatis, MN (Eds.), NumAn 2008 Book of Proceedings. Conference in Numerical Analysis NumAn 2008, 1 Sep 2008 - 5 Sep 2008, Kalamata, Greece.
Christou, D., Karcanias, N. & Mitrouli, M. (2007). A Symbolic-Numeric Software Package for the Computation of the GCD of Several Polynomials. In: Gallopoulos, E, Houstis, E, Kotsireas, IS , Noutsos, D & Vrahatis, MN (Eds.), NumAn 2007 Book of Proceedings. Conference in Numerical Analysis 2007, 3 - 7 Sep 2007, Kalamata, Greece.
Thesis
Christou, D. (2011). ERES Methodology and Approximate Algebraic Computations. (Unpublished Doctoral thesis, City University London)