![]() | Up a level |
Daviaud, L. ORCID: 0000-0002-9220-7118, Jurdziński, M. & Thejaswini, K. S. (2020).
The Strahler number of a parity game.
LIPIcs : Leibniz International Proceedings in Informatics, 168,
123.
doi: 10.4230/LIPIcs.ICALP.2020.123
Czerwiński, W., Daviaud, L., Fijalkow, N. , Jurdziński, M., Lazić, R. & Parys, P. (2019). Universal trees grow inside separating automata: Quasi-polynomial lower bounds for parity games. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. (pp. 2333-2349). Society for Industrial and Applied Mathematics. ISBN 978-1-61197-548-2
Daviaud, L. ORCID: 0000-0002-9220-7118, Jurdziński, M. & Lehtinen, K. (2019).
Alternating Weak Automata from Universal Trees.
Paper presented at the 30th International Conference on Concurrency Theory, 26-31 Aug 2019, Amsterdam, the Netherlands.
doi: 10.4230/LIPIcs.CONCUR.2019.14
Daviaud, L. ORCID: 0000-0002-9220-7118, Jurdziński, M. & Lazić, R. (2018).
A pseudo-quasi-polynomial algorithm for solving mean-payoff parity games.
In:
LICS '18 Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science.
LICS, 2018.
(pp. 325-334). New York, NY: ACM.
ISBN 978-1-4503-5583-4
Daviaud, L., Jurdziński, M., Lazić, R. , Mazowiecki, F., Pérez, G. A. & Worrell, J. (2018). When is Containment Decidable for Probabilistic Automata? In: 45th International Colloquium on Automata, Languages, and Programming. Leibniz International Proceedings in Informatics (LIPIcs), 107. (121:1-121:4). Dagstuhl: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-076-7