Items where Author is "Papoutsakis, A."
Koukas, E., Papoutsakis, A. & Gavaises, M. ORCID: 0000-0003-0874-8534 (2023).
Numerical investigation of shock-induced bubble collapse dynamics and fluid-solid interactions during shock-wave lithotripsy.
Ultrasonics Sonochemistry, 95,
106393.
doi: 10.1016/j.ultsonch.2023.106393
Bidi, S., Koukouvinis, F., Papoutsakis, A. , Shams, A. & Gavaises, M. ORCID: 0000-0003-0874-8534 (2022).
Numerical study of real gas effects during bubble collapse using a disequilibrium multiphase model.
Ultrasonics Sonochemistry, 90,
106175.
doi: 10.1016/j.ultsonch.2022.106175
Papoutsakis, A. ORCID: 0000-0002-5449-5921, Danaila, I., Luddens, F. & Gavaises, M. (2022).
Droplet nuclei caustic formations in exhaled vortex rings.
Scientific Reports, 12(1),
3892.
doi: 10.1038/s41598-022-07717-z
Papoutsakis, A. ORCID: 0000-0002-5449-5921 & Gavaises, M.
ORCID: 0000-0003-0874-8534 (2020).
A model for the investigation of the second-order structure of caustic formations in dispersed flows.
Journal of Fluid Mechanics, 892,
A4.
doi: 10.1017/jfm.2020.176
Papoutsakis, A. ORCID: 0000-0002-5449-5921, Koukouvinis, P.
ORCID: 0000-0002-3945-3707 & Gavaises, M.
ORCID: 0000-0003-0874-8534 (2020).
Solution of cavitating compressible flows using Discontinuous Galerkin discretisation.
Journal of Computational Physics, 410,
109377.
doi: 10.1016/j.jcp.2020.109377
Danaila, I., Luddens, F., Kaplanski, F. , Papoutsakis, A. ORCID: 0000-0002-5449-5921 & Sazhin, S. S. (2018).
Formation number of confined vortex rings.
Physical Review Fluids, 3(9),
doi: 10.1103/PhysRevFluids.3.094701
Papoutsakis, A., Rybdylova, O. D., Zaripov, T. S. , Danaila, L., Osiptsov, A. N. & Sazhin, S. S. (2018). Modelling of the evolution of a droplet cloud in a turbulent flow. International Journal of Multiphase Flow, 104, pp. 233-257. doi: 10.1016/j.ijmultiphaseflow.2018.02.014
Papoutsakis, A., Sazhin, S., Begg, S. , Danaila, I. & Luddens, F. (2018). An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows. Journal of Computational Physics, 363, pp. 399-427. doi: 10.1016/j.jcp.2018.02.048