City Research Online

Items where City Author is "Devisscher, Maud"

Up a level
Group by: Type | No Grouping
Number of items: 20.

Bowman, C., De Visscher, M. ORCID: 0000-0003-0617-2818, Farrell, N. , Hazi, A. & Norton, E. (2024). Oriented Temperley-Lieb algebras and Combinatorial Kazhdan-Lusztig theory. Canadian Journal of Mathematics,

De Visscher, M. ORCID: 0000-0003-0617-2818 & Creedon, S. (2023). Defining an affine partition algebra. Algebras and Representation Theory, 26(6), pp. 2913-2965. doi: 10.1007/s10468-022-10196-5

Bowman, C., De Visscher, M. ORCID: 0000-0003-0617-2818 & Enyang, J. (2020). The co-Pieri rule for stable Kronecker coefficients. Journal of Combinatorial Theory: Series A, 177, article number 105297. doi: 10.1016/j.jcta.2020.105297

Barbier, S., Cox, A. ORCID: 0000-0001-9799-3122 & De Visscher, M. ORCID: 0000-0003-0617-2818 (2019). The blocks of the periplectic Brauer algebra in positive characteristic. Journal of Algebra, 534, pp. 289-312. doi: 10.1016/j.jalgebra.2019.06.016

Bowman, C., De Visscher, M. & Enyang, J. (2019). Simple modules for the partition algebra and monotone convergence of Kronecker coefficients. International Mathematics Research Notices, 2019(4), pp. 1059-1097. doi: 10.1093/imrn/rnx095

De Visscher, M. & Martin, P. (2016). On Brauer algebra simple modules over the complex field. Transactions of the American Mathematical Society, 369(3), pp. 1579-1609. doi: 10.1090/tran/6716

De Visscher, M., Bowman, C. & King, O. (2015). The blocks of the partition algebra in positive characteristic. Algebras and Representation Theory, 18(5), pp. 1357-1388. doi: 10.1007/s10468-015-9544-9

De Visscher, M., Bowman, C. & Orellana, R. (2015). The partition algebra and the Kronecker coefficients. Transactions of the American Mathematical Society, 367(5), pp. 3647-3667. doi: 10.1090/s0002-9947-2014-06245-4

Bowman, C., Cox, A. & De Visscher, M. (2013). Decomposition numbers for the cyclotomic Brauer algebras in characteristic zero. Journal of Algebra, 378, pp. 80-102. doi: 10.1016/j.jalgebra.2012.12.020

De Visscher, M., Bowman, C. & Orellana, R. (2013). The partition algebra and the Kronecker product (Extended Abstract). In: DMTCS proceedings. DMTCS Proceedings, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 24 June - 28 June 2013, Paris, France.

Cox, A. & De Visscher, M. (2011). Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra. Journal of Algebra, 340(1), pp. 151-181. doi: 10.1016/j.jalgebra.2011.05.024

Cox, A., De Visscher, M. & Martin, P. (2011). Alcove geometry and a translation principle for the Brauer algebra. Journal of Pure and Applied Algebra, 215(4), pp. 335-367. doi: 10.1016/j.jpaa.2010.04.023

Cox, A., De Visscher, M. & Martin, P. (2009). The blocks of the Brauer algebra in characteristic zero. Representation Theory, 13(13), pp. 272-308. doi: 10.1090/s1088-4165-09-00305-7

Cox, A., De Visscher, M. & Martin, P. (2009). A geometric characterisation of the blocks of the Brauer algebra. Journal of the London Mathematical Society, 80(2), pp. 471-494. doi: 10.1112/jlms/jdp039

Cox, A., De Visscher, M., Doty, S. & Martin, P. (2008). On the blocks of the walled Brauer algebra. Journal of Algebra, 320(1), pp. 169-212. doi: 10.1016/j.jalgebra.2008.01.026

De Visscher, M. (2008). On the blocks of semisimple algebraic groups and associated generalized Schur algebras. Journal of Algebra, 319(3), pp. 952-965. doi: 10.1016/j.jalgebra.2007.11.015

De Visscher, M. (2006). A note on the tensor product of restricted simple modules for algebraic groups. Journal of Algebra, 303(1), pp. 407-415. doi: 10.1016/j.jalgebra.2005.06.010

De Visscher, M. & Donkin, S. (2005). On projective and injective polynomial modules. Mathematische Zeitschrift, 251(2), pp. 333-358. doi: 10.1007/s00209-005-0805-x

De Visscher, M. (2005). Quasi-hereditary quotients of finite Chevalley groups and Frobenius kernels. The Quarterly Journal of Mathematics, 56(1), pp. 111-121. doi: 10.1093/qmath/hah025

De Visscher, M. (2002). Extensions of modules for SL(2,K). Journal of Algebra, 254(2), pp. 409-421. doi: 10.1016/s0021-8693(02)00084-4

This list was generated on Mon Dec 23 02:32:20 2024 UTC.