City Research Online

Items where Schools and Departments is "Actuarial Science & Insurance" and Year is 2016

Up a level
Export as [feed] RSS 2.0 [feed] RSS
Group by: Authors | Type | No Grouping
Jump to: A | B | C | D | F | G | H | I | K | L | M | P | R | S | T | W
Number of items: 43.

A

Aggarwal, A., Beck, M. B., Cann, M. , Ford, T., Georgescu, D., Morjaria, N., Smith, A., Taylor, Y., Tsanakas, A., Witts, L. & Ye, I. (2016). Model risk – daring to open up the black box. British Actuarial Journal, 21(2), pp. 229-296. doi: 10.1017/S1357321715000276

Asimit, A.V., Badescu, A., Haberman, S. & Kim, E-S. (2016). Efficient risk allocation within a non-life insurance group under Solvency II Regime. Insurance: Mathematics and Economics, 66, pp. 69-76. doi: 10.1016/j.insmatheco.2015.10.008

Asimit, A.V., Furman, E. & Vernic, R. (2016). Statistical Inference for a New Class of Multivariate Pareto Distributions. Communications in Statistics: Simulation and Computation, 45(2), pp. 456-471. doi: 10.1080/03610918.2013.861627

Asimit, A.V. & Gerrard, R. J. G. (2016). On the worst and least possible asymptotic dependence. Journal of Multivariate Analysis, 144, pp. 218-234. doi: 10.1016/j.jmva.2015.11.004

Asimit, A.V., Gerrard, R. J. G., Yanxi, H. & Peng, L. (2016). Tail Dependence Measure for Examining Financial Extreme Co-movements. Journal of Econometrics, 194(2), pp. 330-348. doi: 10.1016/j.jeconom.2016.05.011

Asimit, A.V. & Li, J. (2016). Extremes for coherent risk measures. Insurance: Mathematics and Economics, 71, pp. 332-341. doi: 10.1016/j.insmatheco.2016.10.003

Asimit, A.V., Vernic, R. & Zitikis, R. (2016). Background Risk Models and Stepwise Portfolio Construction. Methodology and Computing in Applied Probability, 18(3), pp. 805-827. doi: 10.1007/s11009-015-9458-3

B

Biffis, E., Blake, D., Pitotti, L. & Sun, A. (2016). The Cost of Counterparty Risk and Collateralization in Longevity Swaps. Journal Of Risk And Insurance, 83(2), pp. 387-419. doi: 10.1111/jori.12055

Bignozzi, V. & Tsanakas, A. (2016). Model uncertainty in risk capital measurement. Journal of Risk, 18(3), pp. 1-24.

Bignozzi, V. & Tsanakas, A. (2016). Parameter uncertainty and residual estimation risk. Journal of Risk and Insurance, 83(4), pp. 949-978. doi: 10.1111/jori.12075

Blake, D. (2016). Independent Review of Retirement Income Report: We Need a National Narrative: Building a Consensus around Retirement Income. UK: Independent Review of Retirement Income.

Blyth, W., Bunn, D., Chronopoulos, M. & Munoz, J. (2016). Systematic analysis of the evolution of electricity and carbon markets under deep decarbonization. Journal of Energy Markets, 9(3), pp. 59-94. doi: 10.21314/JEM.2016.150

Bryce, C. ORCID: 0000-0002-9856-7851, Webb, R., Cheevers, C. , Ring, P. & Clark, G. (2016). Should the insurance industry be banking on risk escalation for solvency II?. International Review of Financial Analysis, 46, pp. 131-139. doi: 10.1016/j.irfa.2016.04.014

C

Cannon, E. (2016). Independent Review of Retirement Income: Consultation. UK: Independent Review of Retirement Income.

Chronopoulos, M., Hagspiel, V. & Fleten, S-K. (2016). Stepwise Green Investment under Policy Uncertainty. Energy Journal, 37(4), pp. 87-108. doi: 10.5547/01956574.37.4.mchr

D

D'Amato, V., Haberman, S., Piscopo, G. , Russolillo, M. & Trapani, L. (2016). Multiple mortality modeling in Poisson Lee-Carter framework. Communications in Statistics - Theory and Methods, 45(6), pp. 1723-1732. doi: 10.1080/03610926.2014.960580

Dimitrova, D. S., Kaishev, V. K. & Zhao, S. (2016). On the evaluation of finite-time ruin probabilities in a dependent risk model. Applied Mathematics and Computation, 275, pp. 268-286. doi: 10.1016/j.amc.2015.11.082

F

Fusai, G. & Kyriakou, I. (2016). General optimized lower and upper bounds for discrete and continuous arithmetic Asian options. Mathematics of Operations Research, 41(2), pp. 531-559. doi: 10.1287/moor.2015.0739

G

Godínez-Olivares, H., Boado-Penas, M. D. C. & Haberman, S. (2016). Optimal strategies for pay-as-you-go pension finance: A sustainability framework. Insurance: Mathematics and Economics, 69, pp. 117-126. doi: 10.1016/j.insmatheco.2016.05.001

González-Manteiga, W., Martinez-Miranda, M. D. & Van Keilegom, I. (2016). Goodness-of-fit test in parametric mixed effects models based on estimation of the error distribution. Biometrika, 103(1), pp. 133-146. doi: 10.1093/biomet/asv061

Gámiz Pérez, M. L., Mammen, E., Miranda, M. D. M. & Nielsen, J. P. (2016). Double one-sided cross-validation of local linear hazards. Journal of the Royal Statistical Society: Series B, 78(4), pp. 755-779. doi: 10.1111/rssb.12133

H

Haibu, M., Margraf, C., Miranda, M. D. M. & Nielsen, J. P. (2016). Cash flow generalisations of non-life insurance expert systems estimating outstanding liabilities. Expert Systems with Applications, 45, pp. 400-409. doi: 10.1016/j.eswa.2015.09.021

Haibu, M., Margraf, C., Miranda, M. D. M. & Nielsen, J. P. (2016). The Link Between Classical Reserving and Granular Reserving Through Double Chain Ladder and its Extensions. British Actuarial Journal, 21(1), pp. 97-116. doi: 10.1017/S1357321715000288

Harper, G. & Mayhew, L. (2016). Using Administrative Data to Count and Classify Households with Local Applications. Applied Spatial Analysis and Policy, 9(4), pp. 433-462. doi: 10.1007/s12061-015-9162-2

Hiabu, M. (2016). In-sample forecasting: structured models and reserving. (Unpublished Doctoral thesis, City, University of London)

Hiabu, M. (2016). On the relationship between classical chain ladder and granular reserving. Scandinavian Actuarial Journal, 2017(8), pp. 708-729. doi: 10.1080/03461238.2016.1240709

Hiabu, M., Mammen, E., Martinez-Miranda, M. D. & Nielsen, J. P. (2016). In-Sample Forecasting with Local Linear Survival Densities. Biometrika, 103(4), pp. 843-859. doi: 10.1093/biomet/asw038

I

Ignatov, Z. G. & Kaishev, V. K. (2016). First crossing time, overshoot and Appell-Hessenberg type functions. Stochastics: An International Journal of Probability and Stochastic Processes, 88(8), pp. 1240-1260. doi: 10.1080/17442508.2016.1230613

K

Kaishev, V. K., Dimitrova, D. S., Haberman, S. & Verrall, R. J. (2016). Geometrically designed, variable knot regression splines. Computational Statistics, 31(3), pp. 1079-1105. doi: 10.1007/s00180-015-0621-7

Kreif, N., Gruber, S., Radice, R. ORCID: 0000-0002-6316-3961 , Grieve, R. & Sekhon, J. S. (2016). Evaluating treatment effectiveness under model misspecification: A comparison of targeted maximum likelihood estimation with bias-corrected matching. Statistical Methods in Medical Research, 25(5), pp. 2315-2336. doi: 10.1177/0962280214521341

Krummaker, S. ORCID: 0000-0003-2471-8175 (2016). Corporate Demand for Insurance: Empirical Evidence from Germany. .

L

Luciano, E., Spreeuw, J. & Vigna, E. (2016). Spouses’ Dependence across Generations and Pricing Impact on Reversionary Annuities. Risks, 4(2), 16-.. doi: 10.3390/risks4020016

M

Martinez-Miranda, M. D., Nielsen, B. & Nielsen, J. P. (2016). A simple benchmark for mesothelioma projection for Great Britain. Occupational and Environmental Medicine, 73, pp. 561-563. doi: 10.1136/oemed-2015-103303

Mayhew, L. (2016). Means Testing Social Care in England. UK: International Longevity Centre.

Mayhew, L. & Smith, D. (2016). Decomposition of Life Expectancy at Older Ages and Prospects for Ageing Populations. In: Lombard, J., Stern, E. & Clarke, G. (Eds.), Applied Spatial Modelling and Planning. (pp. 172-188). Routledge.

Mayhew, L. & Smith, D. (2016). An investigation into inequalities in adult lifespan. UK: International Longevity Centre- UK.

P

Papapostolou, N. C., Pouliasis, P. K., Nomikos, N. & Kyriakou, I. (2016). Shipping Investor Sentiment and International Stock Return Predictability. Transportation Research Part E: Logistics and Transportation Review, 96, pp. 81-94. doi: 10.1016/j.tre.2016.10.006

Pesenti, S. M., Millossovich, P. & Tsanakas, A. (2016). Robustness Regions for Measures of Risk Aggregation. Dependence Modeling, 4(1), pp. 348-367. doi: 10.1515/demo-2016-0020

R

Radice, R. ORCID: 0000-0002-6316-3961, Marra, G. & Wojtys, M. (2016). Copula regression spline models for binary outcomes. Statistics and Computing, 26(5), pp. 981-995. doi: 10.1007/s11222-015-9581-6

Ring, P. J., Bryce, C. ORCID: 0000-0002-9856-7851, McKinney, R. & Webb, R. (2016). Taking notice of risk culture – the regulator’s approach. Journal of Risk Research, 19(3), pp. 364-387. doi: 10.1080/13669877.2014.983944

S

Scholz, M., Sperlich, S. & Nielsen, J. P. (2016). Nonparametric long term prediction of stock returns with generated bond yields. Insurance: Mathematics and Economics, 69, pp. 82-96. doi: 10.1016/j.insmatheco.2016.04.007

T

Tsanakas, A. (2016). Making a Market for Acts of God: The Practice of Risk-Trading in the Global Reinsurance Industry. Journal Of Risk And Insurance, 83(2), pp. 501-504. doi: 10.1111/jori.12160

W

Wojtys, M., Marra, G. & Radice, R. ORCID: 0000-0002-6316-3961 (2016). Copula Regression Spline Sample Selection Models: The R Package SemiParSampleSel. Journal of Statistical Software, 71(6), doi: 10.18637/jss.v071.i06

This list was generated on Mon Aug 8 04:33:11 2022 UTC.