A neural cognitive model of argumentation with application to legal inference and decision making
d'Avila Garcez, A. S., Gabbay, D. M. & Lamb, L. C. (2014). A neural cognitive model of argumentation with application to legal inference and decision making. Journal of Applied Logic, 12(2), pp. 109-127. doi: 10.1016/j.jal.2013.08.004
Abstract
Formal models of argumentation have been investigated in several areas, from multi-agent systems and artificial intelligence (AI) to decision making, philosophy and law. In artificial intelligence, logic-based models have been the standard for the representation of argumentative reasoning. More recently, the standard logic-based models have been shown equivalent to standard connectionist models. This has created a new line of research where (i) neural networks can be used as a parallel computational model for argumentation and (ii) neural networks can be used to combine argumentation, quantitative reasoning and statistical learning. At the same time, non-standard logic models of argumentation started to emerge. In this paper, we propose a connectionist cognitive model of argumentation that accounts for both standard and non-standard forms of argumentation. The model is shown to be an adequate framework for dealing with standard and non-standard argumentation, including joint-attacks, argument support, ordered attacks, disjunctive attacks, meta-level attacks, self-defeating attacks, argument accrual and uncertainty. We show that the neural cognitive approach offers an adequate way of modelling all of these different aspects of argumentation. We have applied the framework to the modelling of a public prosecution charging decision as part of a real legal decision making case study containing many of the above aspects of argumentation. The results show that the model can be a useful tool in the analysis of legal decision making, including the analysis of what-if questions and the analysis of alternative conclusions. The approach opens up two new perspectives in the short-term: the use of neural networks for computing prevailing arguments efficiently through the propagation in parallel of neuronal activations, and the use of the same networks to evolve the structure of the argumentation network through learning (e.g. to learn the strength of arguments from data).
Publication Type: | Article |
---|---|
Additional Information: | © 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Publisher Keywords: | Argumentation; Neural-symbolic reasoning; Legal decision making; Cognitive modelling |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry |
Departments: | School of Science & Technology > Computer Science |
SWORD Depositor: |
Available under License : See the attached licence file.
Download (399kB) | Preview
Download (201kB) | Preview
Export
Downloads
Downloads per month over past year