Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus)
Ponitz, B., Schmitz, A., Fischer, D. , Bleckmann, H. & Brücker, C. (2014). Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus). PLoS ONE, 9(2), pp. 1-13. doi: 10.1371/journal.pone.0086506
Abstract
This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.
Publication Type: | Article |
---|---|
Additional Information: | © Ponitz et al. |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Departments: | School of Science & Technology |
SWORD Depositor: |
Available under License Creative Commons: Attribution International Public License 4.0.
Download (8MB) | Preview
Export
Downloads
Downloads per month over past year