Starting jet flows in a three-dimensional channel with larynx-shaped constriction
Schwarze, R., Mattheus, W., Klostermann, J. & Brücker, C. (2011). Starting jet flows in a three-dimensional channel with larynx-shaped constriction. Computers and Fluids, 48(1), pp. 68-83. doi: 10.1016/j.compfluid.2011.03.016
Abstract
A numerical model for the three-dimensional starting jet flow in a channel with a static larynx-shaped constriction is presented. Detailed resolution of this kind of jet flow is necessary in order to understand the complex coupling between flow and acoustics in the process of human phonation. The numerical model is based on the equation of continuity and the Navier-Stokes equations. The investigations are done with the open source CFD package OpenFOAM. Numerical simulations are performed for a square-sectioned channel geometry, which is constricted with a fixed shape conforming to the fully opened human glottis. Time-dependent inflow boundary conditions are applied in order to model transient glottal flow rates. The setup of the numerical simulations corresponds to the configuration of a model experiment in order to allow detailed validation. The numerical results are in good agreement with the experimental data, when the near-wall region in the glottal gap is adequately resolved by the numerical grid. The results illustrate the complex interactions between the jet flow and the surrounding vortices. © 2011 Elsevier Ltd.
Publication Type: | Article |
---|---|
Additional Information: | © 2011 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Publisher Keywords: | Glottal airflow; Elliptic jet; Instability; Jet breakdown; Numerical simulation; Larynx-shaped channel; Starting jet flow; Numerical model; Validation |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Departments: | School of Science & Technology |
SWORD Depositor: |
Available under License : See the attached licence file.
Download (3MB) | Preview
Download (201kB) | Preview
Export
Downloads
Downloads per month over past year