A fiberoptic sensor for tissue carbon dioxide monitoring
Davenport, J. J., Hickey, M., Phillips, J. P. & Kyriacou, P. A. (2015). A fiberoptic sensor for tissue carbon dioxide monitoring. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 7942-7945. doi: 10.1109/EMBC.2015.7320234
Abstract
We present a new fiberoptic carbon dioxide sensor for transcutaneous and mucosa (indwelling) blood gas monitoring. The sensor is based on optical fluorescence of molecules sensitive to pH changes associated with dissolved CO2. A three layer chemical coating was dip-coated onto the distal tip of an optical fiber (600μm core radius). It contained the 50mg/ml 'polym H7', a coating polymer bonded to a fluorescence indicator dye, along with 125mg/ml of the transfer agent tetraoctylammonium hydroxide (TONOH). Light from a blue (460 nm) LED was launched into the fiber to excite the sensing film. The sensing film fluoresced green (530 nm), the intensity of which decreased in the presence of CO2. The sensor was tested in vitro, finding a correlation between change in fluorescence (in AU) and aqueous CO2 concentration with a minimum detection threshold of 40%. The sensor is being developed for medical applications where its small size and ability to continuously monitor the partial pressure of CO2 (PCO2) will make it an extremely useful diagnostic tool.
Publication Type: | Article |
---|---|
Additional Information: | © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Departments: | School of Science & Technology > Engineering |
Download (253kB) | Preview
Export
Downloads
Downloads per month over past year