City Research Online

Push-out tests and analytical study of shear transfer mechanisms in composite shallow cellular floor beams

Huo, B. Y. & D'Mello, C. (2013). Push-out tests and analytical study of shear transfer mechanisms in composite shallow cellular floor beams. Journal of Constructional Steel Research, 88, pp. 191-205. doi: 10.1016/j.jcsr.2013.05.007


The shear transferring mechanisms of composite shallow cellular floor beams are different with the conventional headed shear studs, and have not been investigated previously. This paper presents the experimental and analytical studies of the shear transferring mechanisms with the aims to provide information on their shear resistance and behaviour. The composite shallow cellular floor beam is a new type of composite floor beam that consists of an asymmetric steel section with circular web openings and concrete slabs incorporated between the top and bottom flange. The unique feature of the web openings allows tie-bars, building services and ducting to pass through the structural depth of the floor beam, creating an ultra-shallow floor beam structure. The shear connection of the composite shallow cellular floor beam is formed innovatively by the web openings, as the in-situ concrete passes through the web openings may or may not include the tie-bars or ducting to transfer the longitudinal shear force. In total, 24 push-out tests were carried out to investigate the shear connection under the direct shear force. The effect of loading cycles on the shear connection was also investigated. The failure mechanisms of the shear connection were extensively studied, which had led to the development of a calculation method of shear resistance for the shear connection.

Publication Type: Article
Additional Information: © 2013, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Publisher Keywords: Shear transfer; Shear connection; Composite floor beam; Web opening; Push-out test; Loading cycle; Failure mechanism; Analytical study
Subjects: T Technology > TH Building construction
Departments: School of Science & Technology > Engineering
Text - Accepted Version
Available under License : See the attached licence file.

Download (1MB) | Preview
Text (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence) - Other
Download (201kB) | Preview



Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login