City Research Online

Transonic flutter analysis using a fully coupled density based solver for inviscid flow

Kassem, H. I., Liu, X. & Banerjee, J. R. (2016). Transonic flutter analysis using a fully coupled density based solver for inviscid flow. Advances in Engineering Software, 95, pp. 1-6. doi: 10.1016/j.advengsoft.2016.01.012


This paper focuses on the coupling between the high fidelity aerodynamic model for the flow field and the modal analysis of a typical wing section to carry out flutter analysis. This coupled aeroelastic model is implemented in one of the most widely used open source CFD codes called OpenFOAM. The model is designed to calculate the structural displacement in the time domain based on the free vibration modes of the structure by constructing the numerical model directly from the modal analysis. Essentially a second order ordinary differential equation is solved for each mode as a function of the generalised coordinates. A density based solver using central difference scheme of Kurganov and Tadmor is used to model the flow field. Two main cases of transonic flow over NACA 64A010 are modelled for a forced pitching oscillation airfoil and a self-sustained aerofoil respectively. The self-sustained two degrees of freedom case is modelled for three different possibilities covering damped, neutral and divergent oscillations. Predicted results show very good agreement with the numerical and experimental data available in the literature.

Publication Type: Article
Additional Information: © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Publisher Keywords: Aeroelasticity; CFD; Transonic flow; Flutter; OpenFOAM; Modal analysis
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Departments: School of Science & Technology > Engineering
SWORD Depositor:
[thumbnail of ADES_paper.pdf]
Text - Accepted Version
Available under License : See the attached licence file.

Download (902kB) | Preview
[thumbnail of Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence]
Text (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence) - Other
Download (201kB) | Preview


Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login