Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects
Banerjee, J. R. & Kennedy, D. (2014). Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. Journal of Sound and Vibration, 333(26), pp. 7299-7312. doi: 10.1016/j.jsv.2014.08.019
Abstract
The paper addresses the in-plane free vibration analysis of rotating beams using an exact dynamic stiffness method. The analysis includes the Coriolis effects in the free vibratory motion as well as the effects of an arbitrary hub radius and an outboard force. The investigation focuses on the formulation of the frequency dependent dynamic stiffness matrix to perform exact modal analysis of rotating beams or beam assemblies. The governing differential equations of motion, derived from Hamilton's principle, are solved using the Frobenius method. Natural boundary conditions resulting from the Hamiltonian formulation enable expressions for nodal forces to be obtained in terms of arbitrary constants. The dynamic stiffness matrix is developed by relating the amplitudes of the nodal forces to those of the corresponding responses, thereby eliminating the arbitrary constants. Then the natural frequencies and mode shapes follow from the application of the Wittrick–Williams algorithm. Numerical results for an individual rotating beam for cantilever boundary condition are given and some results are validated. The influences of Coriolis effects, rotational speed and hub radius on the natural frequencies and mode shapes are illustrated.
Publication Type: | Article |
---|---|
Additional Information: | © 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Departments: | School of Science & Technology > Engineering |
SWORD Depositor: |
Available under License : See the attached licence file.
Download (492kB) | Preview
Download (201kB) | Preview
Export
Downloads
Downloads per month over past year