City Research Online

Identification robust inference in cointegrating regressions

Khalaf, L. & Urga, G. (2014). Identification robust inference in cointegrating regressions. Journal of Econometrics, 182(2), pp. 385-396. doi: 10.1016/j.jeconom.2014.06.001

Abstract

In cointegrating regressions, estimators and test statistics are nuisance parameter dependent. This paper addresses this problem from an identification-robust perspective. Confidence sets for the long-run coefficient (denoted β) are proposed that invert LR-tests against an unrestricted or a cointegration-restricted alternative. For empirically relevant special cases, we provide analytical solutions to the inversion problem. A simulation study, imposing and relaxing strong exogeneity, analyzes our methods relative to standard Maximum Likelihood, Fully Modified and Dynamic OLS, and a stationarity-test based counterpart. In contrast with all the above, proposed methods have good size regardless of the identification status, and good power when β is identified.

Publication Type: Article
Additional Information: © 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Keywords: Cointegration; Weak identification; Bound test; Simulation-based inference
Subjects: H Social Sciences > HG Finance
Departments: Bayes Business School > Finance
SWORD Depositor:
[thumbnail of Khalaf&UrgaRR2.pdf]
Preview
Text - Accepted Version
Available under License : See the attached licence file.

Download (250kB) | Preview
[thumbnail of Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence]
Preview
Text (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence) - Other
Download (201kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login