Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory
Boscolo, M. & Banerjee, J. R. (2012). Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory. Computers & Structures, 96-97, pp. 61-73. doi: 10.1016/j.compstruc.2012.01.002
Abstract
The dynamic stiffness formulation for both inplane and bending free vibration based on the first order shear deformation theory for composite plates is presented. The explicit terms of the dynamic stiffness matrices are also given. Plates with different boundary conditions are considered. Rotation and offset matrices for the element are developed and an assembly technique given. The Wittrick and Williams algorithm is modified to avoid the troublesome computation of the clamped–clamped natural frequencies when solving the free vibration problem. The validation of the theory and its application to real structures are illustrated in the second part of this paper.
Publication Type: | Article |
---|---|
Additional Information: | © 2012, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Publisher Keywords: | Dynamic stiffness method; Thin-walled structures; Free vibration analysis; Plates; Composites |
Subjects: | T Technology > TJ Mechanical engineering and machinery |
Departments: | School of Science & Technology > Engineering |
SWORD Depositor: |
Available under License : See the attached licence file.
Download (1MB) | Preview
Download (201kB) | Preview
Export
Downloads
Downloads per month over past year