City Research Online

On the magnitude of a finite dimensional algebra

Chuang, J., King, A. & Leinster, T. (2016). On the magnitude of a finite dimensional algebra. Theory and Applications of Categories, 31(3), pp. 63-72.

Abstract

There is a general notion of the magnitude of an enriched category, defined subject to hypotheses. In topological and geometric contexts, magnitude is already known to be closely related to classical invariants such as Euler characteristic and dimension. Here we establish its significance in an algebraic context. Specifically, in the representation theory of an associative algebra $A$, a central role is played by the indecomposable projective $A$-modules, which form a category enriched in vector spaces. We show that the magnitude of that category is a known homological invariant of the algebra: writing $\chi_A$ for the Euler form of $A$ and $S$ for the direct sum of the simple $A$-modules, it is $\chi_A(S,S)$.

Publication Type: Article
Additional Information: Copyright the authors, 2016.
Subjects: Q Science > QA Mathematics
Departments: School of Science & Technology > Mathematics
[thumbnail of Magnitude.pdf]
Preview
Text - Accepted Version
Download (300kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login