Deriving a frequentist conservative confidence bound for probability of failure per demand for systems with different operational and test profiles
Bishop, P. G. & Povyakalo, A. A. (2017). Deriving a frequentist conservative confidence bound for probability of failure per demand for systems with different operational and test profiles. Reliability Engineering & System Safety, 158, pp. 246-253. doi: 10.1016/j.ress.2016.08.019
Abstract
Reliability testing is typically used in demand-based systems (such as protection systems) to derive a confidence bound for a specific operational profile. To be realistic, the number of tests for each class of demand should be proportional to the demand frequency of the class. In practice however, the actual operational profile may differ from that used during testing. This paper provides a means for estimating the confidence bound when the test profile differs from the profile used in actual operation. Based on this analysis the paper examines what bound can be claimed for different types of profile uncertainty and options for dealing with this uncertainty. We also show that the same conservative bound estimation equations can be applied to cases where different measures of software test coverage and operational profile are used.
Publication Type: | Article |
---|---|
Additional Information: | © 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Publisher Keywords: | Statistical testing; Confidence bounds; Operational profile; Software reliability |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Departments: | School of Science & Technology > Computer Science > Software Reliability |
SWORD Depositor: |
Available under License : See the attached licence file.
Download (283kB) | Preview
Download (201kB)
Export
Downloads
Downloads per month over past year