City Research Online

Approximate least common multiple of several polynomials using the ERES division algorithm

Christou, D., Karcanias, N. & Mitrouli, M. (2016). Approximate least common multiple of several polynomials using the ERES division algorithm. Linear Algebra and Its Applications, 511, pp. 141-175. doi: 10.1016/j.laa.2016.09.010

Abstract

In this paper a numerical method for the computation of the approximate least common multiple (ALCM) of a set of several univariate real polynomials is presented. The most important characteristic of the proposed method is that it avoids root finding procedures and computations involving the greatest common divisor (GCD). Conversely, it is based on the algebraic construction of a special matrix which contains key data from the original set of polynomials and leads to the formulation of a linear system which provides the degree and the coefficients of the ALCM using low-rank approximation techniques and numerical optimization tools particularly in the presence of inaccurate data. The numerical stability and complexity of the method are analysed, and a comparison with other methods is provided.

Publication Type: Article
Publisher Keywords: Greatest common divisor; Linear systems; Shifting operation; Numerical errors; Least squares
Subjects: Q Science > QA Mathematics
Departments: School of Science & Technology > Engineering
SWORD Depositor:
[thumbnail of (271) ERES LCM Rev2 28-08-16 Repository.pdf]
Preview
Text - Accepted Version
Available under License : See the attached licence file.

Download (532kB) | Preview
[thumbnail of Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence]
Preview
Text (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence) - Other
Download (201kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login