Assessing the Graphical Perception of Time and Speed on 2D+Time Trajectories
Perin, C., Wun, T., Pusch, R. & Carpendale, S. (2017). Assessing the Graphical Perception of Time and Speed on 2D+Time Trajectories. IEEE Transactions on Visualization and Computer Graphics, 24(1), pp. 698-708. doi: 10.1109/tvcg.2017.2743918
Abstract
We empirically evaluate the extent to which people perceive non-constant time and speed encoded on 2D paths. In our graphical perception study, we evaluate nine encodings from the literature for both straight and curved paths. Visualizing time and speed information is a challenge when the x and y axes already encode other data dimensions, for example when plotting a trip on a map. This is particularly true in disciplines such as time-geography and movement analytics that often require visualizing spatio-temporal trajectories. A common approach is to use 2D+time trajectories, which are 2D paths for which time is an additional dimension. However, there are currently no guidelines regarding how to represent time and speed on such paths. Our study results provide InfoVis designers with clear guidance regarding which encodings to use and which ones to avoid; in particular, we suggest using color value to encode speed and segment length to encode time whenever possible.
Publication Type: | Article |
---|---|
Additional Information: | © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Publisher Keywords: | Trajectory visualization, visual encoding, movement data, graphical perception, quantitative evaluation |
Departments: | School of Science & Technology > Computer Science School of Science & Technology > Computer Science > giCentre |
SWORD Depositor: |
Download (24MB) | Preview
Export
Downloads
Downloads per month over past year