Anchoring Knowledge in Interaction: Towards a Harmonic Subsymbolic/Symbolic Framework and Architecture of Computational Cognition
Besold, T. R., Kuehnberger, K-U., Garcez, A. , Saffiotti, A., Fischer, M. H. & Bundy, A. (2015). Anchoring Knowledge in Interaction: Towards a Harmonic Subsymbolic/Symbolic Framework and Architecture of Computational Cognition. Lecture Notes in Computer Science, 9205, pp. 35-45. doi: 10.1007/978-3-319-21365-1_4
Abstract
We outline a proposal for a research program leading to a new paradigm, architectural framework, and prototypical implementation, for the cognitively inspired anchoring of an agent’s learning, knowledge formation, and higher reasoning abilities in real-world interactions: Learning through interaction in real-time in a real environment triggers the incremental accumulation and repair of knowledge that leads to the formation of theories at a higher level of abstraction. The transformations at this higher level filter down and inform the learning process as part of a permanent cycle of learning through experience, higher-order deliberation, theory formation and revision.
The envisioned framework will provide a precise computational theory, algorithmic descriptions, and an implementation in cyber-physical systems, addressing the lifting of action patterns from the subsymbolic to the symbolic knowledge level, effective methods for theory formation, adaptation, and evolution, the anchoring of knowledge-level objects, real-world interactions and manipulations, and the realization and evaluation of such a system in different scenarios. The expected results can provide new foundations for future agent architectures, multi-agent systems, robotics, and cognitive systems, and can facilitate a deeper understanding of the development and interaction in human-technological settings.
Publication Type: | Article |
---|---|
Additional Information: | This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-21365-1_4 |
Departments: | School of Science & Technology > Computer Science |
SWORD Depositor: |
Download (1MB) | Preview
Export
Downloads
Downloads per month over past year