City Research Online

Blocks with quaternion defect group over a 2-adic ring: the case \tilde{A}_4

Holm, T., Kessar, R. and Linckelmann, M. (2007). Blocks with quaternion defect group over a 2-adic ring: the case \tilde{A}_4. Glasgow Mathematical Journal, 49(1), pp. 29-43. doi: 10.1017/S0017089507003394


Except for blocks with a cyclic or Klein four defect group, it is not known in general whether the Morita equivalence class of a block algebra over a field of prime characteristic determines that of the corresponding block algebra over a p-adic ring. We prove this to be the case when the defect group is quaternion of order 8 and the block algebra over an algebraically closed field k of characteristic 2 is Morita equivalent to $k\tilde A_4$. The main ingredients are Erdmann's classification of tame blocks and work of Cabanes and Picaronny on perfect isometries between tame blocks.

Publication Type: Article
Additional Information: 18 pages
Subjects: Q Science > QA Mathematics
Departments: School of Mathematics, Computer Science & Engineering > Mathematics
Related URLs:
Date available in CRO: 23 Nov 2012 12:45
Date of first online publication: December 2007
Download (194kB) | Preview



Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login