City Research Online

Derived localisation of algebras and modules

Chuang, J., Lazarev, A. & Braun, C. (2018). Derived localisation of algebras and modules. Advances in Mathematics, 328, pp. 555-622. doi: 10.1016/j.aim.2018.02.004

Abstract

For any dg algebra A , not necessarily commutative, and a subset S in H ( A ) , the homology of A , we construct its derived localisation L S ( A ) together with a map A → L S ( A ) , well-defined in the homotopy category of dg algebras, which possesses a universal property, similar to that of the ordinary localisation, but formulated in homotopy invariant terms. Even if A is an ordinary ring, L S ( A ) may have non-trivial homology. Unlike the commutative case, the localisation functor does not commute, in general, with homology but instead there is a spectral sequence relating H ( L S ( A )) and L S ( H ( A )) ; this spectral sequence collapses when, e.g. S is an Ore set or when A is a free ring. We prove that L S ( A ) could also be regarded as a Bousfield localisation of A viewed as a left or right dg module over itself. Combined with the results of Dwyer–Kan on simplicial localisation, this leads to a simple and conceptual proof of the topological group completion theorem. Further applications include algebraic K –theory, cyclic and Hochschild homology, strictification of homotopy unital algebras, idempotent ideals, the stable homology of various mapping class groups and Kontsevich’s graph homology

Publication Type: Article
Additional Information: © 2018 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Keywords: derived localisation, dg algebra, Ore set, group completion.
Departments: School of Science & Technology > Mathematics
[thumbnail of localisation.pdf]
Preview
Text - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (843kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login