City Research Online

Auditory Spectrum-Based Pitched Instrument Onset Detection

Benetos, E. & Stylianou, Y. (2010). Auditory Spectrum-Based Pitched Instrument Onset Detection. IEEE Transactions on Audio, Speech & Language Processing, 18(8), pp. 1968-1977. doi: 10.1109/tasl.2010.2040785

Abstract

In this paper, a method for onset detection of music signals using auditory spectra is proposed. The auditory spectrogram provides a time-frequency representation that employs a sound processing model resembling the human auditory system. Recent work on onset detection employs DFT-based features describing spectral energy and phase differences, as well as pitch-based features. These features are often combined for maximizing detection performance. Here, the spectral flux and phase slope features are derived in the auditory framework and a novel fundamental frequency estimation algorithm based on auditory spectra is introduced. An onset detection algorithm is proposed, which processes and combines the aforementioned features at the decision level. Experiments are conducted on a dataset covering 11 pitched instrument types, consisting of 1829 onsets in total. Results indicate that auditory representations outperform various state-of-the-art approaches, with the onset detection algorithm reaching an F-measure of 82.6%.

Publication Type: Article
Additional Information: © 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Publisher Keywords: Auditory system, Computer vision, Detection algorithms, Humans, Instruments, Multiple signal classification, Phase detection, Signal detection, Spectrogram, Time frequency analysis
Subjects: M Music and Books on Music > M Music
Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Departments: School of Science & Technology > Computer Science
SWORD Depositor:
[thumbnail of benetosstylianou_taslp_postprint.pdf]
Preview
Text - Accepted Version
Download (260kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login