City Research Online

Efficient Predicate Invention using Shared NeMuS

Mota, E., Howe, J. M. ORCID: 0000-0001-8013-6941, Schramm, A. & d'Avila Garcez, A. S. (2019). Efficient Predicate Invention using Shared NeMuS. In: 14th International Workshop on Neural-Symbolic Learning and Reasoning. 14th International Workshop on Neural-Symbolic Learning and Reasoning, 10 - 16 August 2019, Macau, China.

Abstract

Amao is a cognitive agent framework that tacklesthe invention of predicates with a different strat-egy as compared to recent advances in InductiveLogic Programming (ILP) approaches like Meta-Intepretive Learning (MIL) technique. It uses aNeural Multi-Space (NeMuS) graph structure toanti-unify atoms from the Herbrand base, whichpasses in the inductive momentum check. Induc-tive Clause Learning (ICL), as it is called, is ex-tended here by using the weights of logical compo-nents, already present in NeMuS, to support induc-tive learning by expanding clause candidates withanti-unified atoms. An efficient invention mecha-nism is achieved, including the learning of recur-sive hypotheses, while restricting the shape of thehypothesis by adding bias definitions or idiosyn-crasies of the language.

Publication Type: Conference or Workshop Item (Paper)
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
Departments: School of Science & Technology > Computer Science
[thumbnail of NeSy19_paper_11.pdf]
Preview
Text - Accepted Version
Download (798kB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login