Adaptive forecasting in the presence of recent and ongoing structural change
Giraitis, L., Kapetanios, G. & Price, S. (2013). Adaptive forecasting in the presence of recent and ongoing structural change. Journal of Econometrics, 177(2), pp. 153-170. doi: 10.1016/j.jeconom.2013.04.003
This is the latest version of this item.
Abstract
We consider time series forecasting in the presence of ongoing structural change where both the time series dependence and the nature of the structural change are unknown. Methods that downweight older data, such as rolling regressions, forecast averaging over different windows and exponentially weighted moving averages, known to be robust to historical structural change, are found also to be useful in the presence of ongoing structural change in the forecast period. A crucial issue is how to select the degree of downweighting, usually defined by an arbitrary tuning parameter. We make this choice data-dependent by minimising the forecast mean square error, and provide a detailed theoretical analysis of our proposal. Monte Carlo results illustrate the methods. We examine their performance on 97 US macro series. Forecasts using data-based tuning of the data discount rate are shown to perform well.
Publication Type: | Article |
---|---|
Subjects: | H Social Sciences > HB Economic Theory |
Departments: | School of Policy & Global Affairs > Economics |
SWORD Depositor: |
Download (496kB) | Preview
Export
Downloads
Downloads per month over past year
Available Versions of this Item
-
Adaptive forecasting in the presence of recent and ongoing structural change. (deposited 30 Aug 2012 13:45)
- Adaptive forecasting in the presence of recent and ongoing structural change. (deposited 16 May 2013 10:53) [Currently Displayed]