Experimental and numerical study of process-induced defects and their effect on fatigue debonding in composite joints
Liu, Y., Zhang, X., Lemanski, S. , Yazdani Nezhad, H. ORCID: 0000-0003-0832-3579 & Ayre, D. (2019). Experimental and numerical study of process-induced defects and their effect on fatigue debonding in composite joints. International Journal of Fatigue, 125, pp. 47-57. doi: 10.1016/j.ijfatigue.2019.03.033
Abstract
Laboratory coupon joints for fatigue debonding tests usually have narrow width and a through-width initial disbond. However, realistic structural joints are much wider and may contain process-induced defects and accidental damage; both are much smaller than the joint width. Small and discrete damage may behave differently from the idealised through-width disbond crack. This has brought a question on whether the laboratory coupon joint can accurately represent the fatigue behaviour of wider structural joints. This paper presents an experimental and numerical study of fatigue behaviour of a wide bonded lap joint with a process-induced defect of semi-circular shape. Fatigue debonding propagation was monitored by ultrasound inspection. Fatigue life was predicted using a normalised strain energy release rate parameter calculated by finite element method, and the adhesive material fatigue crack growth rate data measured under single and mixed mode conditions. Simulation of process-induced defect and validation by experiments have brought a better understanding of fatigue debonding behaviour in wide joints containing realistic damage. Suggestions are given for fatigue fracture tests of bonded joints.
Publication Type: | Article |
---|---|
Additional Information: | © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Publisher Keywords: | Adhesive bonding, Disbond, Composites, Finite element analysis, Fatigue life prediction |
Subjects: | T Technology > TJ Mechanical engineering and machinery |
Departments: | School of Science & Technology > Engineering |
SWORD Depositor: |
Available under License Creative Commons Attribution Non-commercial No Derivatives.
Download (2MB) | Preview
Export
Downloads
Downloads per month over past year