Nonparametric regression with parametric help
Lee, Y. K., Mammen, E., Nielsen, J. P. ORCID: 0000-0002-2798-0817 & Park, B. U. (2020). Nonparametric regression with parametric help. Electronic Journal of Statistics, 14(2), pp. 3845-3868. doi: 10.1214/20-ejs1760
Abstract
In this paper we propose a new nonparametric regression technique. Our proposal has common ground with existing two-step procedures in that it starts with a parametric model. However, our approach di↵ers from others in the choice of parametric start within the parametric family. Our proposal chooses a function that is the projection of the unknown regression function onto the parametric family in a certain metric, while the existing methods select the best approximation in the usual L2 metric. We find that the di↵erence leads to substantial improvement in the performance of regression estimators in comparison with direct one-step estimation, irrespective of the choice of a parametric model. This is in contrast with the existing two-step methods, which fail if the chosen parametric model is largely misspecified. We demonstrate this with sound theory and numerical experiment.
Publication Type: | Article |
---|---|
Publisher Keywords: | Regression function, bias, profiling technique, local linear estimation, crossvalidatory, bandwidth selectors |
Subjects: | H Social Sciences > HA Statistics Q Science > QA Mathematics |
Departments: | Bayes Business School > Actuarial Science & Insurance |
SWORD Depositor: |
Available under License Creative Commons: Attribution International Public License 4.0.
Download (440kB) | Preview
Export
Downloads
Downloads per month over past year