City Research Online

Assessment of Cavitation Models for Compressible Flows Inside a Nozzle

Kumar, A., Ghobadian, A. and Nouri, J. M. ORCID: 0000-0001-8610-3737 (2020). Assessment of Cavitation Models for Compressible Flows Inside a Nozzle. Fluids, 5(3), p. 134. doi: 10.3390/fluids5030134

Abstract

This study assessed two cavitation models for compressible cavitating flows within a single hole nozzle. The models evaluated were SS (Schnerr and Sauer) and ZGB (Zwart-Gerber-Belamri) using realizable k-epsilon turbulent model, which was found to be the most appropriate model to use for this flow. The liquid compressibility was modeled using the Tait equation, and the vapor compressibility was modeled using the ideal gas law. Compressible flow simulation results showed that the SS model failed to capture the flow physics with a weak agreement with experimental data, while the ZGB model predicted the flow much better. Modeling vapor compressibility improved the distribution of the cavitating vapor across the nozzle with an increase in vapor volume compared to that of the incompressible assumption, particularly in the core region which resulted in a much better quantitative and qualitative agreement with the experimental data. The results also showed the prediction of a normal shockwave downstream of the cavitation region where the local flow transforms from supersonic to subsonic because of an increase in the local pressure.

Publication Type: Article
Additional Information: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Publisher Keywords: cavitation; single nozzle; compressible flow; CFD; cavitation model; predictions; model validation; shockwave
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Departments: School of Mathematics, Computer Science & Engineering > Engineering > Mechanical Engineering & Aeronautics
Date Deposited: 14 Aug 2020 13:24
URI: https://openaccess.city.ac.uk/id/eprint/24751
[img]
Preview
Text - Published Version
Available under License Creative Commons: Attribution International Public License 4.0.

Download (5MB) | Preview

Export

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login